
CENTRE FOR ECONOMETRIC ANALYSIS 
CEA@Cass 

 
 

 
 

http://www.cass.city.ac.uk/cea/index.html 

 
 

Cass Business School  
Faculty of Finance  
106 Bunhill Row  

London EC1Y 8TZ 
 
 

 

 

 

 
 

Identifying Jumps in Financial Assets: a Comparison between 
Nonparametric Jump Tests   

(Extended Version). 
 
 

 
 

 Ana-Maria Dumitru and Giovanni Urga  
 
  

 
 

 
 

CEA@Cass Working Paper Series 

WP–CEA–01-2011 



Identifying Jumps in Financial Assets: a

Comparison between Nonparametric Jump Tests

[Extended Version] ∗
March, 2011

Revised: October, 2011

Ana -Maria DUMITRU

Department of Economics and Technology Management, University of Bergamo (Italy) &

Centre for Econometric Analysis, Faculty of Finance, Cass Business School, 106 Bunhill Row,

London EC1Y 8TZ (UK).E-mail Ana.Dumitru.1@city.ac.uk

Giovanni URGA

Centre for Econometric Analysis, Faculty of Finance, Cass Business School, 106 Bunhill Row,

London EC1Y 8TZ (UK). E-mail: g.urga@city.ac.uk &

Hyman P. Minsky Department of Economic Studies, University of Bergamo (Italy)

Abstract

We perform a comprehensive Monte Carlo comparison between nine procedures available
in the literature to detect jumps in financial assets proposed by Barndorff-Nielsen and Shep-
hard (2006), Andersen et al. (2007), Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2008),
Jiang and Oomen (2008), Andersen et al. (2009) (two tests), Corsi et al. (2010) and Podolskij
and Ziggel (2010). We evaluate size and power properties of the procedures under alternative
sampling frequencies, levels of volatility, persistence in volatility, degree of contamination with
microstructure noise, jump size and intensity. The overall best performance is showed by the
Lee and Mykland (2008) and Andersen et al. (2007) intraday procedures, provided the price
process is not not very volatile. We propose an improvement to these procedures based on crit-
ical values obtained from finite sample approximations of the distribution of the test statistics.
We show the validity to use reunion and intersection across procedures and across sampling
frequencies for potential users of the tests to minimize spurious jump detection. Finally, we
report an empirical analysis using real high frequency data on five stocks listed in the New York
Stock Exchange.
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1 INTRODUCTION

There is a large consensus in the financial literature, theoretical and applied, that modeling return

dynamics requires the specification of a stochastic volatility component, which accommodates the

persistence in volatility, and of a jump component, which takes care of the unpredictable, large

movements in the price process. The identification of the time and the size of jumps has profound

implications in risk management, portfolio allocation, derivatives pricing (Aı̈t-Sahalia, 2004). For

this task, the use of jump diffusion models proved very difficult, as there are no closed forms of the

likelihood function and in addition, the number of parameters to estimate is very high. One solution

is to focus on the popular class of affine models (Duffie et al., 2000) which allow for tractable

estimation, but impose a quite restrictive set of assumptions. An alternative approach is represented

by nonlinear volatility models. However, the estimation procedure, based on simulation methods,

such as the Gallant and Tauchen (2002)’s efficient method of moments, is computationally demanding

and too much dependent on the choice of an auxiliary model (Chernov et al., 2003; Andersen et al.,

2002, see, for instance).

One of the main advances in high frequency econometrics over the last decade was the development

of nonparametric procedures to test for the presence of jumps in the path of a price process during

a certain time interval or at certain point in time. Such methods are very simple to apply, they just

require high frequency transaction prices or mid-quotes. Moreover, they are developed in a model free

framework, incorporating different classes of stochastic volatility models. In addition to the seminal

contribution of Barndorff-Nielsen and Shephard (2006), in this paper we consider eight other tests

proposed by Andersen et al. (2007), Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2008), Jiang

and Oomen (2008), Andersen et al. (2009) (two tests based on the minimum and median realized

variance), Corsi et al. (2010) and Podolskij and Ziggel (2010). All tests are based on CLT-type results

that require an intraday sampling frequency that tends to infinity. The test statistics are based on

robust to jumps measures of variation in the price processes which are estimated by using one of

the following types of estimators: realized multi-power variations (Barndorff-Nielsen et al., 2006),

threshold estimators (Mancini, 2009), the median or the minimum realized variation (Andersen et al.,

2009), the corrected realized threshold multipower variation (Corsi et al., 2010). The Andersen et al.

(2007) and Lee and Mykland (2008) tests have the null hypothesis of continuity of the sample path at

a certain moment, allowing for the exact identification of the time of a jump. The other procedures

have a null of continuity within a certain time period, such as a trading day.

Given such a variety of nonparametric methodologies to identify jumps, one might wonder which
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procedure should be preferred, or whether there are data characteristics for which it is recommended

to use one test instead of the others. The main objective of this paper is to perform a thorough

comparison among the various testing procedures, based on a comprehensive set of Monte Carlo

simulations, which embodies important features of financial data. To quantify the size for all tests,

our simulations are based on a stochastic volatility model with varying persistence. To evaluate the

power property, we consider stochastic volatility models with jumps of different sizes arriving with

varying intensity.

Based on the findings of the simulation exercise, we aim to provide a set of guidelines to users

of nonparametric tests for jumps. It is important to establish whether the performance of the tests

is related to some features of the data, such as different sampling frequencies, different levels of

volatility, varying persistence in volatility, varying contamination with microstructure noise, varying

jump size and jump intensity. Such characteristics vary between classes of assets, as well as between

different time periods. For instance, equity prices are ‘jumpier’ than bond prices and markets in

general have been more volatile and at the same time ‘jumpier’ during the last three years than

before.

We make two additional contributions to the existing literature. First, in the case of the Andersen

et al. (2007) and Lee and Mykland (2008) tests, we explore the benefits from using approximate finite

sample distributions. We generate critical values based on simulations, in line with White (2000)’s

Monte Carlo Reality Check approach. Second, we propose a procedure that combines tests and

frequencies to reduce the probability of detecting spurious jumps.

Finally, we apply the tests to high frequency data for five stocks listed in the New York Stock

Exchange, namely Procter&Gamble, IBM, JP Morgan, General Electric and Disney, during 2005

and 2009.

To the best of our knowledge, in the literature there are two other papers that deal with similar

issues. Theodosiou and Žikeš (2010) perform an extensive Monte Carlo simulation exercise to evaluate

the performance of different jump detection procedures, with a special interest in the effect of illiquid

data on the behaviour of the various tests. Schwert (2009) instead relies only on real data to conclude

that different jump detection procedures pick up different jumps. Our paper is more comprehensive

in terms of testing procedures included in our comparison. In addition, while we acknowledge that

tests for jumps can lead to very different findings, however we provide a feasible solution to this

problem first, by proposing the use of simulated critical values for the Andersen et al. (2007) and Lee

and Mykland (2008) tests; second, and most importantly, we show that combining various procedures
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greatly improves the performance of the tests in terms of spurious jump detection.

The paper is organized as follows. In Section 2, we review the nine nonparametric tests for jumps

available in the literature. Section 3 describes the Monte Carlo setup and reports the main findings

of the simulations. Section 4 reports on the extensions to the existing tests based on approximations

of the finite sample distributions of the test statistics for the intraday procedures and the benefits

from combinations of the existing tests. Section 5 reports an empirical exercise using stock data.

Finally, Section 6 concludes and offers some guidelines to potential users.

2 JUMP TESTS

In this section, we describe the available jump detection procedures. First, let us briefly illustrate

the theoretical framework in which all tests have been developed.

The logarithmic price process, pt, is usually assumed to be a jump-diffusion process of the form:

dpt = µtdt+ σtdWt + dJt (1)

where µt represents the drift, σt the diffusion parameter, and Wt a Brownian motion at time t. Jt is

the jump process at time t, defined as Jt =
∑Nt

j=1 ctj . ctj represents the size of the jump at time tj

and Nt is a counting process, representing the number of jumps up to time t.

The quadratic variation (QV) of the price process up to a certain point in time t (usually a

trading day) can be defined as follow:

[p]t =

∫ t

0

σ2
sds+

Nt∑

j=1

c2tj , (2)

where
∫ t

0
σ2
sds is the integrated variance or volatility (IV). Thus, [p]t is made up of a part coming

from the diffusion component and another one caused by the jump component. The two components

have a different nature and should be separately analyzed and modelled. The integrated volatility

is characterized by persistence, whereas jumps, apart from a possible drift, have an unpredictable

nature.

The recent literature in the field of high frequency econometrics has developed several estimators

for both the quadratic variance and the integrated volatility of a price process such as the one derived

in (1). Most of these estimators are based on equally spaced data. Thus, the interval [0, t] is split
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into n equal subintervals of length δ. The j-th intraday return rj on day t is defined as follows:

rj = pt−1+jδ − pt−1+(j−1)δ. (3)

[p]t can be estimated by the realized variance (RVt), defined as (Andersen and Bollerslev, 1998):

RVt =
n∑

j=1

r2j
δ→0−→ [p]t, (4)

where
δ→0−→ stands for convergence in probability when δ → 0.

To measure the IV one can use a wide range of estimators, such as multipower variations, threshold

estimators, medium and minimum realized variance. All these quantities are robust to jumps in the

limit. Most of the jump detection procedures are based on the comparison between RVt, which

captures the variation of the process generated by both the diffusion and the jump parts, and a

robust to jumps estimator.

It is important to note that none of these procedures can test for the absence or presence of jumps

in the model or data generating process. They merely supply us with information on whether within

a certain time interval or at a certain moment, the realization of the process is continuous or not.

Andersen et al. (2007) and Lee and Mykland (2008) assume the null of continuity of the sample path

at time tj. For all the other procedures, the null is of continuity of the sample path during a certain

period, such as a trading day. The alternative hypothesis implies discontinuity of the sample path,

that is the occurrence of at least one jump.

Apart from the procedures proposed by Aı̈t-Sahalia and Jacod (2008) and Podolskij and Ziggel

(2010), all other procedures work only when a finite number of jumps occur within a certain time

interval. This is due to the fact that in most cases, the construction of the test statistics is based

on realized multi-power variation estimators, which are robust only to a finite number of jumps.

For this reason, in the simulation set-up, we only consider processes with a finite number of jumps

(compound Poisson) and compare tests under this scenario.

In the light that the Andersen et al. (2007) and Lee and Mykland (2008) tests differ only in terms

of the choice of the critical values, for a large part of our simulation exercise, we do not distinguish

between the two of them (see Section 2.2 and the Remarks in Section 3.1).

We turn now to the presentation of the procedures.
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2.1 Barndorff-Nielsen and Shephard (2006) test (BNS henceforth)

Barndorff-Nielsen and Shephard (2006) base their procedure on the possibility to build a con-

sistent estimator for the integrated variance of a process. The test draws from previous research

(Barndorff-Nielsen and Shephard, 2004), where authors show that the realized bipower variation

(BVt) consistently estimates the integrated variance in the presence of rare jumps:

BVt = plim
δ↓0

n∑

j=2

|rj||rj−1| (5)

Barndorff-Nielsen et al. (2006) generalize the BVt to realized multipower variations, computed

as sums of products of adjacent absolute returns raised to certain powers. These quantities can be

generally used to estimate
∫ t

0
σm
s ds, m > 0 in the presence of jumps.

One can infer whether jumps occur during a time interval (usually a trading day) by comparing

the realized volatility with the realized bipower variation. Following simulation studies reported by

the authors and also by Huang and Tauchen (2005), in this paper we use the ratio test defined as:

1− BVt

RVt√
(µ−4

1 + 2µ−2
1 − 5)δ max

(
1, TQt

BV 2

t

)
L→ N (0, 1) (6)

where µ1 =
√
2/π and

L→ stands for convergence in law. TQt represents the realized tripower

quarticity that consistently estimates the integrated quarticity, i.e.
∫ t

0
σ4
u du, and is defined as follows:

TQt = nµ−3
4/3

(
n

n− 2

) n∑

j=3

|rj−2|4/3|rj−1|4/3|rj|4/3 (7)

where µ4/3 = E(|U |)4/3, with U being a standard normal variable.

2.2 Andersen et al. (2007) and Lee and Mykland (2008) tests (ABD and

LM henceforth)

Lee and Mykland (2008) and Andersen et al. (2007) develop tests for jumps based on the stan-

dardization of intraday returns by robust to jumps volatility estimators. Both tests are constructed

under the null that there is no jump in the realization of the process at a certain time, tj. This

enables users to identify the exact time of a jump, as well as the number of jumps within a trading

day. We call these two procedures “intraday” tests, as they can detect jumps that occur any time
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during a trading day, whereas the other tests in the literature can only check for the discontinuity of

the sample path at a daily level.

The first step in applying both ABD and LM procedures is to compute a local (spot) volatility

estimate that is robust to jumps and then standardize the intraday returns with this estimate. Given

the intraday return at time tj, i.e. rj, and the local volatility estimate, V̂j, authors define the following

statistic:

zj =
|rj|√
V̂j

(8)

Both papers propose computing V̂j as the properly scaled realized bipower variation over a window

around or before tj:

V̂j =
BVtj

K − 2
, (9)

where K is the window size on which BVtj is calculated.

As zj is proved to be asymptotically normal, one can attempt to identify jumps by comparing

it to a normal threshold, as proposed by Andersen et al. (2007). As the test is applied at every

intraday time, tj, in order to deal with the false discovery rate issue which may arise in the context

of multiple testing, the authors propose using the Šidák approach. Once a nominal daily size, α, is

fixed, the corresponding size for each intraday test is defined as β = 1− (1− α)δ. If zj > Φ1−β/2, we

reject the null of continuity of the sample path.

Lee and Mykland (2008) use a slightly different approach. The usual 95% and 99% quantiles from

the normal distribution prove too permissive, leading to an over-rejection of the null. To overcome

this limitation, the authors propose using critical values from the limit distribution of the maximum

of the test statistics. They show that this maximum converges, for δ → 0, to a Gumbel variable:

max (zj)− Cn

Sn

L→ ξ, P(ξ) = exp(−e−x) (10)

where Cn = (2 log n)1/2

µ1

− log π+log (logn)

2µ1(2 logn)
1/2 and Sn = 1

µ1(2 logn)
1/2 .

The test can be conducted by comparing zj, standardized as max (zj) in (10), to the critical value

from the Gumbel distribution.

It is worth noting the following regarding the implementation of the two tests. Andersen et al.

(2007) provide no suggestions concerning the sample size on which to estimate the local volatility.

Lee and Mykland (2008) instead propose computing σ̂j on a window size of K observations that

precede time tj. They show that K depends on the choice of the sampling frequency and suggest to
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take K =
√
252 ∗ n, where n is the daily number of observations, whereas 252 is the number of days

in the (financial) year.

The ABD test requires very low nominal sizes (10−5), whereas for all other procedure, we use a 5%

significance level. In order to assure comparability with the other procedures, we do not distinguish

between the two procedures and use the critical values of Lee and Mykland (2008). Thus, we report

the results under the acronym ’ABD-LM’.

Whenever we make comparisons with the other tests which are applied on time intervals equal

to one trading day, we compute the ’ABD-LM’ test statistics for every moment tj within a trading

day and then pick up the maximum statistic as the final test for that day.

2.3 The Aı̈t-Sahalia and Jacod (2008) test (AJ henceforth)

Another procedure that enables the identification of discontinuities in prices is the one developed

by Aı̈t-Sahalia and Jacod (2008). Consider the following realized power variation:

B(m, δ)t =

[t/δ]∑

j=1

|rj|m, (11)

with the scalar m > 0. Aı̈t-Sahalia and Jacod (2008) notice that when m > 2 and jumps are present,

B(m, δ)t is invariant to sampling scale modifications. This is no longer valid for continuous processes.

Based on this observation, authors develop a family of test statistics that compare realized power

variations computed on data sampled at two different scales, δ and kδ, k ∈ N. Define ̂S(m, k, δ)t as:

̂S(m, k, δ)t =
̂B(m, kδ)t
̂B(m, δ)t

δ→0−→ km/2−1, (12)

where m > 2 and k ≥ 2. The following test statistic is proposed to test for the null of no jumps:

̂S(m, k, δ)t − km/2−1

√
Vn,t

L→ N (0, 1), (13)

where Vn,t is the variance of the test statistic and we refer to the original contribution for details.

Vn,t can be estimated by using both multipower variations or threshold estimators (Mancini, 2009).

In this paper, we employ both methodologies.
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2.4 Jiang and Oomen (2008) test (JO henceforth)

Another approach to jump identification is proposed by Jiang and Oomen (2008), with the null

of no jumps in the sample path between 0 and t. The test exploits the differences that can occur

between arithmetic and logarithmic returns computed as follows:

SwVt(δ) = 2

[t/δ]∑

j=1

(Rj − rj) (14)

where Rj denotes the arithmetic return j-th intraday return, while rj is the log return. The absence

of jumps makes the difference between SwVt and the realized variance equal to 0:

plim
δ→0

(SwVt −RVt) =





0 no jumps in[0, t]

2
∫ t

0
Ju dqu −

∫ t

0
J2
u dqu jumps in[0, t]

(15)

where Ju = exp(Ju)− Ju − 1, with J the jump process.

The test statistic is defined as:

nBVt√
ΩSwV

(
1− RVt

SwVt

)
L→ N (0, 1). (16)

ΩSwV is estimated using a realized multipower variation (Barndorff-Nielsen et al., 2003; Barndorff-

Nielsen et al., 2006):

Ω̂SwV =
µ6

9

n3µ−m
6/m

n−m+ 1

n−m∑

i=0

m∏

k=1

|ri+k|6/m (17)

where a suitable choice for m is either 4 or 6, as suggested by the authors, and µ6 = E(|U |)6,
U ∼ N (0, 1).

2.5 Andersen et al. (2009) tests based on MinRV and MedRV (Min

and Med tests henceforth)

Andersen et al. (2009) show that the realized multipower variations are very sensitive to market

microstructure noise, especially to zero returns. Authors propose to use instead estimators based on

the nearest neighbour truncation. The minimum realized variance (MinRVt) and median realized
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variance (MedRVt) are proposed to estimate the integrated volatility in the presence of jumps:

MinRVt =
π

π−2
n

n−1

∑n
j=2 min(|rj|, |rj−1|)2

MedRVt =
π

6−4
√
3+π

n
n−2

∑n
j=3 med(|rj|, |rj−1|, |rj−2|)2.

(18)

In line with the BNS procedure, authors construct tests for jumps from the comparison between

the above estimators and RVt:

1−MinRVt
RVt

√

1.81 δ max

(

1,
MinRQt
MinRV 2

t

)

L→ N (0, 1) and

1−MedRVt
RVt

√

0.96 δ max

(

1,
MedRQt
MedRV 2

t

)

L→ N (0, 1),

(19)

where MinRQt =
πn

3π−8
n

n−1

∑n
j=2min(|rj|, |rj−1|)4 is the minimum realized quarticity and MedRQt =

3πn
9π+72−52

√
3

n
n−2

∑n
j=3med(|rj|, |rj−1|, |rj−2|)4 the median realized quarticity which estimate the inte-

grated quarticity.

2.6 Corsi et al. (2010) test (CPR henceforth)

Corsi et al. (2010) stress the shortcomings of the realized multipower variations and propose the

corrected realized threshold multipower variation. Authors propose the following test statistic:

1− C−TBVt

RVt√(
π2

4
+ π − 5

)
δ max

(
1, C−TTriPVt

C−TBV 2

t

)
L→ N (0, 1), (20)

where C − TBVt and C − TTriPVt represent the corrected realized threshold bipower and tripower

variation, respectively, defined as:

C − TBVt =
π
2

∑n
j=2 Z1(rj , ϑj)Z1(rj−1, ϑj−1),

C − TTriPVt = µ−3
4/3

∑n
j=3 Z1(rj , ϑj)Z1(rj−1, ϑj−1)Z1(rj−2, ϑj−2)

(21)

where µ4/3 = E(|U |)4/3, U ∼ N (0, 1) and Z1(rj, ϑj) =





|rj|, r2j < ϑj

1.094 ϑ
1

2

j , r2j > ϑj

is a function of the

return at time tj and a threshold ϑj = c2ϑ · V̂j. c2ϑ is a scale free constant and V̂j a local volatility
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estimator.

Following authors’ recommendation, to compute the threshold, ϑj, we take cϑ = 3. For the

auxiliary local volatility estimate, V̂t, Corsi et al. (2010) propose using a non-parametric filter that

removes jumps from data in several iterations. We refer to the original paper (in particular Annex

B) for details.

2.7 Podolskij and Ziggel (2010) test (PZ henceforth)

This procedure is based on comparison between a realized power variation and a robust to jumps

estimator to detect jumps, as in the case of the BNS, Min, Med and CPR tests. Podolskij and

Ziggel (2010)’s choice for the robust to jumps estimator is Mancini (2009)’s threshold estimator.

However, since the derivation of a limiting theory for the simple differentiation between the two has

proved particularly difficult, authors define the test statistics as a difference between a realized power

variation estimator and a threshold estimator perturbed by some external positive i.i.d. random

variables, (ηj)1≤j≤[t/δ], with E[ηj] = 1 and finite variation:

T (m, δ)t = n
m−1

2

[t/δ]∑

j=1

|rj|m(1− ηjI{|rj |≤cδw}), m ≥ 2, (22)

where 1{|rj |≤c∗δw} is an indicator function for absolute returns lower than a threshold fixed to c ∗ δw,
with c = 2.3

√
BVt and w = .4.

The test statistic can be defined as follows:

T (m, δ)t√
V ar[ηj]n

2m
2

−1
∑[t/δ]

j=1 |rj|2mI{|rj |≤cδw}

L→ N (0, 1), (23)

where V ar[ηj] is the variance of the ηj variables. For the perturbing variables, Podolskij and Ziggel

(2010) recommend to sample them from the following distribution:

P η =
1

2
(ς1−τ + ς1+τ ), (24)

where ς is the Dirac measure, and τ is a constant chosen relatively small, e.g. τ = 0.1 or 0.05.
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3 MONTE CARLO ANALYSIS

In this section we report and discuss the results of an extensive comparison among the testing

procedures presented in the previous section. The exercise is based on a comprehensive set of Monte

Carlo simulations, which embody several features of financial data. To quantify the size for all tests,

our simulations are based on stochastic volatility models with varying persistence. To evaluate the

power property, we consider stochastic volatility models with jumps of different sizes arriving with

varying intensity.

3.1 Simulation design

This section provides a description of the Monte Carlo design. Following Huang and Tauchen

(2005), we simulated several stochastic volatility processes with leverage effect, with or without jumps

and different levels of persistence in volatility, as well as varying jump intensities and jump variances.

The benchmark model for our simulations is a stochastic volatility model with one volatility

factor (SV1F). The volatility factor enters the price equation in an exponential form, as suggested

in Chernov et al. (2003):

dpt = µdt+ exp[β0 + β1υt]dWpt ,

dυt = αυυtdt+ dWυt , corr(dWp, dWυ) = ρ
(25)

where pt is the log-price process, the W ’s are standard Brownian motions, υt the volatility factor, µ

the drift of the price process, αυ the drift of the volatility process and ρ the leverage effect. This is

the process that we simulate under the null hypothesis of no jumps.

Under the alternative hypothesis of discontinuous sample paths, to the price process in (25) we

add a compound Poisson process with jump intensity λ and jump size distributed as N(0, σ2
jump).

Chernov et al. (2003) show that it is possible to generate similar dynamics with the ones produced

by a jump diffusion model by using a two factor stochastic volatility model. A first volatility factor

controls for the persistence in the volatility process, while the second factor generates higher tails in

a similar manner to a jump process. Moreover, by considering the volatility feedback component for

the second factor, the model can sometimes accommodate market conditions even better than jump

diffusions, as the volatility of volatility can capture the dynamics of extreme events. Thus, a second
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stochastic volatility model (SV2F) is defined as:

dpt = µdt+ s− exp[β0 + β1υ1t + β2υ2t ]dWpt

dυ1t = αυ1υ1tdt+ dWυ1t

dυ2t = αυ2υ2tdt+ [1 + βυ2υ2t ]dWυ2t

(26)

with corr(dWp, dWυ1) = ρp,υ1 and corr(dWp, dWυ2) = ρp,υ2 .

SV2F can generate extreme returns, without having a jump component. We simulate this model

only under the null hypothesis. Our objective is to understand whether the various tests for jumps

maintain a reasonable size in extremely volatile periods.

To assess the power of the tests, we augment SV1F with rare compound Poisson jumps, arriving

with intensity λ and having normally distributed sizes with mean 0 and standard deviation σjump.

The values of the parameters of the two stochastic volatility models are the ones in Huang and

Tauchen (2005) and are reported, for convenience, in Table 1. Table 1 also reports the values of the

jump parameters, λ and σjump:

SV1F SV2F

µ 0.030 µ 0.030
β0 0 β0 -1.200
β1 0.125 β1 0.040
αυ {-0.137e−2, -0.100, -1.386} β2 1.500
ρ -0.620 αυ1 -0.137 e−2

λ 0 - 2 αυ2 -1.386
σjump 0 - 2.50 by 0.50 βυ2 0.250

ρp,υ1 -0.300
ρp,υ2 -0.300

Table 1: Parameter values for the 1 factor stochastic volatility models (SV1F) and for the 2 factor
model (SV2F)

In empirical applications it is customary to apply these tests at a daily level, in order to be able

to conclude whether jumps occurred during the trading day. Therefore, we evaluate the statistical

properties of all jump tests based on data simulated for 10000 trading days, for all models and under

both hypotheses of continuity and discontinuity. For the simulation of each path, we use an Euler

discretization scheme based on increments of 1 second. We then perform a sampling at 1, 5, 15 and

30 minutes. For comparison purposes, all models with the same number of factors are based on the

same Brownian motion(s). For instance, for all the models derived from the SV1F model, we use the

same simulated Brownian motions to describe the dynamics of both the price and volatility factor.

12



Figures 1 and 2 report the simulated daily prices, volatility factors and returns for SV1F with

medium mean reversion (αυ = −0.1) and SV2F, for 10,000 days, with data sampled every 5 minutes.

We report results using a 5% significance level. The results for alternative significance levels, such

as 1%, 0.1% and 0.01%, are in line with the ones at 5%. We report size and size adjusted power.

3.2 Monte Carlo findings

3.2.1 Size and power of the tests for stochastic volatility models

SIZE For SV1F, we consider three alternative values of the mean reversion parameter of the volatil-

ity factor. In all cases, the empirical size tends to slightly decrease with the increase in the mean

reversion parameter, without affecting the ranking of the tests.

Results are not affected by the values taken by the mean reversion parameter. In this paper we

only report the empirical size for the medium mean reversion case (see Table 2). The full set of

results is available upon request.

Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.047 0.038 0.031 0.027 0.014
AJ(power var) 0.048 0.046 0.051 0.088 0.150

BNS 0.048 0.054 0.053 0.057 0.063
CPR 0.052 0.055 0.056 0.064 0.075
JO 0.065 0.069 0.086 0.122 0.189

ABD-LM 0.055 0.066 0.074 0.063 0.059
Med 0.051 0.050 0.052 0.053 0.064
Min 0.047 0.046 0.044 0.040 0.035
PZ 0.049 0.065 0.083 0.100 0.121

Table 2: Size of the tests for jumps for the SV1F model with medium mean reversion

In Table 2, if we look at all the sampling frequencies, the biggest size distortion is encountered

in the case of the JO test, where, for a 1 second sampling frequency, we have a size equal to 6.5%,

which increases even more when the sampling frequency diminishes. A similar pattern can be seen

for the PZ procedure, which displays a size close to the nominal one when sampling is performed

every second, but then gets rapidly and highly oversized.

The best performance is shown by the Med and BNS tests. Both tests display a size very close

to the nominal one at a sampling frequency of second, i.e. 5.1% for the Med and 4.8% for BNS. The

size then tends to slowly increase with the decrease in the sampling frequencies. The Min and CPR

tests also seem to behave well at higher frequencies, with a size of 5.2% for CPR and 4.7% for the

Min test. However, the Min test has a tendency of becoming undersized at lower frequencies, getting

to 3.5% at 30 minutes. The CPR procedure becomes oversized with the decrease in the sampling

frequency and displays a size equal to 7.5% for 30 minutes data. The intraday ABD - LM procedure

13
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Figure 1: Simulated daily prices, returns and volatility factor respec-
tively from the SV1F model with medium mean reversion
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Figure 2: Simulated daily prices, returns and volatility factors re-
spectively from the SV2F model
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tends to be oversized at all sampling frequencies. Its size distortion is not very high though, varying

around 1-1.5% from the nominal size.

The AJ test statistic was standardized with standard deviations based on both power variations

and threshold estimators. In both cases, at a sampling frequency of 1 second, the test seems slightly

undersized. However, when diminishing the sampling frequency, the behavior of the test statistics

differs. The test becomes rapidly oversized when its variance is based on realized power variations

and severely undersized when threshold estimators are used to estimate its variance. This test too

seems to work well at higher frequencies.

Table 3 reports the empirical size for the SV2F model.

Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.127 0.094 0.039 0.020 0.008
AJ(power var) 0.052 0.077 0.121 0.205 0.255

BNS 0.054 0.073 0.097 0.113 0.119
CPR 0.062 0.165 0.150 0.168 0.247
JO 0.070 0.106 0.163 0.247 0.327

ABD-LM 0.993 0.699 0.482 0.339 0.254
Med 0.054 0.074 0.102 0.122 0.142
Min 0.052 0.063 0.084 0.082 0.080
PZ 0.701 0.648 0.448 0.305 0.239

Table 3: Size of the tests for jumps for the SV2F model, for a 5% significance level

If we look at all sampling frequencies, the best performance is displayed by the Min test, followed

by BNS. For 1 second sampling frequency, size is equal to 5.2% and 5.4%, which increases at lower

sampling frequencies though less dramatically than the other tests. The Med, CPR and JO tests

behave similar to BNS and Min, but become oversized more rapidly. The AJ(power var) has a size

close to the nominal one when sampling is done every second, but then becomes rapidly oversized.

When the AJ(threshold) is considered, the test gets severely undersized at lower sampling frequencies.

The PZ and the intraday procedures display by far the poorest performance, being severely oversized

even when we sample every second (99.3% for the intraday tests and 70.1% for PZ).

POWER We now evaluate the power of the tests by adding to the continuous stochastic volatility

process SV1F jump processes with alternative intensities and jump sizes.

Varying jump intensity In order to examine how jump detection changes as the number

of jumps grows, we consider Poisson jump arrival times depending on the following varying jump

intensities (λ): .014, .058, .089, .118, .5, 1, 1.5, and 2. These intensities can be interpreted as the

average number of jumps per day and generate the following total number of jumps: 148, 560, 754,

1208, 5081, 10052, 15058 and 20200. For all these scenarios, we consider a jump size that is normally
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distributed with mean 0 and standard deviation equal to 1.5%. We did not impose any restrictions

on the maximum number of jumps per day. Thus, more than one jump may occur during a trading

day.

In Table 4, we report the size corrected power of the tests by considering some scenarios for the

jump intensity. The frequency of correctly identified jumps increases as the jump intensity raises.

λ Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.971 0.783 0.223 0.036 0.014
AJ(power var) 0.970 0.796 0.301 0.183 0.313

BNS 0.954 0.831 0.702 0.545 0.364
CPR 0.956 0.851 0.737 0.598 0.449

0.118 JO 0.961 0.831 0.711 0.558 0.408
ABD-LM 0.984 0.882 0.796 0.673 0.555

Med 0.950 0.839 0.720 0.582 0.433
Min 0.939 0.816 0.689 0.510 0.309
PZ 0.975 0.893 0.779 0.648 0.001

AJ(threshold) 0.972 0.807 0.232 0.044 0.015
AJ(power var) 0.972 0.811 0.322 0.216 0.319

BNS 0.959 0.854 0.728 0.562 0.399
CPR 0.961 0.870 0.766 0.630 0.504

0.5 JO 0.966 0.853 0.730 0.574 0.445
ABD-LM 0.985 0.909 0.799 0.663 0.537

Med 0.955 0.860 0.753 0.603 0.461
Min 0.949 0.840 0.709 0.544 0.347
PZ 0.982 0.909 0.804 0.679 0.000

AJ(threshold) 0.982 0.836 0.224 0.042 0.010
AJ(power var) 0.982 0.852 0.351 0.224 0.333

BNS 0.970 0.890 0.782 0.612 0.427
CPR 0.971 0.905 0.815 0.686 0.538

1 JO 0.975 0.887 0.771 0.612 0.454
ABD-LM 0.988 0.929 0.840 0.691 0.532

Med 0.969 0.893 0.795 0.646 0.473
Min 0.962 0.877 0.759 0.581 0.365
PZ 0.988 0.930 0.855 0.724 0.000

AJ(threshold) 0.992 0.858 0.192 0.030 0.009
AJ(power var) 0.992 0.900 0.409 0.256 0.353

BNS 0.984 0.933 0.854 0.688 0.485
CPR 0.986 0.942 0.882 0.778 0.618

2 JO 0.988 0.919 0.823 0.655 0.489
ABD-LM 0.995 0.957 0.883 0.728 0.533

Med 0.983 0.930 0.845 0.688 0.515
Min 0.981 0.924 0.829 0.645 0.420
PZ 0.994 0.960 0.907 0.800 0.000

Table 4: Size corrected power for varying jump intensities and a 5% significance level.

The best tests in terms of power are the intraday ABD-LM procedures and the PZ test. Let us

consider the intraday procedures first. The corrected power for these tests is around 98-99% for a

sampling frequency of 1 second and then gradually diminishes as the sampling frequency decreases.

As the jump intensity diminishes, the power for these procedures ranges between 88% and 96%, for

a sampling frequency of 1 minute, between 79% and 88% for 5 minutes data, between 67% and 73%

for 15 minutes and finally between 53% and 55% for 30 minutes.

For the PZ procedure we observe a very high power (around 98% and 99% at 1 sec) which

decreases with the sampling frequency. It remains higher than the other procedures (except the
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intraday tests) for data sampled at 1, 5 and 15 minutes. It is worth mentioning that at 30 minutes

the power of PZ is very close to 0 in all cases, even if the actual power (not reported here) ranges

between 50% and 60%. This is due to the fact that the PZ statistic tends to become extremely large

at very low frequencies under both the null and the alternative hypotheses. As it can be seen in

Table 2,at 30 minutes PZ spuriously detects jumps on 12.1% days. The average of the PZ statistic

in this 12.1% cases is 3.29 · 1012.
The JO test displays a very high power (between 96% and 98%) at 1 second and can be ranked

after the PZ, ABD-LM and AJ tests. However, at lower frequencies, its power becomes slightly lower

than the other tests, except AJ. Power ranges between 83% and 92% at 1 minute, between 71% and

82% at 5 minutes, between 56% and 66% at 15 minutes and finally between 41% and 49% for data

sampled every 30 minutes.

Both versions of the AJ test display a high power at 1 second, which plummets at lower fre-

quencies. For instance, if we look at the results for λ = .5, the power decreases at around 80%

when sampling is done every minute, for both versions of the test, followed by a fall at a level of

23% for the version based on threshold estimators and 32% for the test based on power variations,

for a sampling frequency of 5 minutes. If we look at lower frequencies, the test based on power

variation-type estimators displays a gradual decrease in power, which gets to a value of 24% for a

30 minutes sampling frequency, while the version based on threshold estimators displays a very low

power of 0.6% at 30 minutes.

The BNS, CPR, Med and Min tests display a very similar behaviour. They all exhibit very good

power properties, with a power ranging between 95% and 98% when sampling at every second, which

then decreases with the decrease in the sampling frequency, with values below the ones observed for

the intraday and PZ tests. Generally, over all frequencies, the highest power is displayed by CPR,

followed by Med, BNS and Min.

Varying jump size A further insight on the ability of all these procedures to identify jumps

can be attained by varying the jump size. In this section, we fix the number of jumps for the entire

sample and vary the jump size. However, we maintain its nondeterministic character, by drawing it

from a normal distribution with mean 0 and a standard deviation that ranges between 0 and 2 bs

with a growth rate of .5. Table 5 reports the power of the jump detection procedures.

Overall, the performance of all tests increases with the size of the jumps. The ranking of the tests

is in line with what was found for the case of varying jump intensity.

There is a confirmation about the very good ability of the ABD-LM and PZ tests to detect jumps,
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σjump Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.921 0.496 0.108 0.026 0.026
AJ(power var) 0.921 0.509 0.159 0.120 0.232

BNS 0.872 0.565 0.340 0.178 0.118
0.5 CPR 0.880 0.615 0.394 0.222 0.146

JO 0.892 0.566 0.322 0.171 0.123
ABD-LM 0.964 0.698 0.448 0.245 0.128

Med 0.865 0.590 0.368 0.208 0.132
Min 0.843 0.532 0.307 0.147 0.076
PZ 0.950 0.720 0.482 0.262 0.001

AJ(threshold) 0.972 0.719 0.202 0.030 0.013
AJ(power var) 0.972 0.727 0.264 0.171 0.284

BNS 0.942 0.780 0.611 0.416 0.265
1 CPR 0.947 0.810 0.656 0.483 0.340

JO 0.956 0.779 0.596 0.418 0.283
ABD-LM 0.987 0.839 0.687 0.493 0.337

Med 0.940 0.792 0.637 0.459 0.318
Min 0.928 0.757 0.588 0.385 0.210
PZ 0.982 0.865 0.723 0.535 0.000

AJ(threshold) 0.976 0.802 0.231 0.040 0.016
AJ(power var) 0.976 0.815 0.331 0.212 0.316

BNS 0.962 0.861 0.730 0.566 0.401
1.5 CPR 0.965 0.877 0.769 0.626 0.490

JO 0.968 0.865 0.733 0.572 0.426
ABD-LM 0.985 0.883 0.771 0.622 0.479

Med 0.959 0.866 0.751 0.602 0.448
Min 0.953 0.845 0.713 0.531 0.344
PZ 0.984 0.912 0.813 0.675 0.001

AJ(threshold) 0.983 0.850 0.244 0.040 0.011
AJ(power var) 0.983 0.857 0.376 0.245 0.353

BNS 0.970 0.891 0.799 0.660 0.501
CPR 0.973 0.902 0.824 0.708 0.588

2 JO 0.977 0.891 0.794 0.665 0.519
ABD-LM 0.990 0.901 0.816 0.693 0.569

Med 0.971 0.892 0.806 0.681 0.544
Min 0.964 0.880 0.778 0.631 0.447
PZ 0.988 0.932 0.856 0.744 0.001

Table 5: Size corrected power for a varying jump variance and a 5% significance level.

with power ranging between 95% and 99% at 1 second, which gradually decreases with the sampling

frequency. Just as in the case of varying jump intensity, the JO procedure exhibits a very high power

at 1 second sampling frequency, ranging between 89% and 98%. However, at lower frequencies, the

procedure loses power in front of all other tests with the exception of AJ.

We observe the same ranking as in the previous section for the CPR, Med, BNS and Min proce-

dures. At the highest frequency, they exhibit a power ranging between 84% and 88% for the lowest

levels of jump sizes (σjump = .5). When σjump takes its highest value, 2, power is around 97% for all

4 procedures at 1 second. For lower frequencies, the performance of these tests decays.

The AJ does again very well for the highest frequency and ranks itself immediately after the PZ

and ABD-LM procedures. However, at lower frequencies, we observe a dramatic decrease in power.
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3.2.2 Size and power of the tests in the presence of microstructure noise

The simulation comparison reported so far is based on the assumption that the simulated prices

come from continuous time jump diffusion process. However, when we deal with prices of financial

assets, this is no longer the case. The observed price process is a discrete one. It is either constant,

generating zero returns, or changes a lot from one transaction to another. As a result, transactions

impact prices, and market participants may build strategies to exploit the short-term inefficiencies

of the market (deviations from a random walk process). There is a vast theoretical and empirical

financial literature that tries to understand and exploit these inefficiencies, which are generally de-

nominated microstructure effects. In this paper, we treat these effects as simple noise that obstructs

our viewing of the real price process.

Even if the impact of noise on realized variance has been very well documented in the literature,

there is not much theoretical work concerning the impact of noise on jump detection. JO find a bias

correction for the realized bipower variation in the presence of i.i.d. microstructure noise. Moreover,

they show that their test statistic does not diverge in the presence of i.i.d. noise if the number of

observations per day is large but remains finite. AJ derive the limit of their test statistic in the

presence of i.i.d. noise, as well. They also note that if the distance between observations is small,

but not 0, the test statistic does not diverge. PZ prove the validity of the test even in the presence

of two types of noise, such as i.i.d. and i.i.d. plus rounding processes.

In what follows, we simulate i.i.d. microstructure noise normally distributed with mean 0 and a

varying variance. The noise is then added to the SV1F model with medium mean reversion to study

its effects on the statistical properties of the tests for jumps.

SIZE The following values for the standard deviation of the noise were considered: .027, .040, .052,

0.065 and 0.080. Table 6 reports the frequencies of spuriously detected jumps for all tests, under

alternative sampling frequencies and noise variances. We only report here results for three values of

σnoise, .027, .052 and .080. The full set of results is available upon request.

Apart from the AJ and JO tests, all tests become severely undersized in the presence of microstruc-

ture noise with an increasing size distortion as the variance of the noise grows. AJ(threshold) does

better than AJ(power var) when lower sampling frequencies are considered. If sampling is made

every 15 minutes, the size of AJ(threshold) gets close to the nominal one. When σnoise = 0.052

(Table 6), size is 3.7% for the version based on threshold estimators, whereas for the other version

of the test, it reaches a very high level of 10.9%.
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σnoise Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 1.000 0.602 0.062 0.031 0.013
AJ(power var) 1.000 0.589 0.085 0.095 0.158

BNS 0.000 0.018 0.051 0.053 0.062
0.027 CPR 0.000 0.025 0.051 0.063 0.077

JO 0.017 0.035 0.079 0.122 0.188
ABD-LM 0.013 0.049 0.069 0.065 0.060

Med 0.000 0.023 0.051 0.055 0.063
Min 0.000 0.018 0.041 0.037 0.035
PZ 0.049 0.056 0.086 0.101 0.119

AJ(threshold) 1.000 0.956 0.160 0.037 0.014
AJ(power var) 1.000 0.948 0.187 0.109 0.165

BNS 0.000 0.002 0.043 0.054 0.061
0.052 CPR 0.000 0.003 0.047 0.061 0.075

JO 0.366 0.017 0.064 0.113 0.185
ABD-LM 0.009 0.040 0.061 0.059 0.059

Med 0.000 0.005 0.041 0.055 0.062
Min 0.000 0.003 0.033 0.034 0.037
PZ 0.051 0.059 0.087 0.099 0.118

AJ(threshold) 1.000 0.996 0.304 0.058 0.018
AJ(power var) 1.000 0.994 0.326 0.148 0.186

BNS 0.000 0.000 0.025 0.050 0.065
0.08 CPR 0.000 0.000 0.029 0.057 0.072

JO 0.962 0.011 0.043 0.103 0.179
ABD-LM 0.011 0.031 0.046 0.055 0.057

Med 0.000 0.001 0.029 0.051 0.061
Min 0.000 0.000 0.020 0.033 0.035
PZ 0.050 0.057 0.074 0.096 0.119

Table 6: Size in the presence of i.i.d. microstructure noise with with varying variance for a 5% significance
level

The JO procedure generally displays a very high size in the presence of noise at 1 second, which

increases with the variance of the noise. However, when sampling is done at lower frequencies (from

1 minute onward), size decreases abruptly in the beginning and then, moderately increases again.

The large size at 1 second is due to the fact that the distribution of the test statistic shifts to the

right in the presence of microstructure noise. This effect becomes more intense as the variance of the

noise becomes larger. Jiang and Oomen (2008) notice this problem in the original paper and propose

corrections for the test statistics in the presence of i.i.d. noise.

The least affected by noise is the PZ procedure, which, at the highest sampling frequency, displays

a size close to the nominal one even for the highest values of σnoise. This is a consequence of its

higher and rapidly increasing size, which turns out to be an advantage in this case, as it compensates

the downward bias caused by the presence of noise. The intraday tests, ABD-LM, also behave very

well in the presence of i.i.d. noise, being less underbiased than other procedures at high frequencies.

The BNS, CPR, Med and Min tests are severely undersized at very high frequencies. Then their

size increases with the decrease in the sampling frequency. When the noise standard deviation is

lowest (.027), BNS, CPR and Med tend to reach a size level close to the nominal one quite soon, at 5

minutes. At lower frequencies, CPR tends to become more oversized than the other two procedures.
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When the impact of noise is higher (σnoise = .052 or .080), the three tests manage to reach their

nominal size only at 15 minutes. The Min procedure, which tends to be undersized in the absence

of noise, displays size levels lower than the nominal one for all frequencies.

Except the PZ test which has a size close to the nominal one at 1 second and 1 minute sampling

frequency, as if the noise was not present, all other tests tend to get close to the nominal size as the

sampling frequency diminishes: JO somewhere between the 5 and 15 minutes sampling frequencies,

AJ, BNS, CPR and Med generally at 15 minutes, and ABD - LM somewhere between 15 and 30

minutes.

POWER In this section we examine how the ability of the tests to detect jumps changes in

the presence of microstructure noise. To the process simulated to quantify size in the presence

of microstructure noise, we add a jump process with intensity λ = .5 and jump sizes randomly

drawn from a N (0, 1.5%). The size adjusted power for all tests and for different scenarios of noise

contamination are reported in Table 7.

σnoise Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.003 0.142 0.118 0.035 0.013
AJ(power var) 0.011 0.210 0.225 0.190 0.293

BNS 0.772 0.828 0.714 0.560 0.395
0.027 CPR 0.791 0.844 0.750 0.628 0.493

JO 0.7915 0.8284 0.7177 0.5701 0.4254
ABD-LM 0.927 0.862 0.757 0.616 0.475

Med 0.766 0.828 0.741 0.602 0.456
Min 0.735 0.807 0.699 0.533 0.348
PZ 0.902 0.889 0.805 0.665 0.000

AJ(threshold) 0.006 0.015 0.036 0.020 0.010
AJ(power var) 0.019 0.032 0.119 0.161 0.252

BNS 0.553 0.760 0.686 0.540 0.384
0.052 CPR 0.593 0.786 0.725 0.611 0.484

JO 0.5570 0.7562 0.6846 0.5547 0.4157
ABD-LM 0.851 0.820 0.738 0.605 0.466

Med 0.547 0.773 0.713 0.586 0.444
Min 0.507 0.740 0.668 0.514 0.344
PZ 0.809 0.844 0.778 0.656 0.000

AJ(threshold) 0.009 0.004 0.009 0.011 0.006
AJ(power var) 0.031 0.019 0.062 0.128 0.230

BNS 0.357 0.672 0.641 0.505 0.371
0.08 CPR 0.395 0.710 0.681 0.582 0.465

JO 0.3296 0.6545 0.6343 0.5144 0.3943
ABD-LM 0.766 0.755 0.700 0.578 0.455

Med 0.358 0.692 0.664 0.562 0.430
Min 0.309 0.654 0.620 0.494 0.332
PZ 0.689 0.776 0.738 0.622 0.000

Table 7: Power of the tests in the presence of i.i.d. microstructure noise with with varying variance for a
5% significance level

The hierarchy of the tests in terms of power remains close to the one for the case of no noise.

As the size of the noise standard deviation increases, we observe a decrease in power. The intraday

and PZ procedures display again the best power. ABD-LM displays the same tendency of decreasing
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power with the decrease in the sampling frequency, as if the noise were not present. For σnoise =

.052 or .08, PZ seems to be affected by noise at 1 second, but then regains power at 1 minute

(84% and 78% respectively). Power at 30 minutes is again extremely low, just as in the case without

noise.

BNS, CPR, Med and Min tend to behave similarly again. They suffer a significant loss of power

at 1 second, but then tend to regain it. All these tests exhibit a very fast power recovery, occurring

at 1 minute. When σnoise = 0.08, the highest power at 1 minute (71%) is showed by CPR. It is

followed by Med, BNS and Min, with closed values for power. Even if this recovery of performance

takes place for most tests, power stays lower than in the absence of noise.

JO displays a similar pattern to the above tests, but an overall slightly weaker performance. It

tends to be better ranked in comparison with the other procedures for lower levels of noise. There is

a decrease in the corrected power at 1 second, followed by a slight recovery of power up to 1 minute

or 5 minutes. Power at 1 minute varies between 65% and 83%, depending on the amount of noise.

For lower frequencies, power decreases again.

By far the worst performance is observed for the AJ tests, which lose their power at 1 second.

For lower frequencies, we notice a slight increase in power. The test based on multipower variations

seems to perform somewhat better than the ones based on threshold estimators.

In this section, we observed that in the presence of noise, the size of the various jump detection

procedures came close the nominal one when sampling was performed less often. In the case of the

power, this effect is much more moderate. Power is only partly regained at 1 minute for almost all

tests, in our simulation set-up. At lower frequencies, power tends to decrease, just as when noise is

not present.

The results on both size and power show us how the tests statistics behave in the presence of

noise. Most tests (except AJ and JO) become severely undersized and they all lose power. However,

results on the frequencies at which either size or power are regained are depend on the simulated

data generating process, mostly on the type and amount of noise. There is no literature that can

help users to select an optimal frequency at which to apply a certain test. Based on our results

in Section 5, we generally advice against sampling at frequencies higher than 5 minutes. A rule of

thumb in this case could be applying the same procedure at more frequencies and looking at the

frequency from which the percentage of detected jumps tends to stabilize.
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4 EXTENSIONS TO THE JUMP TESTING PROCE-

DURES

4.1 Advantages of approximate finite sample distributions for the ABD

and LM tests

As already mentioned, the difference between the ABD and LM procedures resides in the choice

of the critical values. On one side, we have the Šidák approach for the ABD procedures, which has

the advantage of taking into consideration the daily number of observations. On the other side, the

LM test makes use of the asymptotic distribution of the maximum and is characterized by simplicity

in comparison with the ABD approach.

In this section, we propose an alternative to the above approaches, by making use of simulated

critical values for the maximum of the tests statistics. This approach enables us to account for the

sample size in the inference process. Moreover, it is shown that it generates higher power than the

asymptotic test (LM), accompanied by a manageable size. [We are grateful to Dobrislav Dobrev for

suggesting us to explore the use of approximate finite sample distributions.]

According to this procedure, critical values can be obtained in the following way. Let n be the

number of daily observations and V̂j the local volatility estimate at time tj, obtained as in Andersen

et al. (2007) and Lee and Mykland (2008). At each time, tj, we simulate a number of n observations

from N (0, V̂j) 10,000 times. Thus, we have 10,000 different price paths of n observations each. For

every path, we take the maximum over the n observations. The total of 10,000 maximums represent

the approximate finite sample from which we select the critical values. Finally, the statistic in (8) is

compared to the corresponding critical value selected as above. Just as for the ABD and LM tests,

we reject the null of continuity at time tj, if the test statistic is higher than the critical value.

The proposed approach is based on the so-called “Monte Carlo Reality Check” defined as a

simulation-based method for “obtaining a consistent estimate of a p-value for the null in the context

of a specification search” (White, 2000, pp 1102).

To assess the performance of our methodology based on simulated critical values, we use data

simulated from the SV1F model with medium mean reversion, augmented by jumps and microstruc-

ture noise. The latter is sampled from a N (0, σnoise), where σnoise takes the same values as in Section

3.2.2. We compare the results in terms of size and power with the ones based on the asymptotic

distribution of the maximum (LM test).
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The total number of simulated trading days is 10,000, just as in the previous sections. Each

day, n intraday observations are made, where n takes different values depending on the sampling

frequency, i.e. 1 second, 1, 5, 15 and 30 minutes. This leads to total number of observations equal

to n · 10, 000 and consequently to an equal number of test statistics of the form in (8).

SIZE We quantify size by using three distinct measures. First, for each of the simulated 10,000

trading days, we observe whether the applied procedures rejected the null at least once during that

day. We count all days when this occurred and compute its percentage out of the total number of

days. We call the resulting indicator ‘daily size’. Second, we compute the percentage of rejections of

the null out of the total number of observations (n · 10, 000) and name this second indicator ‘overall

size’. Finally, the size distortion is computed by subtracting from the overall size the nominal size.

Figures 3 and 4 depict all the above measures together with the corresponding nominal sizes for

different sampling frequencies for the SV1F model in the presence of i.i.d. noise. We report the

results for only two levels of noise variance, 0.052 (medium) and 0.08 (high).

Both figures show that the test based on simulated critical values is significantly less undersized

at very high frequencies than the asymptotic procedure (LM). Thus, for both reported values of noise

and for all significance levels, size at 1 second is closer to the nominal one than for the LM test. Size

for the finite sample adjustment procedure increases then over the nominal one, but remains very

close at 1 minute. This indicates that in the presence of i.i.d microstructure noise, this procedure

works better than the asymptotic at high frequencies. However, at lower frequencies the procedure

tends to become more oversized than its asymptotic counterpart.

Just as Andersen et al. (2007), we recommend the use of low significance levels when applying the

finite sample approximations. This leads to higher critical values and consequently to an improved

performance.

POWER In order to assess the power of our finite sample adjustment, we add jumps of different

intensities to the SV1F model with medium mean reversion. We only report results for λ = 0.5,

σjump = 1.5% and under contamination with various levels of microstructure noise, as described at

the beginning of this section.

We compute both the daily power, as the percentage of days the procedures were able to correctly

signal that at least one jump occurred during the day, as well as the overall power, as the proportion

of the total observations correctly classified as jumps. The behaviour of these two measures as a

function of the sampling frequency is very similar. We only report the daily size adjusted power.
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Figure 3: Daily size, overall size and size distortion for simulated and asymptotic critical values based on the SV1F model with noise of
variance σnoise = .052 and for different significance levels: from left to right: 5%, 1%, .1%
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Figure 4: Daily size, overall size and size distortion for simulated and asymptotic critical values based on the SV1F model with noise of
variance σnoise = .08 and for different significance levels: from left to right: 5%, 1%, .1%
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Figure 5 illustrates the daily power as a function of the sampling frequency for the three levels of

noise variance, 0.027 (low), 0.052 (medium) and 0.08 (high) and different significance levels: 5%, 1%

and .1% All the other results for different combinations of jump intensity and noise variance confirm

the above results and are not reported but available upon request.

We observe the daily size adjusted power is systematically higher when we use simulated instead

of asymptotic critical values over all sampling frequencies and for all significance levels. Moreover, at

lower significance levels the gap between the performances of the two approaches seems to widen. To

confirm this, we compute power also for significance levels equal to .01% and .001%. For instance,

for the case of σnoise = 0.052 and a sampling frequency of 5 minutes, power at a 5% significance level

is 79% for the finite sample adjustment and 76% for the LM test. At a 1% significance level, power

for the first procedure is 75%, while power for the second is 73%. At .1%, we have a power of 71%

for the first procedure and 68% for the second. At .01%, the first becomes 67%, while second 63%.

Finally, at .001%, power for the first is 65%, while for the second 57%.

The main conclusion of this section is that the finite sample adjustment based on simulated critical

values leads to a better performance in terms of power and sometimes in terms of size. This approach

displays lower size distortions in the presence of microstructure noise at high frequencies. However,

at lower frequencies, it tends to become more rapidly oversized than the asymptotic approach. Just

as Andersen et al. (2007), we recommend the use of lower significance levels (.1%), which can help

to correctly disentangle jumps from the price process, without generating a high number of spurious

jumps.

4.1.1 Cross-performances of the tests

This section offers an alternative approach in applying jump tests, which may result quite powerful

for empirical purposes. We propose a procedure that combines tests and frequencies suitable in

preventing the detection of spurious jumps. We perform this analysis on data simulated based on

the SV1F model, augmented by jumps and microstructure noise. Jumps arrive at times sampled

from a Poisson distribution with intensity λ = 0.5 and have a size distributed as a N (0, 1.5), while

the microstructure noise is sampled from a N (0, .052).

Our simulation analysis revealed that it is worthwhile combining procedures through both re-

unions and intersections. First, we apply the same procedure at different sampling frequencies, i.e.

1, 5 and 15 minutes. Once the test statistics are computed, we take intersections of the results at

1 and 5 minutes and at 5 and 15 minutes. This leads to two different sets of results. Finally, we
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Figure 5: Power for simulated and asymptotic critical values based on the SV1F model with jumps in the presence of noise. Significance
levels: 5%, 1%, .1%
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take the reunion over the two sets as our final result. For instance, if the considered test is BNS, our

decision rule can be written as (BNS1∩BNS5)∪ (BNS5∩BNS15). This means that on a certain

trading day, the path of the price process is considered discontinuous if one or more jumps is/ are

detected by the BNS test performed at 5 minutes and at least by one of the other two BNS tests at

1 and 15 minutes.

Table 8 reports the results from combining frequencies for the BNS, CPR, ABD-LM, Med, Min,

PZ and JO procedures. In each case, we computed three different measures. First, we report the

percentage of correctly classified jumps (’Jump’). Then, we report the percentage of days that are

correctly classified as having continuous paths (’No jump’). Finally, we report the percentage of

spurious jumps (’Spurious’). The results in Table 8 should be interpreted by contrasting them with

the size and power values of the tests reported in Tables 6 and 7. The significance level for all tests

is 5%.

Procedure (BNS1 ∩BNS5)∪ (CPR1 ∩ CPR5)∪ (ABDLM1 ∩ABDLM5)∪ (Med1 ∩Med5)∪ (Min1 ∩Min5)∪
(BNS5 ∩BNS15) (CPR5 ∩ CPR15) (ABDLM5 ∩ABDLM15) (Med5 ∩Med15) (Min5 ∩Min15)

’Jump’ 0.6229 0.6772 0.7465 0.6581 0.5953
’No Jump’ 0.9574 0.9554 0.9334 0.9583 0.9674
’Spurious’ 0.0025 0.0022 0.0247 0.0027 0.0010

Procedure (PZ1 ∩ PZ5)∪ (JO1 ∩ JO5)∪
(PZ5 ∩ PZ15) (JO5 ∩ JO15)

’Jump’ 0.7744 0.7202
’No Jump’ 0.9094 0.9324
’Spurious’ 0.0140 0.0206

Table 8: Results from combining tests using different frequencies

The results suggest that our procedure manages to average the power over frequencies and/or

tests, combined with a substantial decrease in the percentage of spurious jumps. For instance, in the

second column of Table 8, we observe that the percentage of spuriously detected jumps becomes very

low (.25%) and is combined with a very high proportion (95.74%) of days that were rightly classified

as without jumps and a high proportion of correctly identified jumps (approximately 62.29%). Note

that the latter percentage averages out the powers of the BNS test at the given sampling frequencies,

i.e. 76% at 1 minute, 69% at 5 minutes, and 54% at 15 minutes (see Table 7).

In Table 8, we notice that one can make the most of this procedure when using a test with a high

power, like PZ or ABD-LM. For instance, PZ has a very high power, but also a high size. Combining

different frequencies for this test maintains a good power (77%) and at the same time, significantly

reduces the percentage of spurious jumps.

In addition to mixing sampling frequencies, we also combine different tests applied on data sam-

pled at the same frequency. Results for some combinations are reported in Table 9 for a sampling

frequency of 5 minutes and in Table 10 when sampling is performed every 15 minutes.
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’Procedures’ (Med5 ∩ABDLM5)∪ (CPR5 ∩BNS5)∪ (CPR5 ∩BNS5)∪ (CPR5 ∩BNS5)∪ (Med5 ∩BNS5)∪
(ABDLM5 ∩BNS5) (BNS5 ∩Med5) (BNS5 ∩ PZ5) (BNS5 ∩Min5) (BNS5 ∩ABDLM5)

’Jump’ 0.6848 0.6496 0.6658 0.6431 0.6623
’No Jump’ 0.9297 0.9434 0.9525 0.9384 0.9543
’Spurious’ 0.0119 0.0102 0.0160 0.0084 0.0133

’Procedures’ (CPR5 ∩ABDLM5)∪ (JO5 ∩BNS5)∪ (BNS5 ∩ PZ5)∪ (CPR5 ∩ PZ5)∪
(ABDLM5 ∩ PZ5) (BNS5 ∩ PZ5) (PZ5 ∩Med5) (PZ5 ∩Med5)

’Jump’ 0.7405 0.6661 0.7165 0.7150
’No Jump’ 0.9298 0.9481 0.9122 0.9028
’Spurious’ 0.0240 0.0158 0.0158 0.0104

Table 9: Results from combining different tests for jumps for data sampled every 5 minutes

’Procedures’ (Med15 ∩ABDLM15)∪ (CPR15 ∩BNS15)∪ (CPR15 ∩BNS15)∪ (CPR15 ∩BNS15)∪ (Med15 ∩BNS15)∪
(ABDLM15 ∩BNS15) (BNS15 ∩Med15) (BNS15 ∩ PZ15) (BNS15 ∩Min15) (BNS15 ∩ABDLM15)

’Jump’ 0.5465 0.5135 0.5302 0.5067 0.5200
’No Jump’ 0.9404 0.9248 0.9359 0.9258 0.9389
’Spurious’ 0.0111 0.0217 0.0354 0.0193 0.0171

’Procedures’ (CPR15 ∩ABDLM15)∪ (JO15 ∩BNS15)∪ (BNS15 ∩ PZ15)∪ (CPR15 ∩ PZ15)∪
(ABDLM15 ∩ PZ15) (BNS15 ∩ PZ15) (PZ15 ∩Med15) (PZ15 ∩Med15)

’Jump’ 0.5984 0.5297 0.5927 0.5962
’No Jump’ 0.9374 0.9265 0.8902 0.8773
’Spurious’ 0.0180 0.0353 0.0359 0.0240

Table 10: Results from combining different tests for jumps for data sampled every 15 minutes

Just as in the case of combining frequencies, when we combine tests, the percentage of correctly

classified jumps ranges between the lowest and the highest powers for individual tests. This effect is

accompanied by a significant decrease in the percentage of spurious jumps. From Tables 9 and 10, we

observe that the best performance is attained when we use combinations with powerful tests, such

as PZ and ABD-LM. Moreover, it is best to intersect one of these tests twice with other procedures.

For instance, in Table 9, the sixth combination ((CPR5∩ABDLM5)∪ (ABDLM5∩PZ5)) detects

all jumps identified by ABD-LM if they are detected by at least one of the CPR and PZ tests. This

decision rule generates a high percentage of correctly classified jumps (74%) and a low percentage of

spurious jumps (2.4%). The combination (BNS5 ∩ PZ5) ∪ (PZ5 ∩Med5) intersects PZ twice with

two other procedures and manages to attain high power and a low percentage of spurious jumps.

This simple approach is meant to show that combinations of tests and/or sampling frequencies

can do better than just applying one single procedure. It preserves a high percentage of rightly

classified jumps, with a significant decrease in the percentage of spurious jumps. To maintain a high

power, we advise users on combining tests with high power, such as PZ and ABD-LM, with other

tests or to combine these tests applied on data sampled at different frequencies.
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5 EMPIRICAL APPLICATION

In this final section, we apply all tests for jumps to real financial data. We report an empirical

application based on high frequency data for five stocks listed in the New York Stock Exchange,

namely Procter&Gamble, IBM, JP Morgan, General Electric and Disney. Our dataset covers 5

years, running from the 3rd of January 2005 to the end of December 2009, with an average of 1250

days.

In order to carry out the jump tests, we rely on transaction data, which we sample at 1, 5, 10, 15

and 30 minutes. This sampling schemes left us with an average of approximately 414 data points at

1 minute, 82 observations at 5 minutes, 40 at 10 minutes, 26 at 15 and 12 at the lowest frequency.

Table 11 reports the proportions of identified jumps.

In general, the proportions of jumps, as well as the behaviour of tests at different frequencies

do no vary much from one stock to another. However, for each company, the results obtained from

different procedures vary considerably. This reflects once again that these procedures are built in

different ways and have very different size and power properties.

For each procedure and for each stock, we observe that there is a decrease in the percentage

of identified jumps as we sample less frequent. We can notice this effect better in Figure 6, which

includes signature plots of the percentages of identified jumps for all procedures for IBM. Due to

the high number of tests, we grouped the procedures. We considered the AJ tests in the first group,

while the BNS, CPR, Med and Min made a second group, as they are similarly built. Finally, the

rest of the tests, JO, ABD-LM and PZ enter the third group.

At 1 minute, most of the tests detect a high percentage of jumps, which then substantially

decreases at 5 minutes. From 5 minutes onward, the decrease in this percentage becomes much

slower and a stabilization around 10-15 minutes occurs. We believe that at higher frequencies, the

procedures detect a high number of spurious jumps, due to the presence of microstructure noise. A

rule of thumb is to apply a test for a variety of frequencies and choose the frequency at which the

percentage of jumps stabilizes. In our case, this corresponds to the 10 minutes frequency.

For IBM, PZ and ABD-LM identify 97%, followed by CPR with 88% and BNS with 77%. At

lower frequencies, this percentage drastically drops. For instance, the values for the above tests for 1

minute data are 57%(PZ), 51% (ABD-LM), 37%(CPR) and 25% (BNS). This seems contrary to what

we observed in Section 3.2.2, where tests statistics are undersized in the presence of microstructure

noise.

When tests are based on multipower variations, the reason for the high percentages of detected
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Company Procedure 1 min 5 min 10 min 15 min 30 min
AJ(threshold) 0.552 0.109 0.050 0.024 0.014
AJ(power var) 0.606 0.357 0.293 0.264 0.266

BNS 0.814 0.273 0.154 0.157 0.132
PG CPR 0.915 0.391 0.221 0.190 0.149

JO 0.407 0.212 0.188 0.211 0.277
ABD-LM 0.972 0.506 0.270 0.182 0.086

Med 0.484 0.174 0.144 0.152 0.140
Min 0.453 0.157 0.106 0.102 0.074
PZ 0.969 0.598 0.344 0.278 0.226

AJ(threshold) 0.534 0.094 0.043 0.020 0.014
AJ(power var) 0.592 0.330 0.274 0.236 0.237

BNS 0.765 0.253 0.196 0.191 0.142
IBM CPR 0.884 0.374 0.257 0.228 0.162

JO 0.374 0.222 0.230 0.244 0.283
ABD-LM 0.974 0.512 0.292 0.207 0.097

Med 0.446 0.174 0.193 0.193 0.156
Min 0.430 0.148 0.123 0.134 0.090
PZ 0.967 0.574 0.389 0.325 0.223

AJ(threshold) 0.548 0.090 0.037 0.031 0.015
AJ(power var) 0.596 0.317 0.261 0.252 0.263

BNS 0.708 0.237 0.175 0.155 0.119
JPM CPR 0.842 0.352 0.237 0.191 0.146

JO 0.317 0.218 0.212 0.221 0.293
ABD-LM 0.950 0.500 0.282 0.191 0.121

Med 0.318 0.167 0.169 0.152 0.132
Min 0.311 0.134 0.122 0.110 0.065
PZ 0.953 0.566 0.346 0.269 0.202

AJ(threshold) 0.563 0.107 0.049 0.034 0.014
AJ(power var) 0.680 0.368 0.298 0.269 0.310

BNS 0.754 0.213 0.137 0.153 0.118
GE CPR 0.908 0.331 0.193 0.196 0.141

JO 0.317 0.184 0.194 0.199 0.270
ABD-LM 0.955 0.461 0.259 0.186 0.098

Med 0.275 0.140 0.128 0.146 0.115
Min 0.274 0.109 0.092 0.093 0.078
PZ 0.951 0.510 0.319 0.259 0.194

AJ(threshold) 0.553 0.086 0.033 0.032 0.016
AJ(power var) 0.595 0.370 0.323 0.290 0.300

BNS 0.840 0.327 0.196 0.179 0.135
DIS CPR 0.923 0.423 0.263 0.217 0.151

JO 0.385 0.241 0.227 0.246 0.302
ABD-LM 0.978 0.541 0.271 0.179 0.101

Med 0.466 0.184 0.188 0.188 0.150
Min 0.431 0.163 0.118 0.115 0.073
PZ 0.974 0.595 0.370 0.305 0.209

Table 11: Proportion of days with jumps, at different sampling frequencies, as identified by the following
procedures: AJ (both versions), BNS, CPR, JO, ABD-LM, Med, Min and PZ

32



jumps resides in the fact that data can contain a considerable amount of zero returns when sampled

at equal times. As realized multipower variations are computed as the sum of adjacent returns, they

tend to be downward biased in the presence of many zero returns. The BNS statistic calculated as

the difference between RVt and BVt will become bigger as BVt becomes smaller. The same happens

to the ABD-LM statistic, which standardizes returns with BVt. On the contrary, for tests as Min

and Med, based on MinRVt and MedRVt, this effect is no longer that relevant. We observe that the

percentage of detected jumps is 45% and 43% for these tests at 1 minute. The CPR, like BNS is based

on a type of multipower variation (threshold), which suffers from the above effect. Moreover, the

presence of the threshold makes the multipower variation even smaller, leading to an over-rejection

of the null.

The same effect can be noticed for the PZ procedure. The test statistic is based on a threshold

volatility estimator, where the threshold is a function of the realized bipower variation. In the

presence of zero returns, as BVt becomes smaller, the threshold also becomes smaller and thus leads

to an increase in the test statistic.

The AJ tests display percentages of identified jumps around 55% at 1 second. At lower frequencies,

the test based on threshold estimators detects a very small amount of jumps, which is probably due

to its lack of power at higher frequencies. On the contrary, the version of the test based on bipower

variations tends to identify higher percentages of jumps (between 24% at 30 minutes and 33% at 5

minutes).

The JO test seems only slightly affected by zero returns at 1 minute (37% days with jumps). The

percentage of detected jumps does not change very much with the frequency.

The high variability in the percentage of detected jumps reported in Table 11 calls for the applica-

tion of the combinations of tests as we proposed in Section 4.1.1. Table 12 reports the proportion of

jumps detected by different combinations of frequencies (first four lines) and procedures (last 2 lines)

for IBM. There is a confirmation that combining procedures leads to a decrease in the proportion of

identified jumps. Moreover, there is evidence of higher proportion of jumps when procedures with

higher power, like ABDLM and PZ, are combined. When combining frequencies (first four lines), in

all cases except the ABD-LM and PZ procedures, the proportion of detected jumps is lower than the

proportion identified by the individual procedures on each of the combined frequencies, as reported

in Table 11. In the case of the ABD-LM and PZ procedures instead, the combination of frequencies

leads to a percentage of jumps in the range of the results obtained on individual procedures, due to

the high individual power of the two tests. When combing different tests for jumps for a 10 minutes
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sampling frequency (last two lines in Table 12), we observe that the proportion of identified jumps

is in the range of the proportions obtained in the case of individual procedures, but it tends to be

closer to the lower values for individual procedures. So far, the empirical analysis mostly concerned

the percentages of jumps occurring during the period considered.

Procedure BNS5 ∩BNS10∪ (CPR5 ∩ CPR10)∪ ABDLM5 ∩ABDLM10)∪ (Med5 ∩Med10)∪
BNS10 ∩BNS15 (CPR10 ∩ CPR15) (ABDLM10 ∩ABDLM15) (Med10 ∩Med15)

Proportion 0.105 0.173 0.258 0.098
Procedure (Min5 ∩Min10)∪ (PZ5 ∩ PZ10)∪ (JO5 ∩ JO10)∪

(Min10 ∩Min15) (PZ10 ∩ PZ15) (JO10 ∩ JO15)
Proportion 0.055 0.327 0.148
Procedure (Med10 ∩ABDLM10)∪ (CPR10 ∩BNS10)∪ (CPR10 ∩ABDLM10)∪ (BNS10 ∩ PZ10)∪

(ABDLM10 ∩BNS10) (BNS10 ∩Med10) (ABDLM10 ∩ PZ10) (PZ10 ∩Med10)
Proportion 0.132 0.193 0.222 0.213

Table 12: Proportion of jumps identified by different combinations of sampling frequencies and
procedures for IBM

Finally, we evaluate the contribution of jumps to the quadratic variation of the price process. For

each test for jumps, we detect all days with discontinuities in the price path. Then, we eliminate

jumps from prices by removing the highest return in absolute value that occurs on days with jumps.

We compute the realized variance on the initial price series sampled every 10 minutes, as well as

on the new series without jumps. The first is a proxy for the QV of the price process, whereas the

latter for the IV. Table 13, Panel A reports for each test for jumps and for all years considered in our

sample, from 2005 to 2009, the estimates of the QV, the IV, as well as of the QV of the jump process

for IBM. Panel B reports the same estimates for some combinations of frequencies and procedures.

We account for both the levels (first column for each test) and the corresponding percentages (second

column for each test).

RV computed on all observations increases from one year to another up to a peak in 2008, when it

reaches a level of 0.155. The peak matches the year the sub-prime crisis affected mostly the financial

markets. In 2009, RV decreases to 0.058, which is still very high in comparison to tranquil years,

such as 2005 and 2006. The levels of RV C and RV J vary a lot depending on the jump detection

procedure they are based on. Thus, in Table 13, Panel A, during the first two calm years, 2005

and 2006, the percentage of the QV due to jumps is estimated between 8% and 33% by different

procedures. However, this percentage is systematically higher in 2006 than 2005 for all tests. During

the years of the financial crises, 2007-2009, this percentage drops. A minimum for almost all testing

procedures is reached in 2008, the year of maximum volatility, when the percentage of the QV due

to jumps varies between 4% and 22%, depending on the procedure. In periods of high volatility,

the ability of the tests to pick up jumps is lower, whereas in calmer periods, jumps are much more
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Panel A

IBM Procedure AJ(threshold) AJ(power var) BNS CPR JO ABD-LM Med Min PZ
Year Estimator Value % Value % Value % Value % Value % Value % Value % Value % Value %

2005 RV 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0 0.023 100.0
RV C 0.017 72.8 0.018 74.9 0.021 90.3 0.019 82.7 0.020 83.5 0.018 79.9 0.021 90.7 0.022 92.4 0.019 79.8
RV J 0.006 27.2 0.006 25.1 0.002 9.7 0.004 17.3 0.004 16.5 0.005 20.1 0.002 9.3 0.002 7.6 0.005 20.2

2006 RV 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0 0.025 100.0
RV C 0.017 67.1 0.017 68.2 0.020 81.3 0.019 77.4 0.020 81.0 0.019 74.9 0.021 81.9 0.021 83.7 0.019 74.2
RV J 0.008 32.9 0.008 31.8 0.005 18.7 0.006 22.6 0.005 19.0 0.006 25.1 0.005 18.1 0.004 16.3 0.006 25.8

2007 RV 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0 0.040 100.0
RV C 0.031 77.3 0.032 78.5 0.039 96.1 0.036 88.4 0.036 90.1 0.033 82.3 0.038 94.6 0.039 97.0 0.033 82.0
RV J 0.009 22.7 0.009 21.5 0.002 3.9 0.005 11.6 0.004 9.9 0.007 17.7 0.002 5.4 0.001 3.0 0.007 18.0

2008 RV 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0 0.155 100.0
RV C 0.121 78.3 0.122 78.4 0.147 94.6 0.140 90.1 0.141 91.2 0.136 87.7 0.145 93.4 0.149 95.9 0.137 88.0
RV J 0.034 21.7 0.034 21.6 0.008 5.4 0.015 9.9 0.014 8.8 0.019 12.3 0.010 6.6 0.006 4.1 0.019 12.0

2009 RV 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0 0.058 100.0
RV C 0.042 72.6 0.043 74.4 0.052 89.6 0.048 83.9 0.050 86.6 0.047 81.7 0.051 88.3 0.053 92.2 0.046 79.4
RV J 0.016 27.4 0.015 25.6 0.006 10.4 0.009 16.1 0.008 13.4 0.011 18.3 0.007 11.7 0.005 7.8 0.012 20.6

Panel B

IBM Procedure BNS5 ∩BNS10∪ ABDLM5 ∩ABDLM10)∪ (Med5 ∩Med10)∪ (PZ5 ∩ PZ10)∪ (Med10 ∩ABDLM10)∪ (CPR10 ∩ABDLM10)∪ (BNS10 ∩ PZ10)∪
BNS10 ∩BNS15 (ABDLM10 ∩ABDLM15) (Med10 ∩Med15) (PZ10 ∩ PZ15) (ABDLM10 ∩BNS10) (ABDLM10 ∩ PZ10) (PZ10 ∩Med10)

Year Estimator Value % Value % Value % Value % Value % Value % Value %
2005 RV 0.023 100.00 0.023 100.00 0.023 100.00 0.023 100.00 0.023 100.00 0.023 100.00 0.023 100.00

RV C 0.022 95.71 0.019 82.19 0.022 93.55 0.019 81.43 0.021 90.51 0.019 81.78 0.021 89.92
RV J 0.001 4.29 0.004 17.81 0.002 6.45 18.568 18.57 0.002 9.49 0.004 18.22 0.002 10.08

2006 RV 0.025 100.00 0.025 100.00 0.025 100.00 0.025 100.00 0.025 100.00 0.025 100.00 0.025 100.00
RV C 0.022 89.17 0.019 76.15 0.022 88.08 0.019 75.04 0.021 81.89 0.019 77.09 0.020 80.66
RV J 0.003 10.84 0.006 23.85 0.003 11.92 24.965 24.97 0.005 18.11 0.006 22.91 0.005 19.34

2007 RV 0.040 100.00 0.040 100.00 0.040 100.00 0.040 100.00 0.040 100.00 0.040 100.00 0.040 100.00
RV C 0.039 97.48 0.034 83.03 0.039 97.12 0.033 82.80 0.039 95.67 0.034 83.79 0.038 94.46
RV J 0.001 2.52 0.007 16.97 0.001 2.88 17.202 17.20 0.002 4.33 0.007 16.21 0.002 5.54

2008 RV 0.155 100.00 0.155 100.00 0.155 100.00 0.155 100.00 0.155 100.00 0.155 100.00 0.155 100.00
RV C 0.151 97.31 0.137 88.38 0.149 96.03 0.138 88.82 0.146 94.27 0.140 90.04 0.144 92.58
RV J 0.004 2.69 0.018 11.62 0.006 3.97 11.179 11.18 0.009 5.73 0.015 9.96 0.012 7.42

2009 RV 0.058 100.00 0.058 100.00 0.058 100.00 0.058 100.00 0.058 100.00 0.058 100.00 0.058 100.00
RV C 0.053 91.48 0.048 82.51 0.053 91.91 0.047 81.11 0.051 88.77 0.048 83.82 0.050 86.54
RV J 0.005 8.52 0.010 17.49 0.005 8.09 18.892 18.89 0.006 11.23 0.009 16.18 0.008 13.47

Table 13: Yearly estimates for the QV of the price (RV), the IV (RV C), and the QV of the jump process (RV J), in absolute values and
percentages for IBM
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visible. Panel B shows the values for RV, RV C and RV J for various combinations of frequencies and

procedures. As expected, the QV due to jumps is generally lower when combinations are used than

when individual tests are applied. When frequencies are combined (first four combinations), RV J

is always lower, whereas when tests are combined, RV J is in the range of the values for individual

tests.

Our results show that tests for jumps produce very different results, both in terms of percentages

of identified jumps and the contribution of jumps to the yearly QV. This conclusion supports our

proposal to combine tests and sampling frequencies to obtain more clear-cut findings. Consequently,

we also perform the empirical analysis for different combinations of frequencies and procedures. This

methodology leads to a decrease in the percentage of identified jumps and in the QV due to jumps,

which is congruent with the findings in Section 4.1.1, that show that combinations of procedures and

frequencies generate fewer spurious jumps.

6 CONCLUSION

The contribution of this paper to the existing literature is twofold. First, we offer a robust

and comprehensive comparison between nine alternative jump detection procedures based on high

frequency data available in the literature. Second, we offer some useful guidelines to potential users

on which test and combinations of tests to use to detect jumps in the prices of financial assets.

To this end, we conducted an extensive numerical analysis using alternative levels of volatility,

different levels of persistence in the volatility factor, different jump intensities and jump sizes, different

levels of microstructure noise contamination. We also performed an empirical analysis on high

frequency data for five stocks listed in the New York Stock Exchange. We summarize the full set of

results in Table 14.

It is very difficult to perform a ranking of the tests considering size, power and behaviour in the

presence of microstructure noise at the same time. However, for most of the simulated scenarios, the

intraday ABD-LM tests for jumps show the best performance. The procedures display a very high

power, which is combined with a quite good size behavior. For the stochastic volatility model with

one factor, SV1F, size remains relatively stable over different sampling frequencies. The tests also

perform very well in the presence of microstructure noise. The use of the intraday tests have the

advantage of allowing users to implicitly detect the time and size of the jump. However, they also

have two drawbacks. First, in the case of extremely volatile processes, like the stochastic volatility
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model with two factors (SV2F), the tests become highly oversized. This is because they standardize

each intraday return by a local volatility estimate. When local volatility is very high, the tests will not

be able to detect high returns due to jumps. Consequently, their use might not be recommendable

for very volatile data. Second, the local volatility of the price process tends to vary a lot during

the trading day and exhibits intra-week and intra-day periodicity. The ABD-LM tests do not take

into account this factor. Boudt et al. (2009) try to solve this issue by proposing parametric and

nonparametric estimators of the periodicity factor that are robust to the presence of jumps.

The PZ test displays high power and a very good behavior in the presence of noise, but is also

quite oversized. Its size increases very rapidly when the sampling frequency diminishes. However,

given its robustness to microstructure effects, it can be successfully applied at high frequencies,

without worrying about the noise.

The BNS, CPR, Med and Min tests display a similar behaviour. They are all built based on

comparisons of the realized variation with robust to jumps volatility estimators. They exhibit a

size that increases at lower sampling frequencies. CPR tends to be more oversized than the others,

whereas Min more undersized. For the SV1F model, BNS and Med can be considered first ranked

in terms of size, which remains relatively stable over the varying sampling frequency. BNS has also

the most stable size for the SV2F model. All tests also show quite good power. In the presence of

microstructure noise, the tests statistics for all these four procedures get very downwards biased and

sampling at lower frequencies is obligatory.

The JO test exhibits in the absence of noise a size that is rapidly increasing with the decrease in

the sampling frequency. In terms of power, it shows a very high power at very high frequencies, which

then decreases at lower frequencies more rapidly than for most of the other tests. In the presence of

noise, the test statistics diverges and shifts to the right. Size becomes extremely high at very high

frequencies. In addition, the procedure loses power considerably.

There is not a clear-cut behaviour with respect to the AJ procedure. It works well in terms of

both size and power only at high frequencies (1 second in our simulation exercise). However, for lower

frequencies, there is evidence of a substantial decrease in power, combined with an increase/ decrease

in size, depending on how the statistic is computed, multi-power variations/threshold estimators.

Moreover, this test becomes extremely oversized at high frequencies in the presence of noise and

thus, a very frequent sampling scheme, which could preserve good size and power properties, is not

possible.

We applied all jump detection procedures on high frequency data for five stocks listed in the New
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York Stock Exchange, namely Procter&Gamble, IBM, JP Morgan, General Electric and Disney,

during 2005 and 2009. First, we estimated, for all procedures the percentage of days with jumps for

different sampling frequencies, 1, 5, 10, 15 and 30 minutes. We show that the percentage decreases

when the sampling frequency diminishes and vary considerably from one procedure to another. Sec-

ond, we estimated the level and percentage of the yearly quadratic variation coming from the jump

process. We show that these estimates differ very much from one procedure to another. In addition,

we find that during very volatile years, especially in 2008, the percentage of the quadratic variation

caused by jumps reduces in comparison to calm years.

Besides performing a comparison between procedures that identify jumps based on high frequency

data, this paper brings two other contributions to the existing literature. First, we propose a finite

sample adjustment for the ABD-LM procedure. We suggest computing simulated critical values, as

an alternative to the asymptotic critical values. This approach leads to an improvement in the size

adjusted power, as well in size at higher frequencies. However, it tends to be more oversized at lower

frequencies. In line with Andersen et al. (2007), we recommend the use of lower significance levels

(.1%), which can help to correctly disentangle jumps from the price process, without generating a

high number of spurious jumps. Second, both the simulation and empirical analyses show that these

tests for jumps have different size and power properties and a different behaviour in the presence of

market microstructure noise. It is very difficult for users to choose between procedures. Thus, we

propose combining these tests through both intersections and reunions over sampling frequencies and

procedures. We showed that combining procedures with high power, like PZ or ABD-LM, with other

tests leads preserves power, combined with a considerable reduction in the percentage of spurious

jumps detected.

The analysis in the present paper can be extended in three different ways. First, for the simulation

design, we considered only i.i.d. microstructure noise, in line with most of the papers that introduced

these tests to the literature. However, it would be of great interest to observe the impact of zero

returns on the behaviour of all these procedures. Second, following the existing literature, in this

paper we only considered processes with a finite number of jumps. Thus, a natural extension is a

simulation exercise with an infinite number of jumps. Finally, to reduce the probability of detecting

spurious jumps, the combination of tests could be enriched by considering test averaging procedures

using Fisher (1925)’s method of combining p-values of different tests. We leave these extensions to

future research.
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Procedure Size Power Noise

AJ (threshold) slightly undersized; high power at high frequencies which extremely oversized at very high
size decreases at lower frequencies diminishes abruptly at lower frequencies frequencies, followed by drastic decreases

in size from 1 min onward; very
high power which decreases abruptly

AJ (power var) oversized; size rapidly high power at high frequencies which extremely oversized at very high
increases across the frequency diminishes abruptly at lower frequencies frequencies, followed by drastic decreases

in size from 1 min onward; very
high power which decreases abruptly

BNS oversized; size increases high power decreasing gradually; severely undersized at high frequencies;
slightly across the frequency; lower numbers than the intraday low power in the presence of noise
stable and ’PZ tests

CPR oversized; size increases high power decreasing gradually; severely undersized at high frequencies;
across the frequency; lower numbers than the intraday low power in the presence of noise
higher than BNS, Med and ’PZ tests

JO oversized; size increases high power at high frequencies; extremely oversized at very high
rapidly across the frequency decreases at lower frequencies; low power

frequencies

ABD-LM oversized; size varies across high power decreasing gradually undersized in the presence of noise;
the frequency maintains quite good power properties

Med oversized; size increases high power decreasing gradually; severely undersized at high frequencies;
slightly across the frequency; lower numbers than the intraday low power in the presence of noise
stable and ’PZ tests

Min undersized; size decreases power decreasing gradually; severely undersized at high frequencies;
slightly across the frequency; lower values than low power in the presence of noise
stable most of the other tests

PZ oversized; size increases rapidly high power decreasing gradually becomes quickly oversized even in the
across the frequency presence of noise; maintains quite

good power properties

Table 14: Summary of our results: size and power properties and behavior in the presence of microstructure noise for all the tests
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Figure 6: Proportion of days with jumps and sampling frequencies for IBM
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