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Abstract

This paper studies the asymptotic validity of the bootstrap for nonstationary panel

factor series. The analysis assumes a linear process for serial dependence, and sieve

bootstrap is proposed to approximate the autocorrelation structure of the processes

involved in the model. Two main results are shown. Firstly, a bootstrap Invariance

Principle is derived pointwise in i, obtaining an upper bound for the order of truncation

of the AR polynomial that depends on n and T . Consistent estimation of the long run

variances is also studied for (n; T )!1. Secondly, joint bootstrap asymptotics is also

studied, investigating the conditions under which the bootstrap is valid. Particularly,

the extent of cross sectional dependence which can be allowed for is investigated,

showing that, in the presence of strong cross dependence, consistent estimation of the

long run variance (and therefore validity of the bootstrap) is no longer possible. The

paper also considers extensions to the case of a mixture of stationary and nonstationary

common factors.
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1 Introduction

In recent years, factor models have achieved great popularity in applied econometrics and

statistics. Panel factor series have been extensively used in macroeconometrics to model

parsimoniously the presence of cross sectional correlation, e.g. in the analysis of business

cycle models (Forni and Reichlin, 1998). Many other applications are possible - see e.g.

the discussion in Bai (2004), Bai and Ng (2006a, 2006b, 2010), and the references therein.

Nonstationary panel factor series have also been paid noticeable attention in applied sta-

tistics, where Lee and Carter�s (1992) model for mortality forecasting has generated a huge

body of literature (see Girosi and King, 2007).

The literature has recently produced signi�cant developments in the inferential theory.

Joint asymptotic theory for (n; T ) ! 1 has been studied for the case of stationary and

nonstationary data, allowing for serial and cross sectional dependence and heterogeneity

- see, inter alia, Bai (2003, 2004) and Bai and Ng (2002, 2004). The main focus of this

paper is to complement the existing asymptotic theory, by investigating the validity of the

bootstrap for nonstationary panel factor series de�ned as

xit = �
0
iFt + uit; (1)

with i = 1; :::; n and t = 1; :::; T and

Ft = Ft�1 + "t: (2)

Model (1) is a standard nonstationary panel factor model - we also refer to Bai (2004) and

the references therein for a discussion of the various possible applications. Bootstrapping

(1) could prove useful for at least three reasons. Firstly, as the theory developed in Bai

(2004) and Kao, Trapani and Urga (2011) shows, the asymptotics heavily depends on

nuisance parameters, and the bootstrap could help deal with this. Moreover, limiting

distributions are often complicated and depend on somewhat arbitrary assumptions on

the relative speed of divergence of n and T . Finally, the common factors Ft are often not

observable and need to be estimated, thereby adding a further component to the error term

uit in (1). In light of this, and in order to accommodate for serial dependence, this article
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proposes a sieve bootstrap algorithm (Bühlmann, 1997), building on the theory developed

by Park (2002, 2003) and Chang, Park and Song (2006). Whilst this paper moves from a

similar research question, namely to show an Invariance Principle (henceforth, IP) for the

bootstrap counterpart to xit, proving an IP for nonstationary factor models is a di¤erent

type of exercise to the pure time series case studied by Park (2002) and, in a cointegration

framework, by Chang, Park and Song (2006). This is due to two distinctive features of

model (1): (a) the presence of the latent variables Ft, which are replaced by generated

regressors, thereby a¤ecting the asymptotics and the bootstrap asymptotics, and (b) the

fact that the asymptotics, in this framework, depends jointly on two indices, n and T .

This article makes two main contributions. In the �rst part of the paper (Sections 3

and 4), a bootstrap IP is derived and applied to the estimation of loadings, common factors

and common components. The resampling algorithm is based on extracting the common

factors from (1) by using the Principal Components estimator (PC) and thereafter �tting

a Vector AutoRegression (VAR) of order q to the estimated common factors and to the

residuals. Two ancillary technical contributions of this section are the asymptotic theory

for �F̂t = F̂t � F̂t�1, and the derivation of an upper bound for q, which depends on both

n and T . These results are based on a �one cross sectional unit at a time� resampling

algorithm, and therefore are only pointwise in i. Thus, cross sectional dependence among

the uits is not taken into account. This is useful in some applications of (1), e.g. when

applying bootstrap to approximate the limiting distribution of the estimated �is, or when

cross sectional dependence is negligible - see Section 4 for discussion. In the second part

of the paper (Section 5), joint bootstrap asymptotics as (n; T )!1 is developed, to also

accommodate for the possible presence of cross dependence in the uits. We show that the

estimation of the long run variance matrix of the uits is fraught with di¢ culties, due to

its high dimension (growing with n). Section 5 contains a negative result, highlighting

that consistent estimation of long run covariance matrices is not possible in this context,

unless there is very little cross dependence. Finally, the paper also provides some initial

results for the extension of bootstrap theory to the case of a mixture of stationary and

nonstationary common factors in (1).

The paper is organised as follows. Section 2 introduces the model and discusses the

main assumptions. Section 3 contains the resampling algorithm and the relevant asymp-
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totics. Applications to univariate and multivariate problems are in Sections 4 and 5

respectively. The extension to a mixture of stationary and nonstationary common factors

in in Section 6. Section 7 concludes. Preliminary lemmas and proofs are in Appendix A

and B respectively.

NOTATION Throughout the paper, kAkp denotes the Lp-norm of a matrix A, i.e.

maxx kAxkp = kxkp (the Euclidean norm being de�ned simply as kAk), �im� indicates a

unit column vector of dimension m, �!�the ordinary limit, � d!�weak convergence, � p!�

convergence in probability, �a.s.�stands for �almost surely�; generic �nite constants that

do not depend on n or T are referred to as M . Stochastic processes such as W (s) on [0; 1]

are usually written as W , integrals such as
R 1
0 W (s) ds as

R
W and stochastic integrals

such as
R 1
0 W (s) dW (s) as

R
WdW .

Also, we extensively use the following notation: �nT = min
np

n;
p
T
o
, CnT = min f

p
n; Tg,

'FnT = min
n
n;
p
T= log T

o
and 'unT = min

np
n;
p
T= log T

o
.

2 Model and assumptions

Consider model (1) and the data generating process of Ft

xit = �0iFt + uit;

Ft = Ft�1 + "t;

where we assume that the (unobservable) factors Ft are a k-dimensional process. We refer

to Bai (2004) for the estimation of k. All the theory is studied for (n; T ) ! 1 jointly -

see Phillips and Moon (1999) for de�nition and discussion.

Consider the following assumptions:

Assumption 1: (time series and cross sectional properties of uit) let ut = [u1t; :::; unt]
0;

then ut admits an invertible MA (1) representation

ut = � (L) e
u
t =

1X
j=0

�je
u
t�j ;

where (i) eut is i.i.d. across t with E [e
u
t ] = 0, E [eut e

u0
t ] = �u; also, letting euit be the
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i-th element of eut , maxi;tE jeuitj
8 < 1; (ii)

P1
j=0 �jL

j 6= 0 for all jLj � 1 and, letting

�i;j be the i-th row of �j , maxi
P1
j=0 j

s k�i;jk < 1 for some s � 1; (iii) (cross sectional

dependence) (a) k� (1)k1 � M ,
��1 (1)

1
� M ,

��1 (1)1 � M and k�uk1 � M ;

(b) E
��n�1=2Pn

i=1 [uisuit � E (uisuit)]
��4 � M for every (t; s); (iv) (initial conditions)

E jui0j4 �M for all i.

Assumption 2: (time series properties of "t) "t is a k-dimensional vector random

process (with �nite k) and it admits an invertible MA (1) representation where "t =

� (L) eFt =
P1
j=0 �jL

jeFt�j with (i) e
F
t is i.i.d. with E

�
eFt
�
= 0, E

�
eFt e

F 0
t

�
= �e and

E
eFt r < 1 for some r > 4; (ii)

P1
j=0 �jL

j 6= 0 for all jLj � 1 and
P1
j=0 j

s k�jk < 1

for some s � 1; (iii) the matrix ��F =
P1
j=0 �j�e�

0
j is positive de�nite; (iv) (initial

conditions) E kF0k4 �M .

Assumption 3: (identi�ability) the loadings �i are (i) either nonrandom quanti-

ties such that k�ik � M , or random quantities such that E k�ik4 < 1; (ii) either

n�1
Pn
i=1 �i�

0
i = �� if n is �nite, or limn!1 n�1

Pn
i=1 �i�

0
i = ��, if n ! 1 with

�� positive de�nite; (iii) the eigenvalues of the matrix �
1=2
� ��F�

1=2
� are distinct, and

the eigenvalues of the stochastic matrix �1=2�
�
T�2

PT
t=1 FtF

0
t

�
�
1=2
� are a.s. distinct as

T !1.

Assumption 4: (i) f"tg, fuitg and f�ig are three mutually independent groups; (ii)

F0 is independent of fuitg and f"tg.

Parts (i) and (ii) of Assumption 1 allow to establish an IP for the of the bootstrap value

from the general linear process uit. Part (i) is slightly more stringent than Assumption 3.1

in Park (2002, p. 474), where the existence of the fourth moment su¢ ces. In this context,

assuming r > 4 is needed for the validity of inferential theory for factor models; see also

Assumption C(1) in Bai (2004). Part (ii) of the assumption is needed in order to approxi-

mate the AR (1) polynomial with a �nite autoregressive representation - see e.g. Hannan

and Kavalieris (1986). Letting E (uitujt) = � ij , part (iii) entails that
Pn
i=1 j� ij j � M for

all j, since E (utu0t) = � (1)�u�
0 (1) and kE (utu0t)k1 � k� (1)k21 k�uk1. Similar require-

ments on the (weak) cross dependence of the error term are in Pesaran and Tosetti (2011)

and Chudik and Pesaran (2011). That
��1 (1)

1
be �nite could be derived in principle

from more primitive assumptions on � (1) - see e.g. Kolotilina (2009). Part (iii) allows for
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some cross sectional dependence in the error term uit; part (iii)(b) is the same as Assump-

tion C(4) in Bai (2004). Note that parts (i)-(iii) entail that T�1
PT
s=1

PT
t=1

��s�t�� � M ,
where s�t = n

�1Pn
i=1 i;s�t and i;s�t= E (uituis), which is part (2) of Assumption C

in Bai (2004, p. 141).

Assumption 2 mimics Assumption A in Bai (2004) and is required in order for the di-

mension of the factor space to be estimated consistently, and also to derive the asymptotic

theory for the estimated factors. Part (i) is enough for both purposes, and it is equivalent

to Assumption 3.1(a) in Park (2002, p. 474); part (ii) plays the same role as Assumption

1(ii). Note that part (iii) rules out cointegration among the Fts, which is the same as

Assumption A(2) in Bai (2004, p. 140). Also, Assumption 2 entails a Law of the Iterated

Logarithm for Ft (see Phillips and Solo, 1992, Theorem 3.3) to hold, whence lim infT!1

(log log T ) T�2
PT
t=1 FtF

0
t = D where D is a nonrandom positive de�nite matrix; this is

part (3) of Assumption 2 in Bai (2004). Assumptions 3 and 4 are standard requirements

for the asymptotics of the estimates of �i and Ft. See Bai (2004) for further details.

PC based inference on �i and Ft is studied in Bai (2004). The common factors Ft are

estimated by F̂t under the restriction that T�2
PT
t=1 F̂tF̂

0
t = Ik. The estimated common

factor F̂t is T times the eigenvectors corresponding to the k largest eigenvalues of matrix

XX 0 where X = [x1; :::; xn]
0 with xi = [xi1; :::; xiT ]

0. Then �i can be estimated applying

OLS to

xit = �
0
iF̂t + vit; (3)

thus �̂i =
hPT

t=1 F̂tF̂
0
t

i�1 hPT
t=1 F̂txit

i
. It is well known that �i and Ft are identi�able

only up to a transformation. Therefore, PC estimates the space spanned by the factors Ft

(and the loadings �i), thereby �nding H 0Ft instead of Ft and H�1�i instead of �i, where

H is a k � k invertible matrix given by

H =

 
1

n

nX
i=1

�i�
0
i

! 
1

T 2

TX
t=1

FtF̂
0
t

!
V �1nT ; (4)

with VnT a k � k diagonal matrix containing the eigenvalues of 1
nT 2

XX 0 in descending

order. The e¤ect of replacing the true, unobservable factors Ft with their estimates F̂t is
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to in�ate the error term uit in (1):

vit = uit + �
0
i

�
H 0Ft � F̂t

�
: (5)

Consider the following notation, which is henceforth used throughout the paper. Let W"

be a k-dimensional Brownian motion with covariance matrix ��F ; also, Wu;i denotes a

scalar Brownian motion independent of W" with variance �2u;i = �i (1)�u�
0
i (1), where

�i (1) =
P1
j=0 �i is the i-th row of � (1).

Proposition 1 Let Assumptions 1-4 hold. As T !1 for every i

1p
T

bTscX
t=1

264 �F̂t
uit

375 d!

264 H 0W" (s)

Wu;i (s)

375 ; (6)

uniformly in s. Also

1

T 2

TX
t=1

F̂tF̂
0
t
d! H 0

�Z
W"W

0
"

�
H; (7)

1

T

TX
t=1

F̂tuit
d! H 0

Z
W"dWu;i: (8)

As (n; T )!1 with n
T ! 0

1p
nT

bTscX
t=1

nX
i=1

uit
d! �uWu (s) ; (9)

1p
nT

TX
t=1

nX
i=1

F̂tuit
d! �uH

0
Z
W"dWu; (10)

uniformly in s, where Wu is a standard Brownian motion independent of W" and �u =

limn!1 n�1i0n� (1)�u�
0 (1) in.

Proposition 1 contains two types of results: equations (6), (7) and (8), which are

univariate, pointwise in i, and (9) and (10), which are joint limits. These results, used

in conjunction with the Continuous Mapping Theorem (CMT), are the building blocks to

prove the validity of bootstrap approximations.
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In the remainder of the paper, we show bootstrap analogues to (6)-(8) - Sections 3 and

4. We also show bootstrap counterparts to (9) and (10) - Section 5.

3 Univariate sieve bootstrap: algorithm and IP

This section contains the algorithm to generate the bootstrap sample using a �one cross

sectional unit at a time�resampling scheme. Asymptotic theory (pointwise in i) is reported

in Section 3.2. The main output of this section are bootstrap analogues to (6)-(8).

Since (1) is a cointegrating regression, one may apply the algorithm of Chang, Park

and Song (2006) to its observable counterpart (3). This would impose a unit root in the

bootstrap counterpart to F̂t, which is needed in order for the bootstrap to be consistent

- see Park (2003). Henceforth, we de�ne �it = [�F
0
t ; uit]

0, with �it =
P1
j=1 �ij�it�j + eit,

also denoting 1�
P1
j=1 �ij as �i (1).

3.1 The generation of the bootstrap sample

The presence of serial dependence in �Ft and uit requires a bootstrap algorithm that

preserves the autocorrelation structure over time. This can be accomplished by approx-

imating the in�nite AR polynomials � (L) and � (L) by truncating them at lags qF and

qu;i respectively:

�Ft =

qFX
j=1

�q;j�Ft�j + e
F
t;q; (11)

uit =

qu;iX
j=1


(i)
q;juit�j + e

u
it;q: (12)

The values of qF and qu;i depend on n and T , as discussed in the following assumption.

Assumption 5: As (n; T )!1, qF !1 and qu;i !1 for each i, with qF = o
�
'FnT

�
and qu;i = o ('unT ) for each i.

Assumption 5 contains an upper bound on qF and qu;i. In order for qF and qu;i to pass

to in�nity, it is necessary that (n; T ) ! 1; no assumptions are needed on the relative

speed of divergence of n and T . No lower bounds are required for qF and qu;i, as long

as they pass to in�nity. Using Assumption 5, one could think of selecting qF and qu;i by
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using some information criteria such as e.g. AIC or BIC, under the restriction that the

maximum lag allowed for be of order o
�
'FnT

�
and o ('unT ) respectively.

We propose an algorithm similar to Chang, Park and Song (2006) for the case of a

cointegration regression (where n is �xed). The main di¤erences here are the presence of

unobservable variables and the double-indexed asymptotics.

Step 1. (PC estimation)

(1.1) Estimate �i and Ft in (1) using the PC estimator.

(1.2) Generate the residuals ûit = xit � �̂
0
iF̂t and de�ne �̂it =

h
�F̂ 0t ; ûit

i0
.

Step 2. (estimation)

(2.1) Estimate �q;j and 
(i)
q;j (obtaining �̂q;j and ̂

(i)
q;j respectively) by applying OLS (or

some other estimator, e.g. the Yule-Walker estimator) to �F̂t =
PqF
j=1 �q;j �F̂t�j+

eFt;q and ûit =
Pqu;i
j=1 

(i)
q;j ûit�j +e

u
it;q.

(2.2) Compute the residuals êFt;q =�F̂t�
PqF
j=1 �̂q;j �F̂t�j and ê

u
it;q = ûit �

Pqu;i
j=1 ̂

(i)
q;j ûit�j .

De�ne êit;q =
h
êF 0t;b; ê

u
it;q

i0
.

Step 3. (bootstrap) for b = 1; :::;i iterations

(3.1) (resampling)

(3.1.a) Center the residuals êit;q around their mean, as �eit;q = êit;q � T�1
PT
t=1 êit;q:

(3.1.b) Draw (with replacement) T values from f�eit;qgTt=1 to obtain the bootstrap sample

feit;bgTt=1, de�ning also eit;b =
h
eF 0t;b; e

u
it;b

i0
.

(3.2) (generation of the bootstrap sample)

(3.2.a) Generate recursively the pseudo sample �it;b =
h
�F 0t;b; uit;b

i0
as�Ft;b =

PqF
j=1 �̂q;j

�Ft�j;b +e
F
t;b and uit;b =

Pqu;i
j=1 ̂

(i)
q;juit�j;b +e

u
it;b, using as initialization

�
�iq;b; :::; �i1;b

	
=�

�iq; :::; �i1
	
.

(3.2.b) Generate Ft;b as Ft;b = F0;b +
Pt
j=1�Fj;b, with initialization is F0;b = F̂0, or

alternatively T�1
PT
t=1 F̂t.

(3.2.c) Generate the pseudo sample fxit;bgTt=1.
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Consider Step 2.1. Since �F̂t estimates �Ft up to a rotation, �̂q;j estimates a rotation

of �j ; this however su¢ ces for our purposes (see Lemma 2 below).

As a comment to Step 3.2.c, te possible schemes to generate xit;b are discussed in

Section 4. The output of the algorithm above is therefore the bootstrap sample
�
�it;b

	T
t=1
.

In the next section, an IP for
�
�it;b

	T
t=1

is shown.

3.2 Bootstrap asymptotics

Based on a typical approach to prove the validity of the bootstrap, the main purpose of

this section is to show that T�1=2
PbTsc
t=1 �it;b converges (in probability) to the same limit

as T�1=2
PbTsc
t=1 �it, uniformly in s.

De�ne the partial sums of eit =
�
eF 0t ; e

u
it

�0
as WiT (s) = T

�1=2PbTsc
t=1 eit. Assumptions

1 and 2 ensure that an IP holds whereby WiT (s)
d! Wi (s) where Wi (s) is a (k + 1)-

dimensional Brownian motion. This convergence is in the weak form, and it holds in the

space of cadlag functions D [0; 1] endowed with the supremum norm. Weak convergence

can be strengthened by de�ning, on the probability space (
;z; P ), a copy of WiT (s), say

W 0
iT (s), which has the same distribution as WiT (s) and can be chosen such that

P

�
sup
0�s�1

W 0
iT (s)�Wi (s)

 � �� �MT 1�r=2E keitkr ; (13)

where � > 0, r > 2 and M depends only on r. Such results are known as �strong (weak)

approximations�(see e.g. Sakhanenko, 1980) and they ensure that W 0
iT (s) converges a.s.

(in probability) to Wi (s). Assumptions 1 and 2, where r > 4, entail that (13) holds. In

essence, (13) states that, as long as T 1�r=2E keitkr ! 0 either in probability or a.s. for

some r > 2, an IP holds (in probability or a.s. respectively).

Consider the bootstrap sample feit;bgTt=1. This is an i.i.d. sample conditional on

fêitgTt=1, on the probability space induced by the bootstrap, say
�

b;zb; P b

�
. Henceforth,

we denote convergence in probability and in distribution in the bootstrap space (with

respect to P b) as �
pb!�and �d

b

!�respectively.

Moments existence for the bootstrap sample is granted by the following Lemma.
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Lemma 1 Let Assumptions 1-5 hold. As (n; T )!1, for all (i; t) and r > 4

Eb
eFt;br = E

eFt r +Op �q�rsF

�
+Op

�
C�rnT

�
+Op

��
qF

'FnT

�r�
(14)

max
i;t
Eb
��euit;b��r = max

i;t
E jeuitj

r +Op

�
q�rsu;i

�
+Op

�
��rnT
�
+Op

��
qu;i
'unT

�r�
: (15)

This result is useful to prove an IP for eit;b using (13). The type of IP that we are able

to prove is in the weak form, since (14) and (15) hold in probability. Note that having qF ;

qu;i ! 1 with upper bounds 'FnT and '
u
nT is necessary for the higher order moments of

the bootstrap sample to converge to the population values.

Lemma 1 and (13) yield T�1=2
PbTsc
t=1 eit;b

db!Wi (s) in P . In order to extend this result

to the bootstrap sample
�
�it;b

	T
t=1

generated in Step 3.2(a) above, we need the following

result as well.

Lemma 2 Let Assumptions 1-5 hold. As (n; T )!1, for all i

max
1�j�qF

�̂q;j �H 0�j
�
H 0��1 = Op

 r
log T

T

!
+Op

�
1

n

�
+ op

�
1

qsF

�
; (16)

max
1�j�qu;i

���̂(i)q;j � (i)j ��� = Op

 r
log T

T

!
+Op

�
1p
n

�
+ op

 
1

qsu;i

!
: (17)

Lemma 2 states that �̂
(i)

q;j is a consistent estimator of the space spanned by �ij ; the issue

of identifying Ft a¤ects the estimation of the �js, which are estimated up to a rotation.

The rate Op
�p

log T=T
�
is a well-known result in time series analysis (see e.g. Theorem

2.1 in Hannan and Kavalieris, 1986). The rates Op (1=n) and Op
�p

1=n
�
are due to the

use of generated regressors, F̂t and �F̂t.

Using Lemmas 1 and 2, a bootstrap IP for T�1=2
PbTsc
t=1 �it;b can be proved. Consider

the partial sums of �it,W�iT (s) = T
�1=2PbTsc

t=1 �it. Assumptions 1 and 2 entailW�iT (s)
d!

W�i (s) = ��1i (1)Wi (s). Proving the bootstrap IP requires showing that W�iT;b (s) =

T�1=2
PbTsc
t=1 �it;b

db! W�i (s) as (n; T ) ! 1. This can be done by noting that, using the

Beveridge-Nelson decomposition

1p
T

bTscX
t=1

�it;b = �̂
�1
i;q (1)

24 1p
T

bTscX
t=1

eit;b

35+ �̂�1i;q (1)p
T

h
��i0;b � ��ibTsc;b

i
; (18)

11



where ��it;b =
Pq
j=1

hPq
k=j �̂

(i)

q;k

i
�it�j+1;b. It holds that:

Lemma 3 Let Assumptions 1-5 hold. As (n; T ) ! 1, it holds that 1p
T

PbTsc
t=1 �it;b

db!

W�i (s) in P , for all i.

Lemma 3 entails that the partial sums of the bootstrap process
�
�it;b

	T
t=1

have the

same limiting distribution as the partial sums of f�itgTt=1. In order for this to hold, two

results are needed. First, an IP for feit;bgTt=1 is needed; this follows from Lemma 1. Also,

it must hold that �̂
�1
i;q (1)

p! ��1i (1); as shown in the proof, this is a consequence of Lemma

2. Lemma 3 is the bootstrap counterpart to (6).

Lemmas 1-3 yield a bootstrap analogue to Proposition 1.

Theorem 1 Let Assumptions 1-5 hold. Then, as (n; T )!1 and for all i

1

T 2

TX
t=1

Ft;bF
0
t;b

db! H 0
�Z

W"W
0
"

�
H; (19)

1

T

TX
t=1

Ft;buit;b
db! H 0

Z
W"dWu;i; (20)

in P , with W" and Wu;i de�ned in Proposition 1.

Theorem 1 is a similar result to Lemma 3.4 in Chang, Park and Song (2006), and it is

the bootstrap counterpart to equations (7) and (8) in Proposition 1. Results are pointwise

in i; no joint limit theory is developed here.

4 Univariate bootstrap

The algorithm proposed above is applied to each unit separately, thereby imposing cross

sectional independence. This approach is valid when cross sectional correlation does not

need to be taken into account. This is the case when certain �time series problems�are

considered, e.g. the estimation of the loadings; in such cases, the bootstrap boils down

to a problem similar to Chang, Park and Song (2006). However, when �cross sectional

problems� are considered (such as the estimation of common factors) results that are

pointwise in i are su¢ cient only in presence of little or no cross sectional dependence. In

12



this section we consider three applications: we present validity results for the bootstrap

estimates of loadings (Section 4.1), common factors (Section 4.2), and common components

(Section 4.3).

Throughout the section, we consider two alternative DGPs for xit;b:

x
(1)
it;b = �̂

0
iF̂t + uit;b; (21)

x
(2)
it;b = �̂

0
iFt;b + uit;b: (22)

We show that using either (21) or (22) has a marginal impact on the bootstrap theory. Also,

when studying the bootstrap approximation of loadings, factors and common components,

we consider two alternative estimation techniques, OLS and PC. With OLS, the loadings

are estimated through a time series regression, using F̂t as observable regressors. Similary,

the factors are estimated through a cross sectional regression with �̂i treated as observable.

With PC, loadings and factors are extracted from x
(1)
it;b or x

(2)
it;b, without treating �̂i or F̂t

as observed. The same restrictions as for the computation of
�
�̂i; F̂t

�
can be used at each

bootstrap iteration. It can be expected that this approach is less dependent than OLS on

the quality of the �rst step estimates
�
�̂i; F̂t

�
; also, the bootstrapped errors are allowed

to have an impact on the bootstrapped factors.1

However, PC cannot estimate factors and loadings directly, but only up to a rotation.

Bai and Ng (2011) study under which restrictions the rotation matrix is (asymptotically)

the identity matrix, but these restrictions need not always hold in practice. The issue of

rotational indeterminacy a¤ects the bootstrap in two ways.

Firstly, it is possible to provide bootstrap approximations for �̂i � H�1�i and for

F̂t�H 0Ft, but the bootstrap is not able to estimate H. Whilst this is a general limitation

of PC, in many applications knowing
�
H�1�i;H 0Ft

�
is as good as (�i; Ft); examples include

computing common components; con�dence intervals for di¤usion index forecast (Bai and

Ng, 2006a); IV estimation (Bai and Ng, 2010); and testing whether observable economic

variables overlap with estimated latent factors (Bai and Ng, 2006b). In these contexts,

the bootstrap can be useful.

Secondly, rotational indeterminacy also a¤ects the bootstrap when PC is applied to

1 I thank an anonymous Referee for pointing this out to me.
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(21) or (22). To illustrate this, we consider the estimation of the loadings as a leading

example. When using OLS, F̂t is treated as observable. Thus, there is no rotational inde-

terminacy, and the bootstrap estimator estimates �̂i directly. Conversely, when applying

PC to e.g. (21), the loadings are estimated up to a rotation matrix H1, given by

H1 =

"
1

n

nX
i=1

�̂i�̂
0
i

#"
1

T 2

TX
t=1

F̂tF̂
0
t;b

# h
V
b(1)
nT

i�1
; (23)

where F̂t;b is the PC estimate of the common factors and V b(1)nT contains the �rst k

eigenvalues of 1
nT 2

X
(1)
b X

(1)0
b in descending order with X(1)

b =
h
x
(1)
1;b ; :::; x

(1)
n;b

i0
and x(1)i;b =h

x
(1)
i1;b; :::; x

(1)
iT;b

i0
. The matrix H1 is computed using F̂t, as in (23), or Ft;b, according as

(21) or (22) is used. Thus, H1 is observable: there is no identi�cation issue here. The

bootstrap IP, (25) and Proposition 5 below ensures that H1 is invertible.

4.1 Loadings

Consider �̂i. Lemma 4 in Bai (2004, p. 147) states that �̂i �H�1�i = Op
�
T�1

�
with

�̂i �H�1�i =

"
TX
t=1

F̂tF̂
0
t

#�1 "
H 0

TX
t=1

Ftuit

#
+

"
TX
t=1

F̂tF̂
0
t

#�1
� (24)

"
TX
t=1

�
F̂t �H 0Ft

�
uit

#
+

"
TX
t=1

F̂tF̂
0
t

#�1 " TX
t=1

F̂t

�
H 0Ft � F̂t

�0
H�1�i

#
= I + II + III:

Lemma B.4 in Bai (2004, p. 171) entails that II and III are negligible. Using (7) and (8)

T
�
�̂i �H�1�i

�
d! H�1

�Z
W"W

0
"

��1�Z
W"dWu;i

�
; (25)

which is the same as Theorem 3 in Bai (2004).

As mentioned above, OLS can be applied to (21) and (22), treating F̂t as observable,

obtaining �̂
OLS(1)

i;b and �̂
OLS(2)

i;b respectively. Alternatively, PC can be applied to x(1)it;b and

x
(2)
it;b, obtaining �̂

PC(1)

i;b and �̂
PC(2)

i;b .

OLS estimation

14



When using OLS to compute �̂
OLS(1)

i;b and �̂
OLS(2)

i;b , the estimation errors are given by

�̂
OLS(1)

i;b � �̂i =

"
TX
t=1

F̂tF̂
0
t

#�1 " TX
t=1

F̂tuit;b

#
; (26)

�̂
OLS(2)

i;b � �̂i =

"
TX
t=1

Ft;bF
0
t;b

#�1 " TX
t=1

Ft;buit;b

#
: (27)

Proposition 2 Let Assumptions 1-5 hold. As (n; T )!1 for some � > 0

T
h
�̂
OLS(1);(2)

i;b � �̂i
i
db! H�1

�Z
W"W

0
"

��1�Z
W"dWu;i

�
in P; (28)

Eb
T h�̂OLS(1);(2)i;b � �̂i

i2+� = Op (1) in P: (29)

Equation (28) is a weak convergence result: the bootstrap estimation error, �̂
OLS(1);(2)

i;b �

�̂i, has the same limiting distribution as in (25), which stipulates the validity of �̂
OLS(1);(2)

i;b �

�̂i in approximating the limiting distribution of �̂i �H�1�i. Equation (29), in essence, is

an application of Lemma 1. It ensures that T
h
�̂
(1);(2)

i;b � �̂i
i
is uniformly integrable, which

is useful when an approximation of the moments of T
h
�̂i �H�1�i

i
is needed.

PC estimation

When using PC, �̂
PC(1)

i;b and �̂
PC(2)

i;b estimate H�1
1 �̂i, with H1 de�ned in (23).

Proposition 3 Let Assumptions 1-5 hold. As (n; T )!1 for some � > 0

T
h
�̂
PC(1);(2)

i;b �H�1
1 �̂i

i
db! H�1

1

"
H�1

�Z
W"W

0
"

��1�Z
W"dWu;i

�#
in P; (30)

Eb
T h�̂PC(1);(2)i;b �H�1

1 �̂i

i2+� = Op (1) in P: (31)

Equation (30) is, in essence, the same as Theorem 3 in Bai (2004): the limiting dis-

tribution of �̂
PC(1);(2)

i;b � H�1
1 �̂i is the same as the limiting distribution of �̂i � H�1�i,

except for the presence of the rotation matrix H1. This is a consequence of the rotational

indeterminacy which is typical of PC estimation. Since H1 is observable, the limiting

distribution of �̂i �H�1�i is approximated by H1
h
�̂
PC(1);(2)

i;b �H�1
1 �̂i

i
.
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4.2 Common factors

The building block of the analysis is Theorem 2 in Bai (2004, p. 148): as (n; T ) ! 1

with n
T 3
! 0, it holds that

p
n
h
F̂t �H 0Ft

i
d! H 0�� �N (0;�t) ; (32)

with �t = limn!1 1
n

Pn
i=1

Pn
j=1E

�
�i�

0
juitujt

�
. Under the �one unit at a time�resampling

scheme, cross dependence among the uits is forced to be zero; thus, it can be expected that

the bootstrap provides valid inference on factors only under E (uitujt) = 0 for i 6= j, which

entails �t = limn!1 1
n

Pn
i=1 E

�
�i�

0
iu
2
it

�
. Indeed, as discussed in Section 5, the �one unit

at a time�scheme can provide valid inference when cross correlation is di¤erent from zero

but �negligible�as n!1 - see Theorem 3 and the discussion thereafter. More generally,

consistent estimation of �t is fraught with di¢ culties; as Bai (2003) points out, HAC-type

estimators are not feasible since, in general, the order of cross correlation is unknown.

As in the case of the loadings, there are two possible ways of estimating the common

factors from (21) and (22). A cross sectional OLS estimator can be applied, considering

�̂i observable and computing respectively F̂
OLS(1)
t;b and F̂OLS(2)t;b . Alternatively, PC can be

used, obtaining F̂PC(1)t;b and F̂PC(2)t;b .

OLS estimation

The estimation error is

F̂
OLS(2)
t;b � Ft;b =

 
1

n

nX
i=1

�̂i�̂
0
i

!�1 
1

n

nX
i=1

�̂iuit;b

!
: (33)

The same equation holds for F̂OLS(1)t;b � F̂t. No identi�cation issue is present when using

OLS.

Proposition 4 Let Assumptions 1-5 hold. As (n; T )!1

p
n
h
F̂
OLS(2)
t;b � Ft;b

i
db! H 0�� �N (0;�t) in P; (34)

Eb
pn hF̂OLS(2)t;b � Ft;b

i2+� = Op (1) in P; (35)
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for some � > 0. The same holds for F̂OLS(1)t;b � F̂t.

Equation (34) stipulates the validity of F̂OLS(2)t;b �Ft;b (and of F̂OLS(1)t;b � F̂t) in approxi-

mating the limiting distribution of F̂t�H 0Ft given in (32). Note that, unlike Theorem 2 in

Bai (2004), no restrictions are needed on the rate of divergence between n and T . This is

because the OLS estimator uses �̂i as an observable regressor, thereby not introducing any

extra error terms, unlike PC. However, this does not entail that
p
n
h
F̂
OLS(2)
t;b � Ft;b

i
can

be used to approximate the limiting distribution of
p
n
h
F̂t �H 0Ft

i
for any combination

of n and T . When n
T 3
! c > 0, the limiting distribution of

p
n
h
F̂t �H 0Ft

i
is not given

by (32), and therefore
p
n
h
F̂
OLS(2)
t;b � Ft;b

i
is no longer valid.

PC estimation

Similarly to the case of the loadings, PC identi�es the common factors up to the

rotation matrix H1, de�ned in (23).

Proposition 5 Let Assumptions 1-5 hold. As (n; T )!1 with n
T 3
! 0

p
n
h
F̂
PC(2)
t;b �H 0

1Ft;b

i
db! H 0

1

�
H 0�� �N (0;�t)

�
in P; (36)

Eb
pn hF̂PC(2)t;b �H 0

1Ft;b

i2+� = Op (1) in P; (37)

for some � > 0. The same holds for F̂PC(1)t;b �H 0
1F̂t.

Proposition 5 states the validity of
p
n
h
F̂
PC(2)
t;b �H 0

1Ft;b

i
to approximate the limiting

distribution of
p
n
h
F̂t �H 0Ft

i
, and it is the bootstrap counterpart to Theorem 2 in Bai

(2004).

4.3 Common components

The estimated common components are given by Ĉit = �̂
0
iF̂t, with

Ĉit � Cit =
�
F̂t �H 0Ft

�0
H�1�i + F̂

0
t

�
�̂i �H�1�i

�
= I + II: (38)

17



Bai (2004, Theorem 4, p. 149) shows that, as (n; T )!1 with n
T ! �, for each (i; t) with

t = bTsc

p
n
�
Ĉit � Cit

�
d! �0i��N (0;�t) +

p
�W" (s)

�Z
W"W

0
"

��1 Z
W"dWu;i; (39)

where the �rst term on the right hand side comes from I in (38) and the second one from

II.

Choosing either (21) or (22) for the bootstrap approximation of Ĉit�Cit does not make

a di¤erence. However, the estimation technique employed (i.e. OLS or PC) has profound

consequences: OLS should not be employed when computing the bootstrap approximation

of Ĉit �Cit. In order to illustrate this, let �̂
OLS

i;b be the OLS estimator of �̂i in either (21)

or (22), and let F bt denote the common factors in either (21) or (22) - we omit superscripts

to save space. The bootstrap estimate is Cbit = �̂
OLS0
i;b F bt . Thus, the estimation error is

�̂
OLS0
i;b F bt � �̂

0
iF
b
t =

�
�̂
OLS

i;b � �̂i
�0
F bt : the asymptotics of C

b
it� Ĉit is driven only by part II

in (38). This is due to F bt being treated as observable, so that there is no estimation error

of the form F̂t � H 0Ft. Therefore, Cbit � Ĉit cannot be used to approximate the limiting

distribution of Ĉit � Cit, unless n
T ! 0, which limits its practical use.

Thus, PC should be used. Let �̂
PC

i;b and F̂
PC
t;b be the estimates of �̂i and F̂t under either

(21) or (22) - superscripts are again omitted to save space. De�ne Ĉit;b = �̂
PC0
i;b F̂

PC
t;b ; we

have

Ĉit;b � Ĉit =
�
F̂PCt;b �H 0

1Ft

�0
H�1
1 �̂i + F̂

PC0
t;b

�
�̂
PC

i;b �H�1
1 �̂i

�
: (40)

In view of (40), it can be expected that the limiting distribution of
p
n
�
Ĉit;b � Ĉit

�
is the

same as that of
p
n
�
Ĉit � Cit

�
for all combinations of n and T as they pass to in�nity.

Proposition 6 Let Assumptions 1-5 hold. Then, for all (i; t) such that t = bTsc, as

(n; T )!1 with n
T ! �

p
n
�
Ĉit;b � Ĉit

�
db! �0i��N (0;�t) +

p
�W" (s)

�Z
W"W

0
"

��1 Z
W"dWu;i in P: (41)
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Also, for all (i; t) such that t = bTsc, as (n; T )!1 with n
T ! � for some � > 0

Eb
���pn�Ĉit;b � Ĉit����2+� = Op (1) in P: (42)

Results for n
T ! 0 and T

n ! 0 are in Appendix. The case n
T ! � is, as pointed out

in Bai (2004), the most useful one, since � can be replaced by n
T , thereby making the

bootstrap approximation of Ĉit � Cit usable for all combinations of n and T .

5 Multivariate bootstrap

Results in Sections 3 and 4 are pointwise in i, and only consider the time series dimension.

This is su¢ cient for some applications, but in other cases the cross sectional dimension

and the presence of cross sectional correlation need to be taken into account. Also, in

some applications joint asymptotics results are needed.

The main output of this Section is the derivation of a bootstrap counterpart to equa-

tions (9) and (10). It is shown that the moment existence conditions granted by Lemma

1 are su¢ cient also for joint bootstrap asymptotics. However, consistent estimation of

the long run variance of ut is fraught with di¢ culties, due to its growing dimension (see

Theorem 3).

To study multivariate bootstrap, the algorithm in Section 3.1 is modi�ed by resampling

the whole vector êut =
�
êu1t;q; :::; ê

u
nt;q

�0, and estimating an n-dimensional VAR of order q
for ût = [û1t; :::; ûnt]

0. In order to prove bootstrap analogues to equations (9) and (10), let

the V AR (1) representation for ut be ut =
P1
j=1Bjut�j + e

u
t , truncated at lag q as

ut =

qX
j=1

Bjut�j + e
u
t ; (43)

and let B (1) = 1 �
P1
j=1Bj ; by de�nition, B (1) = ��1 (1). Also, de�ne the bootstrap

counterpart to eut , e
u
t;b, and let B

�
j be some estimator of Bj ; thus, B

� (1) = 1 �
Pq
j=1B

�
j

is an estimator for B (1). Note that the number of parameters to be estimated is qn2.

Thus, we require that qn2 < T . This constraint on the relative speed of divergence of n

and T is stronger than the typical requirement that n
T ! 0. The bootstrap sample ut;b
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can be generated using ut;b =
Pq
j=1B

�
jut�j;b + e

u
t;b. No modi�cations are required to the

algorithm in Section 3.1 as far as the generation of Ft;b is concerned.

Theorem 2 Let Assumptions 1-5 hold, and assume further that kB� (1)�B (1)k1 =

op (1). As (n; T )!1 with qn2 < T

1p
nT

nX
i=1

bTscX
t=1

uit;b
db! �uWu (s) ; (44)

1p
nT

nX
i=1

TX
t=1

Ft;buit;b
db! �uH

0
Z
W"dWu; (45)

uniformly in s, in P , where �u, Wu and W" are de�ned in Proposition 1.

Theorem 2 is a joint asymptotics result. It shows that the distributions of n�1=2T�1=2
Pn
i=1PT

t=1 uit;b and n
�1=2T�1

Pn
i=1

PT
t=1 Ft;buit;b are asymptotically the same as the distrib-

utions of n�1=2T�1=2
Pn
i=1

PT
t=1 uit and n

�1=2T�1
Pn
i=1

PT
t=1 Ftuit.

Equation (44) could be generalised to study multiparameter partial sum processes such

as (nT )�1=2
Pbnpc
i=1

PbTsc
t=1 uit, with (p; s) 2 [0; 1]�[0; 1]. Havingmaxi;tE juitj

2+� <1 yields

(nT )�1=2
Pbnpc
i=1

PbTsc
t=1 uit

d! �uW (p; s), where W (�; �) is a standard two-dimensional

Brownian sheet. This is a standard result in the random �elds literature - see, inter

alia, Bulinski and Shashkin (2006), and Rio (1993) for strong approximations. Therefore,

Lemma 1 is su¢ cient to prove a multiparameter IP for the partial sums of the bootstrap

sample uit;b. This could be useful when resampling across i as well as across t (see e.g.

Kapetanios, 2008, and Levina and Bickel, 2006), although this postulates the existence of

some ordering among the units which is not always obvious - see also Goncalves (2010).

In essence, Theorem 2 states that joint asymptotics can be derived for the bootstrap

samples under the same assumptions as univariate results, as long as there exists a con-

sistent (in L1-norm) estimator for B (1). Since B (1) is n � n (with n ! 1), Lemma

2 is not su¢ cient for this, as it only grants element-wise consistency for B� (1). Al-

though the details are in the proof, here we give a preview of the rationale of the require-

ment that kB� (1)�B (1)k1 = op (1). As an illustrative example, consider showing that

(nT )�1=2
PbTsc
t=1

Pn
i=1 uit;b has the same limiting distribution as (nT )

�1=2PbTsc
t=1

Pn
i=1 uit.

Writing this in matrix form, a requirement for this is that (nT )�1=2
PbTsc
t=1 i

0
n [B

� (1)]�1 eut;b
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and (nT )�1=2
PbTsc
t=1 i

0
n [B (1)]

�1 eut should have the same distribution. An IP holds for the

partial sums of eut and e
u
t;b. Thus, following the same lines as in the proof of Lemma 3,

we need (nT )�1=2
PbTsc
t=1

Pn
j=1

Pn
i=1

n
[B� (1)]�1� [B (1)]�1

o
ij
eujt;b = op (1), where fAgij

denotes the element in position (i; j) of matrix A. Since eujt;b has �nite variance, it is

su¢ cient that supj j
Pn
i=1

n
[B� (1)]�1 � [B (1)]�1

o
ij

���� = op (1), for which it is su¢ cient

that
[B� (1)]�1 � [B (1)]�1

1
= op (1). This holds if kB� (1)�B (1)k1 = op (1), since[B� (1)]�1 � [B (1)]�1

1
�
��1 (1)

1

��1 (1)1 kB� (1)�B (1)k1 and
��1 (1)

1
and��1 (1)1 are �nite by Assumption 1(iii).

In order to estimate B (1), consider (43). De�ning uqt =
�
u0t�1; :::; u

0
t�q
�0 and Bq =

[Bq;1j:::jBq;q], we have

ut = Bquqt + e
u
qt; (46)

the feasible estimator of Bq is

B̂q =

24 TX
t=q+1

ûtû
0
qt

3524 TX
t=q+1

ûqtû
0
qt

35�1 : (47)

Thus, B (1) can be estimated by \Bq (1) = 1 �
Pq
j=1 B̂q;j - note that (47) requires the

inversion of an nq � nq matrix. More importantly, the VAR approach introduces fur-

ther restrictions to the applicability of the bootstrap. As pointed out above, in order to

implement this approach we need that qn2 < T .

We also consider also an alternative estimator of B (1) which does not take into account

the cross sectional correlation among the uits. This can be computed from the ̂q;js

estimated from (12), and de�ned as B̂q (1) = 1�
Pq
j=1

~Bq;j , with ~Bq;j an n� n diagonal

matrix whose elements are given by ̂(i)q;j . In this case, no VAR is �tted and thus the

restriction that qn2 < T is not necessary.

It holds that:

Theorem 3 Let � = (�1; �2; :::; �n)
0, and let Assumptions 1-4 hold with k�k1 = Op (n).

Then

\Bq (1)�B (1)
1
= Op

 
q

r
log T

T

!
+Op

�
nq2C�1nT

�
+ o

�
q�s
�
+ op (1) : (48)
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Assuming supj
P
i6=j j� ij j = O

�
n��

�
with � � 0, it holds that

B̂q (1)�B (1)
1
= Op

�
q

'unT

�
+Op

�
qn��

�
+ o

�
q�s
�
: (49)

Theorem 3 states that \Bq (1) is inconsistent in L1-norm. This result, somewhat con-

strained by the choice of the matrix norm, can be compared with the analysis in Fan, Fan

and Lv (2008). Theorem 3 is a result of independent interest, even outside the context

of bootstrap. As far as sieve bootstrap is concerned, the inconsistency of \Bq (1) entails

that an IP for uit;b cannot be proved - this can be viewed following the same lines as in

the proof of Lemma 3. In spite of Assumption 1(iii), which limits the amount of cross

dependence among the uits, inconsistency arises due to the presence of
h
�̂� � (H 0)�1

i
Ft

in the ûits (see the proof). This could be compared with the results in Chudik and Pe-

saran (2011), where an assumption similar to 1(iii) is su¢ cient to ensure consistency of

the estimated long run covariance matrix. Other, residual-based estimators of the long

run variance would similarly be a¤ected by the presence of
h
�̂� � (H 0)�1

i
Ft. Intuitively,

this result reinforces the well-known fact that PC estimation can accommodate for weak

cross dependence only.

Turning to B̂q (1), this is consistent only under � > 0, as long as Assumption 5 is mod-

i�ed to q ! 1 with q = o
�
min

nq
T

log T ; n
�
o�
. In this case,

B̂q (1)�B (1)
1
= op (1),

as required by Theorem 2. The �rst term on the right hand side of (49) represents the rate

of convergence of the elements on the main diagonal of B̂q (1), as warranted by Lemma

2. The assumption that supi
P
j 6=i j� ij j = O

�
n��

�
poses a limitation on the amount of

cross dependence among the uits. Although some dependence is allowed for, this is weaker

than in an ordinary approximate factor structure framework (see e.g. Assumption C(1) in

Bai, 2004), where it su¢ ces to have n�1
Pn
i=1

Pn
j=1 j� ij j = O (1), for which it is su¢ cient

that supi
Pn
j=1 j� ij j = O (1). Conversely, the assumption is more general than in classical

Principal Component Analysis, where � ij = 0 for all i 6= j. Thus, in essence (49) states

that neglecting cross dependence is harmless (and, in fact, advantageous over \Bq (1)), as

long as there is �very little� cross dependence. This result illustrates the fact that the

�classical�assumptions of Principal Component Analysis can be relaxed when n is large,

but only up to a certain extent. Finally, note that, as long as supi
P
j 6=i j� ij j = O

�
n��

�
,
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any consistent estimation technique (e.g. a nonparametric one) for the long run variances

of the uits would yield a consistent estimator for B (1).

The results in Theorem 3 extend to other, more general contexts, whenever the long

run variance of ut needs to be estimated. As an example, consider the asymptotics of F̂t

and Ĉit, reported in equations (32) and (39) respectively. In both cases, the quantity �t =

limn!1 n�1�0� (1) �u �0 (1)� is present. Unless cross sectional independence is assumed,

it is necessary to estimate � (1), with the di¢ culties highlighted in Theorem 3.

6 Bootstrapping mixed panel factor series

In this section, we discuss the extension of the bootstrap theory derived above to the case

in which both I (1) and I (0) common factors are present in the DGP of xit, viz.

xit = �F 0i Ft + �
G0
i Gt + uit (50)

= �K0i Kt + uit;

with �Ki =
�
�F 0i ; �

G0
i

�0
and Kt = [F 0t ; G

0
t]
0. We assume that, as before, Ft is a k-dimensional

nonstationary process, and Gt is an h-dimensional stationary process.

Model (50) is a useful extension for at least two reasons. Firstly, the presence of

common I (0) factors in (50) can accommodate for dynamic factors, i.e. �i in (1) replaced

by
P1
j=1 �

k
i L

k; and for cointegrated factors, i.e. Ft in (1) being cointegrated. Secondly,

the presence of stationary common factors also means that, in (1), strong cross dependence

among the uits can be accommodated for - as far as weak dependence is concerned, the

considerations in Section 5 still hold.

The purpose of this section is to provide some initial results for the extension of boot-

strap theory to (50). The relevant inferential theory is in Bai (2004, section 5); see also

Maciejowska (2010). In particular, we present extensions of Lemmas 1 and 2. This pro-

vides the theoretical framework from which more specialised results, such as validity results

for the estimates of �Ki and Kt can be derived in a similar way as in Sections 4 and 5.

The bootstrap algorithm requires a modi�cation of Section 3.1. More speci�cally,

after estimating H 0Kt (for some invertible matrix H de�ned analogously to (4)), with
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K̂t =
h
F̂ 0t ; Ĝt

i0
, de�ne �K̂t =

h
�F̂ 0t ; Ĝt

i0
. As well as estimating ûit =

Pqu;i
j=1 

(i)
q;j ûit�j

+euit;q, the algorithm is based on �tting the (k + h)-dimensional VAR

�K̂t =

qKX
j=1

Aq;j�K̂t�j + e
K
t;q;

generating the residuals êKt;q. After recentering, the sequence
�
êKt;q
	
is resampled as in Step

3.1.(b), obtaining
h
eK0t;b ; e

u
it;b

i0
. After generating the pseudo sample K�it;b =

h
�K

0
t;b; uit;b

i0
=h

�F 0t;b; G
0
t;b; uit;b

i0
similarly to Step 3.2.(a), the �rst k elements can be integrated as in

Step 3.2.(b), thereby getting the bootstrap sample of the nonstationary common factors,

Ft;b.

The following Assumptions are extensions/variations of Assumptions 1-4 and of As-

sumption 5 respectively, reported here for convenience.

Assumption 6. (a) Assumption 1 holds; (b) the (k + h)-dimensional process [�F 0t ; G
0
t]
0

satis�es Assumption 2; (c) the loadings �Ki satifsy Assumption 3; (d)
�
[�F 0t ; G

0
t]
0	, fuitg

and
�
�Ki
	
are three mutually independent groups, and K0 is independent of fuitg and�

�Ki
	
.

Assumption 7. As (n; T )!1, qK !1 and qu;i !1 for each i, with qK and qu;i

both o ('unT ) for each i.

The two Assumptions are very similar to Assumptions 1-5. One di¤erence, in As-

sumption 7, is that the upper bound for qK is given by min
np
n;
p
log T=T

o
, whereas in

Assumption 5 the order of the VAR �tted to �F̂t is min
n
n;
p
log T=T

o
.

It holds that
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Lemma 4 Let Assumptions 6 and 7 hold. As (n; T )!1, for all (i; t) and for r > 4

Eb
eKt;br = E

eKt r +Op �q�rsK

�
+Op

�
��rnT
�

(51)

+Op

��
qK
'unT

�r�
;

max
i;t
Eb
��euit;b��r = max

i;t
E jeuitj

r +Op

�
q�rsu;i

�
+Op

�
��rnT
�

(52)

+Op

��
qu;i
'unT

�r�
;

max
1�j�qK

Âq;j� �H 0Aq;j�
�
H 0��1 = Op

 r
log T

T

!
+Op

�
1p
n

�
+ op

�
1

qsK

�
; (53)

max
1�j�qu;i

���̂(i)q;j � (i)j ��� = Op

 r
log T

T

!
+Op

�
1p
n

�
+ op

 
1

qsu;i

!
:(54)

Lemma 4 is the building block to extend the theory developed in Sections 4 and 5 to

(50). Results such as Lemma 3 and Theorem 1 can be proved directly using (51)-(54). The

main feature of the Lemma, in terms of rates of convergence, is that according to (53),

Âq;j� is still consistent but at a slower rate than in Lemma 2. In essence, instead of being

consistent at a ratemin
n
n;
p
log T=T

o
, Âq;j� is consistent at a ratemin

np
n;
p
log T=T

o
.

This result is directly related to the �ndings in Bai (2004) and Maciejowska (2010).

7 Concluding remarks

This paper contains results on the validity of sieve bootstrap applied to large, nonstation-

ary panel factor series. Building on a similar research question as in Chang, Park and

Song (2006) in the context of cointegrated, �nite dimensional VARs, an IP is proved for

the bootstrap sample which, together with results on the consistent estimation of long

run variances and on the convergence to stochastic integrals of transformations of the

bootstrap sample, provides a formal justi�cation to the use of the bootstrap in the con-

text of panel factor series. Whilst the �rst results are only pointwise, in order to extend

the applicability of the sieve bootstrap, joint bootstrap asymptotics is also studied. In

this case, the �ndings are ambiguous: the presence of cross sectional dependence makes

bootstrapping invalid, unless cross dependence is very weak. Although this is a negative

result, it illustrates the pitfalls and limitations of bootstrapping panel factor models and,

more generally, of large panels with cross dependence. As an ancillary result, the paper
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contains an investigation on the consistency in L1-norm of the estimated long run variance

of panel factor models, showing that, whilst element-wise consistency holds, matrix-type

consistency is in general hampered by the presence and the extent of cross dependence.

These results are of independent interest, and the issue remains as to the consistent esti-

mation of large covariance matrices under general forms of cross dependence. Finally, the

paper considers the extension to the case of stationary and nonstationary common factors.

This issue is currently under investigation by the author.
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Appendix A: useful Lemmas

Lemma A.1 Let Assumptions 1-4 hold. Then

A.1(i) T�1
PT
t=1

�F̂t �H 0�Ft

2 = Op �C�2nT �,
A.1(ii) T�1

PT
t=1

�
�F̂t �H 0�Ft

�0
�Ft = Op

�
T�1=2C�1nT

�
,

A.1(iii) T�1
PT
t=1

�
�F̂t �H 0�Ft

�0
�F̂t = Op

�
1
n

�
+Op

�
1

T 3=2

�
.

Proof. For the sake of the notation, we omit H whenever possible. Consider A.1(i).

It holds that �F̂t��Ft =
�
F̂t � Ft

�
�
�
F̂t�1 � Ft�1

�
; using equation (B.1) in Bai (2004,

p. 167) we have

VnT

�
F̂t �H 0Ft

�
= T�2

TX
s=1

F̂ss�t + T
�2

TX
s=1

F̂s�st + T
�2

TX
s=1

F̂s�st + T
�2

TX
s=1

F̂s�st;

where s�t = n�1E (u0tus), �st = n�1 (u0tus) � s�t, �st = n�1 (F 0s�
0ut) and �st =

n�1 (F 0t�
0us). We omit H and VnT whenever possible; note that they are both full rank

matrices, with kHk = Op (1). We have

�F̂t ��Ft = T�2
TX
s=1

F̂sE

�
�u0tus
n

�
+ T�2

TX
s=1

F̂s

�
�u0tus
n

� E
�
�u0tus
n

��

+T�2
TX
s=1

F̂s

�
F 0s�

0�ut
n

�
+ T�2

TX
s=1

F̂s

�
�F 0t�

0us
n

�
= I + II + III + IV:

It holds that T�1
PT
t=1

�F̂t ��Ft2 � MT�1PT
t=1

�
kIk2 + kIIk2 + kIIIk2 + kIV k2

�
.

Let �s�t = n
�1E (�u0tus); then T

�1PT
t=1 kIk

2 � T�2
�
T�2

PT
s=1

F̂s2� �T�1PT
t=1

PT
s=1 

2
�s�t

�
=

Op
�
T�2

�
using Lemma B.1 in Bai (2004) and Assumption 1. Also, letting ��st =

n�1 [�u0tus � E (�u0tus)], we have T�1
PT
t=1 kIIk

2 � T�5
PT
u=1

PT
s=1 F̂

0
sF̂u

�PT
t=1 ��st��ut

�
�

T�2
�
T�2

PT
s=1

F̂s2� �
T�2

PT
u=1

PT
s=1

�PT
t=1 ��st��ut

�2�1=2
= Op

�
n�1T�2

�
using

the fact that E
�PT

t=1 ��st��ut

�2
� T 2maxs;tE j��stj4 and Assumption 1(i). As far

as III is concerned, T�1
PT
t=1 kIIIk

2 � n�1
�
T�1

PT
t=1

�0�utp
n

2� �T�2PT
s=1

F̂s2��
T�2

PT
s=1 kFsk

2
�
= Op

�
n�1

�
. Similar passages as above yield T�1

PT
t=1 kIV k

2 �
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n�1T�1
�
T�1

PT
t=1 k�Ftk

2
� �

T�2
PT
s=1

F̂s2� �T�1PT
s=1

�0usp
n

2� = Op
�
n�1T�1

�
.

Putting all together, we get A.1(i).

Part A.1(ii) can be proved in a similar way. We can write

1

T

TX
t=1

�
�F̂t ��Ft

�0
�Ft

= T�3
TX
t=1

TX
s=1

F̂ 0s�Ft

�
�u0tus
n

�
+ T�3

TX
t=1

TX
s=1

F̂ 0s�Ft

�
F 0s�

0�ut
n

�

+T�3
TX
t=1

TX
s=1

F̂ 0s�Ft

�
�F 0t�

0us
n

�
= I + II + III:

Using Lemmas B.1 and B.4 in Bai (2004), we have kIk � n�1T�3=2
Pn

i=1

�
T�1

PT
s=1 F̂suis

�
�
T�1=2

PT
t=1�Ft�uit

�0 = Op
�
T�3=2

�
. Also, kIIk � n�1=2T�1=2

�T�2PT
s=1 F̂sF

0
s

�
�
n�1=2T�1=2

Pn
i=1

PT
t=1 �

0
i�Ft�uit

�0 = Op
�
n�1=2T�1=2

�
. Last, kIIIk � n�1=2T�1�

n�1=2T�1
Pn
i=1

PT
t=1 �

0
iF̂s�uis

� �
T�1

PT
t=1�Ft�F

0
t

�
=Op

�
n�1=2T�1

�
. Combining these

results, A.1(ii) follows. Equation A.1(iii) follows from A.1(i)-A.1(ii) upon noting that

T�1
PT
t=1

�
�F̂t ��Ft

�0
�F̂t = T

�1PT
t=1

�
�F̂t ��Ft

�0
�Ft +T

�1PT
t=1

�F̂t ��Ft2
= Op

�
T�1=2C�1nT

�
+Op

�
C�2nT

�
.

Lemma A.2 Let Assumptions 1-4 hold. Then

A.2(i) T�1
PT
t=1

�F̂t �H 0�Ft

r = Op �C�rnT �,
A.2(ii) T�1

PT
t=1

�F̂tr = Op (1),
A.2(iii) T�1

PT
t=1 jûit � uitj

r = Op
�
��rnT
�
,

A.2(iv) T�1
PT
t=1 jûitj

r = Op (1) for r � 2:
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Proof. We omit H whenever possible. To prove part A.2(i), note that

1

T

TX
t=1

�F̂t ��Ftr � 1

T

TX
t=1

24 1T 2
TX
s=1

F̂s�s�t


2
35r=2 + 1

T

TX
t=1

24 1T 2
TX
s=1

F̂s�st


2
35r=2

+
1

T

TX
t=1

24 1T 2
TX
s=1

F̂s

�
F 0s�

0�ut
n

�
2
35r=2

+
1

T

TX
t=1

24 1T 2
TX
s=1

F̂s

�
�F 0t�

0us
n

�
2
35r=2

= I + II + III + IV:

Consider I. The Cauchy-Schwartz inequality yields I � T�r 1
T

PT
t=1

�
1
T 2
PT
s=1

F̂s2�r=2hPT
s=1 

2
�s�t

ir=2
. Assumption 1 ensures that

PT
s=1 

2
�s�t = O (1). Also, T

�2PT
s=1

F̂s2 �
T�2

PT
s=1 kFsk

2 + T�2
PT
s=1

F̂s � Fs2, with T�2PT
s=1

�F̂s ��Fs2 = Op �T�1C�2nT �
according to Lemma B.1 in Bai (2004). Given that T�2

PT
s=1 kFsk

2 = Op (1), it holds that

I = Op (T
�r). As far as II is concerned, note II �

�
1
T 2
PT
s=1

F̂s2�r=2 T�1PT
t=1

h
1
T

PT
s=1 �

2
�st

ir=2
.

Since T�1
PT
s=1 �

2
�st = Op

�
n�1

�
- see Bai (2003, p. 159) - we have II = Op

�
n�r=2

�
. Con-

sidering III, it holds that

 1T 2
TX
s=1

F̂s

�
F 0s�

0�ut
n

�
r

= n�r=2

 1T 2
TX
s=1

F̂sF
0
s

�0utp
n


r

= n�r=2
�0utp

n

r
 1T 2

TX
s=1

F̂sF
0
s


r

:

Note that T�2
PT
s=1 F̂sF

0
s = T

�2PT
s=1 FsF

0
s+T

�2PT
s=1

�
F̂s � Fs

�
F 0s = Op (1)+Op

�
T�1C�1nT

�
from Lemma B.1 in Bai (2004). Also, n�r=2

n�1=2�0utr = n�r=2 n�1=2Pn
i=1 �iuit

r =
Op
�
n�r=2

�
after Assumptions 2(i) and 3. Thus, III = Op

�
n�r=2

�
. Finally, IV can be

rearranged as

 1T 2
TX
s=1

F̂s

�
�F 0t�

0us
n

�
r

=

24 1

nT 2

TX
s=1

F̂su
0
s��Ft


2
35r=2

= n�r=2

24 1T 2
TX
s=1

nX
i=1

F̂s
uis�

0
ip
n
�Ft


2
35r=2

� n�r=2T�r

24k�Ftk2
 1T

TX
s=1

nX
i=1

F̂s
uis�

0
ip
n


2
35r=2 ;
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with k�Ftk2 = Op (1) and
(T )�1PT

s=1 F̂s
�
n�1=2

Pn
i=1 uis�

0
i

�2 = Op (1)+Op �C�1nT � from
Lemma B.4 in Bai (2004). Hence, IV = Op

�
n�r=2T�r

�
. Thus, we have T�1

PT
t=1

�F̂t ��Ftr =
Op (T

�r) + Op (n�r) + Op (n�r) + Op
�
n�r=2T�r

�
= Op

�
C�rnT

�
. Part A.2(ii) follows from

T�1
PT
t=1

�F̂tr � T�1
PT
t=1 k�Ftk

r + T�1
PT
t=1

�F̂t ��Ftr = Op (1) + Op
�
C�rnT

�
.

Finally, consider A.2(iii). Since ûit = xit � �̂
0
iF̂t, in light of (1) we have ûit � uit =

�0iFt � �̂
0
iF̂t, and therefore

1

T

TX
t=1

jûit � uitjr =
1

T

TX
t=1

������i � �̂i�0 Ft � �̂0i �F̂t � Ft�����r

� M
1

T

TX
t=1

������̂i � �i�0 Ft����r +M 1

T

TX
t=1

����̂0i �F̂t � Ft����r
= I + II:

Consider I; we have I �
�̂i � �ir T�1PT

t=1 kFtk
r. Note that �̂i � �i = Op

�
T�1

�
-

see Lemma 3 in Bai (2004, p. 148). Also, Assumptions 1(i), 1(ii), 2(i) and 2(ii) en-

sure that
PT
t=1 kFtk

r = Op

�
T 1+

1
2
r
�
- see Park and Phillips (1999, Theorem 5.3). Thus,

I = Op

�
T�

1
2
r
�
. As far as II is concerned,

PT
t=1

����̂0i �F̂t � Ft����r � �̂irPT
t=1

F̂t � Ftr.
Since

�̂ir = k�i + op (1)kr = O (1), similar calculations as before (based on the the-

ory developed in Bai, 2004) would lead to
PT
t=1

F̂t � Ftr = Op
�
TC�rnT

�
. Thus, II =

Op
�
C�rnT

�
and therefore T�1

PT
t=1 jûit � uitj

r = Op
�
��rnT
�
. Part A.2(iv) follows from simi-

lar calculations as for the proof of A.2(ii).

Lemma A.3 Let Assumptions 1-4 hold. Then T�1
PT
t=1 û

2
it = T

�1PT
t=1 u

2
it+Op

�
C�1nT

�
+Op

�
C�2nT

�
.

Proof. It holds that

1

T

TX
t=1

û2it =
1

T

TX
t=1

u2it +
2

T

TX
t=1

uit (ûit � uit) +
1

T

TX
t=1

(ûit � uit)2

=
1

T

TX
t=1

u2it + I + II:

We have I � 2
h
T�1

PT
t=1 u

2
it

i1=2 h
T�1

PT
t=1 jûit � uitj

2
i1=2

= Op (1) Op
�
C�1nT

�
, in view

of Assumption 1 and Lemma A.2(iii). Also, A.2(iii) yields II = Op
�
C�2nT

�
. Putting all

together, the Lemma follows.
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Lemma A.4 Let Assumptions 1-5 hold. Then, for some r � 2

A.4(i) T�1
PT
t=1

F̂t;b �H 0
1Ft;b

r = Op �C�rnT �,
A.4(ii) T�1

PT
t=1

�
F̂t;b �H 0

1Ft;b

�
F 0t;b = Op

�
C�1nT

�
,

A.4(iii) T�1
PT
t=1

�
F̂t;b �H 0

1Ft;b

�
F̂ 0t;b = Op

�
C�1nT

�
,

A.4(iv) F̂t;b �H 0
1Ft;b = Op

�
n�1=2

�
+Op

�
T�3=2

�
.

Proof. Prior to starting the proof, recall that �̂i�H�1�i = Op
�
T�1

�
. Also, E

F̂t;b =
O
�p
T
�
by construction. De�ning bn;jt�sj = n�1

Pn
i=1E (uit;buis;b), note that, by con-

struction, uit;b is a stationary AR process of �nite order; thus, T�1
PT
t=1

PT
s=1 

b
n;jt�sj �

M < 1. Also, under the �one unit at a time� bootstrap, the uit;bs are independent

across i and E juit;buis;bj2+� � E juit;bj4+�, which is �nite (uniformly in i) according to

Lemma 1. Thus, n�1=2
Pn
i=1

�
uit;buis;b � bn;jt�sj

�
= Op (1). Let �̂ = [�1; :::; �n] and

ut;b = [u1t;b; :::; unt;b]
0. It holds that

V bnT

�
F̂t;b �H 0

1Ft;b

�
=

1

T 2

TX
s=1

F̂s;b
b
n;jt�sj +

1

nT 2

TX
s=1

nX
i=1

F̂s;b

�
u0t;bus;b � bn;jt�sj

�
(55)

+
1

nT 2

TX
s=1

F̂s;bF
0
s;b�̂

0ut;b +
1

nT 2

TX
s=1

F̂s;bu
0
s;b�̂Ft;b:

Consider A.4(i): we show it for r = 2; similar passages as in the proof of Lemma A.2(i)

yield the result in the general case. It holds that

1

T

TX
t=1

F̂t;b �H 0
1Ft;b

2 � M
1

T

TX
t=1

 1T 2
TX
s=1

F̂s;b
b
n;jt�sj


2

+M
1

T

TX
t=1

 1

nT 2

TX
s=1

nX
i=1

F̂s;b

�
u0t;bus;b � bn;jt�sj

�
2

+M
1

T

TX
t=1

 1

nT 2

TX
s=1

F̂s;bF
0
s;b�̂

0ut;b


2

+M
1

T

TX
t=1

 1

nT 2

TX
s=1

F̂s;bu
0
s;b�̂Ft;b


2

= M (I + II + III + IV ) ;

for some M < 1. Terms I and II are Op
�
T�2

�
and Op

�
n�1

�
respectively in light of

Bai (2004), since Bai�s assumptions on the summability of the bn;jt�sjs and on n
�1=2Pn

i=1

(uit;buis;b � bn;jt�sj

�
being Op (1) hold here. Turning to III, we have III � M 1

n2T
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PT
t=1

�̂0ut;b2 � 1
T 2
PT
s=1

F̂s;b2� h 1T 2 PT
s=1 kFs;bk

2
i
. Consider

�̂0ut;b2; note �̂0ut;b
=
Pn
i=1 �̂iuit;b. Conditional on the sample, the sequence

n
�̂iuit;b

on
i=1

has mean zero, and

in view of the �one unit at a time�resampling scheme, it is i.i.d. across i. Also, due to the

independence between �̂i and uit;b, E
�̂iuit;b2+� = E �̂i2+� E juit;bj2+�, which is �nite

in view of Assumption 3(i), Proposition 2 and Lemma 1. Thus, a CLT yields
�̂0ut;b =

Op (n). Hence, applying the bootstrap IP to
�
1
T 2
PT
s=1

F̂s;b2� and h 1T 2 PT
s=1 kFs;bk

2
i
,

we obtain III = 1
n2
Op (n) = Op

�
1
n

�
. Similar passages yield IV = Op

�
1
n

�
.

Consider part A.4(ii). Omitting V bnT

1

T

TX
t=1

�
F̂t;b �H 0

1Ft;b

�
F 0t;b =

1

T 3

TX
s=1

TX
t=1

F̂s;bF
0
t;b

b
n;jt�sj +

1

T 3

TX
s=1

TX
t=1

F̂s;bF
0
t;b

�
u0t;bus;b � bn;jt�sj

�
+
1

T 3

TX
s=1

TX
t=1

F̂s;bF
0
s;b

�̂0ut;bF
0
t;b

n
+
1

T 3

TX
s=1

TX
t=1

F̂s;bu
0
s;b�̂

n
Ft;bF

0
t;b

= I + II + III + IV:

As far as I and II are concerned, the same arguments as in Bai (2004) can be applied:

I and II are Op
�
T�1

�
. Consider III; neglecting F̂s;b � H 0

1Fs;b which is dominated

(after adding and subtracting), III =
�
1
T 2
PT
t=1 Ft;bF

0
t;b

� �
1
nT

Pn
i=1

PT
t=1 �̂iF

0
t;buit;b

�
.

The term 1
T 2
PT
t=1 Ft;bF

0
t;b is Op (1) in light of the bootstrap IP; also

1
nT

Pn
i=1

PT
t=1

�̂iF
0
t;buit;b =

1
nTH

�1 Pn
i=1

PT
t=1 �iF

0
t;buit;b +

1
nT

Pn
i=1

PT
t=1

�
�̂i �H�1�i

�
F 0t;buit;b. The

�rst term is Op
�
n�1=2

�
, see Bai (2004). Turning to the second term, it is bounded by�

1
n

Pn
i=1

�̂i �H�1�i

2�1=2 � 1nPn
i=1

 1T PT
t=1 F

0
t;buit;b

2�1=2 = Op
�
T�1

�
. Thus, III =

Op
�
C�1nT

�
. Finally, we turn to IV =

�
1
nT

PT
t=1 F̂t;bu

0
t;b�̂
� �

1
T 2
PT
t=1 Ft;bF

0
t;b

�
. Consider

the �rst term, the second being Op (1)

1

nT

nX
i=1

TX
t=1

F̂t;bu
0
t;b�̂ =

1

nT
H 0
1

TX
t=1

Ft;bu
0
t;b�H

�1 +
1

nT

TX
t=1

�
F̂t;b �H 0

1Ft;b

�
u0t;b�H

�1

+
1

nT

nX
i=1

TX
t=1

Ft;buit;b

�
�̂i �H�1�i

�0
+
1

nT

nX
i=1

TX
t=1

�
F̂t;b �H 0

1Ft;b

�
uit;b

�
�̂i �H�1�i

�0
:
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The �rst two terms are Op
�
n�1=2

�
and Op

�
n�1=2C�1nT

�
respectively - see Bai (2004). The

third term is bounded by
�
1
n

Pn
i=1

�̂i �H�1�i

2�1=2 � 1nPn
i=1

 1T PT
t=1 Ft;buit;b

2�1=2 as
above, and thus it is Op

�
T�1

�
. As far as the fourth one is concerned, it is bounded

by
�
1
n

Pn
i=1

�̂i �H�1�i

2�1=2 � 1nPn
i=1

 1T PT
t=1

�
F̂t;b �H 0

1Ft;b

�
uit;b

2�1=2, which can be
shown to be Op

�
T�1C�1nT

�
using similar passages as above. Putting all together, part

A.4(ii) follows. Also, part A.4(iii) follows from A.4(i) and A.4(ii).

Turning to A.4(iv), consider (55). The terms I and II have the same asymptot-

ics as in Bai (2004), since the assumptions are the same. Thus, I = Op
�
T�3=2

�
and

II = Op
�
n�1=2T�1=2

�
. As far as III is concerned, recall that �̂0ut;b = Op (

p
n); thence,

given that 1
T 2
PT
s=1 F̂s;bF

0
s;b = Op (1), III = Op

�
n�1=2

�
. Finally, consider IV ; the same

arguments as in Bai (2004) yield IV = Op
�
n�1=2T�1=2

�
. Putting all together, A.4(iv)

follows.

Lemma A.5 Consider (50). Under Assumption 6, it holds that, for some r � 2

A.5(i) T�1
PT
t=1

K̂t �H 0Kt

r = Op ���rnT �,
A.5(ii) T�1

PT
t=1

�F̂t �H 0
F�Ft

r = Op ���rnT �,
A.5(iii) T�1

PT
t=1

�
K̂t �H 0Kt

�
K 0
t = Op

�
��1nT
�
,

A.5(iv) T�1
PT
t=1

�
�F̂t �H 0

F�Ft

�
�F 0t = Op

�
T�1=2��1nT

�
,

A.5(v) T�1
PT
t=1

�
�F̂t �H 0

F�Ft

�
�F̂ 0t = Op

�
��2nT
�
,

A.5(vi) T�1
PT
t=1

�F̂tr = Op (1),
A.5(vii) T�1

PT
t=1

Ĝtr = Op (1),
A.5(viii) T�1

PT
t=1 jûit � uitj

r = Op
�
��rnT
�
,

A.5(ix) T�1
PT
t=1 jûitj

r = Op (1),

A.5(x) T�1
PT
t=1 û

2
it =

1
T

PT
t=1 u

2
it +Op

�
��1nT
�
.

Proof. Most of the passages in the proof are similar to the other proofs; thus, some

of them are omitted. Consider the following notation: let u be the T � n matrix de�ned
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as [u1; :::; un] with ui = [ui1; :::; uiT ]
0; de�ne D = diag

n
TIk;

p
TIh

o
; let � = E

�
uu0

n

�
and

� = uu0

n ��. It holds that (see Maciejowska, 2010)

K̂ �KH =

�
1

n
u�K 0 + �+�

�
~KD�2; (56)

k�k = Op

�p
T
�
; (57)

k�k = Op

�
Tp
n

�
; (58)

with, ~K = K̂V �1nT ,
 ~K 0 ~KD�2

 = Op (1) and K 0 ~KD�2
 = Op (1).

We show parts (i) and (ii) for r = 2; the proof for general r can be adapted from the

proof of Lemma A.2. Consider A.5(i). Using the Cr-inequality, T�1
K̂ �KH

2 � M�
T�1

 1nu�K 0 ~KD�2
2 +T�1 � ~KD�22 +T�1 � ~KD�22�. It holds that T�1  1nu�K 0 ~KD�2

2
� (nT )�1

 1p
n
u�
2 K 0 ~KD�2

2 = (nT )�1Op (T )Op (1) = Op
�
1
n

�
. Also, using (57),

T�1
� ~KD�22 � T�1 k�k2

 ~KD�12 D�12 = T�1 Op
�
T 2

n

�
Op (1) Op

�D�12� =
Op

�
T
n

D�12�. Finally, T�1 � ~KD�22 � T�1 k�k2
 ~KD�12 D�12 = T�1 Op (T )

Op (1)Op

�D�12�= Op �D�12�. Putting all together, T�1 K̂t �H 0Kt

2 =Op � 1n�+
Op

�
T
n

D�12�+ Op

�D�12�, whence, by de�nition of D, A.5(i). As far as A.5(ii) is
concerned, similarly to the proof of Lemma A.1, T�1

�F̂ ��FHF2 � T�1 F̂t �H 0
FFt

2
+T�1

F̂t�1 �H 0
FFt�1

2, whence the desired result.
Turning to A.5(iii), using (56) it holds that T�1K 0

�
K̂ �KH

�
= 1

nTK
0K�0u0 ~KD�2

+ 1
TK

0� ~KD�2+ 1
TK

0� ~KD�2 = I + II + III. We have I � 1
nT kK

0Kk k�0uk
 ~KD�1D�1 = 1

nT Op

�
kDk2

�
Op

�p
nT
�
Op (1) Op

�D�12� = Op

�
1p
nT

�
. Also, II =

T�1D�1K 0� ~KD�1+ T�1D�1K 0�
�
~K �KH

�
D�1 = IIa + IIb. It holds that IIa �

T�1
D�1K 0 k�k  ~KD�1; this has the same order as T�1 k�k = Op

�
1p
n

�
. Simi-

larly, IIb � T�1
D�1K 0 k�k  ~K �KH

 D�1 = T�1Op (1) Op
�
Tp
n

�
Op

�p
T��1nT

�
Op
�D�1� = Op

�q
T
n �

�1
nT

D�1�, by virtue of A.5(i), which is dominated. Thus,

II = Op

�
1p
n

�
. Finally, III = T�1D�1K 0� ~KD�1+ T�1D�1K 0�

�
~K �KH

�
D�1 =

IIIa + IIIb. It holds that IIIa � T�1
D�1K 0 k�k  ~KD�1 = T�1Op (1) Op

�p
T
�

Op (1) = Op

�
1p
T

�
. Also, IIIb � T�1

D�1K 0 k�k  ~K �KH
 D�1 = T�1Op (1)

Op

�p
T
�
Op

�p
T��1nT

�
Op
�D�1� = Op

�
��1nT

D�1�, which is dominated in light of
the de�nition of D. Putting all together, A.5(iii) follows.
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Turning to A.5(iv), we show it by considering T�1
�
�K̂ ��KH

�
�K 0 �rst. Using

(56) T�1�K 0
�
�K̂ ��KH

�
= 1

nT�K
0�u�K 0 ~KD�2 +T�1�K 0e� ~KD�2+ T�1�K 0e� ~KD�2

= I + II + III, with e� = E
�
�uu0

n

�
and e� = �uu0

n � e�. Hence, I � 1
nT k�K 0�u�kK 0 ~KD�2

 = 1
nTOp

�p
nT
�
Op (1) = Op

�
1p
nT

�
; also, II � 1

T k�Kk
e�  ~KD�1D�1 = 1

TOp

�p
T
�
Op

�p
T
�
Op (1) Op

�
kDk�1

�
= Op

�
1
kDk

�
. Finally, III � 1

T

k�Kk
e�  ~KD�1 D�1 = 1

TOp

�p
T
�
Op

�
Tp
n

�
Op (1) Op

�
kDk�1

�
= Op

�q
T
n

1
kDk

�
.

Thus, T�1
�
�K̂ ��KH

�
�K 0 = Op

�
1p
nT

�
+ Op

�
1
kDk

�
+Op

�q
T
n

1
kDk

�
; A.5(iv) follows

from noting that, when considering T�1
�
�F̂ ��FHF

�
�F 0, kDk = O (T ). Also, A.5(v)

follows from combining A.5(ii) and A.5(iv). Similarly, A.5(vi) and A.5(vii) follow from

A.5(iv) and A.5(ii) respectively, using Assumption 6.

As far as A.5(viii) is concerned, the proof is similar to Lemma A.2(iii): it holds that

T�1
PT
t=1 jûit � uitj

r �MT�1
PT
t=1

������̂i �H�1�i
�0
Kt

����r +MT�1PT
t=1

����̂0i (Kt �H 0Kt)
���r =

I+II. Further, Theorem 6 in Bai (2004) states that �̂i�H�1�i = Op
�
kDk�1

�
- i.e. �̂i is

p
T or T consistent according as it estimates the space spanned by �Gi or �

F
i . Consider I;

it holds that (omitting M) I � T�1
�̂i �H�1�i

r PT
t=1 kKtk

r;
PT
t=1 kKtk

r is Op (1) or

Op (T
r) according as Gt or Ft is considered. This yields I = Op

�
T�

1
2
r
�
. Also, omitting

M , II �
�̂ir T�1 PT

t=1 kKt �H 0Ktkr; A.5(ii) entails that II = Op
�
��rnT
�
. This proves

A.5(viii). Equations A.5(ix) and A.5(x) follow from the same passages as in the proof of

Lemma A.2(iv) and Lemma A.3.

Appendix B: proofs and derivations

Proof of Proposition 1. Consider (6). It holds that

1p
T

bTscX
t=1

264 �F̂t
uit

375 = 1p
T

bTscX
t=1

264 H 0�Ft

uit

375+ 1p
T

bTscX
t=1

264 �F̂t �H 0�Ft

0

375 = I + II:
The weak convergence to a Brownian motion of I is a standard result; a detailed proof can

be found in Phillips and Solo (1992). As far as II is concerned, T�1=2
PbTrc
t=1

�
�F̂t �H 0�Ft

�
�M

�
T�1

PbTsc
t=1

�F̂t �H 0�Ft

2�1=2; this is Op �C�1nT � in view of Lemma A.1(i), and it
holds uniformly in s. Thus, (6) holds. As far as equation (7) is concerned, T�2

PT
t=1 F̂tF̂

0
t =

38



H 0
�
T�2

PT
t=1 FtF

0
t

�
H +H 0

�
T�2

PT
t=1 Ft

�
F̂t �H 0Ft

�0�
+
h
T�2

PT
t=1

�
F̂t �H 0Ft

�
F 0t

i
H+

T�2
PT
t=1

�
F̂t �H 0Ft

� �
F̂t �H 0Ft

�0
= I+II+III+IV . Term I converges toH 0 �R W"W

0
"

�
H;

see Phillips and Solo (1992) for details. As far as II and III are concerned, using Lemma

B.4 in Bai (2004, p. 171), II = Op
�
T�1C�1nT

�
and similarly III. Lemma in B.1 Bai

(2004, p. 167) also entails that IV = Op
�
T�1C�2nT

�
. Turning to (8), T�1

PT
t=1 F̂tuit =

H 0
�
T�1

PT
t=1 Ftuit

�
+ T�1

PT
t=1

�
F̂t �H 0Ft

�
uit = I+II. Convergence of I toH 0 R W"dWu;i

is a standard result; as far as II is concerned, II �
�
T�1

PT
t=1

F̂t �H 0Ft

2�1=2 hT�1PT
t=1 u

2
it

i1=2
= Op

�
C�1nT

�
Op (1), which is negligible. This proves (8).

Consider (9). Let the martingale approximation of uit (derived from the Beveridge-

Nelson decomposition) be u�it. This is a martingale di¤erence sequence (MDS) with vari-

ance �2u;i; it holds that

1p
nT

nX
i=1

TX
t=1

uit =
1p
nT

nX
i=1

TX
t=1

u�it +
1p
nT

nX
i=1

TX
t=1

Ru;it = I + II;

where Ru;it is de�ned as u�it � uit. Standard panel asymptotic arguments (Phillips and

Moon, 1999) yield that II = Op
�p

n
T

�
. As far as I is concerned, de�ne �nt = n

�1=2Pn
i=1 u

�
it.

The process �nt has mean zero and is an MDS for every n: that n passes to in�nity is merely

incidental. Also, consider E j�ntj2+�. We have E j�ntj2+� � n�(1+�=2)
Pn
i=1 E ju�itj

2+� �

n��=2maxiE ju�itj
2+�. Thus, in view of Assumption 1, E j�ntj2+� < 1 uniformly in n.

This entails that an IP for MDS (see e.g. Theorem 4.1 in Hall and Heyde, 1980) can be

applied: T�1=2
PbTsc
t=1 �nt converges uniformly to a Brownian motion with variance

lim
(n;T )!1

E
�
�2nt
�
= lim
(n;T )!1

1

nT

nX
i=1

nX
j=1

TX
t=1

E
�
u�itu

�
jt

�
= lim
n!1

i0n� (1)�u�
0 (1) in

n
= �2u;

where the last equality holds by de�nition of �2u; Assumption 1(iii) ensures that �
2
u <1.

Finally, consider (10). We have 1p
nT

Pn
i=1

PT
t=1 F̂tuit =

1p
nT

Pn
i=1

PT
t=1H

0Ftuit +
1
T

PT
t=1

�
F̂t �H 0Ft

�
�
1p
n

Pn
i=1 uit

�
= I+II. Using the Cauchy-Schwartz inequality, II �

�
1
T

PT
t=1

F̂t �H 0Ft

2�1=2�
1
T

PT
t=1

�
1p
n

Pn
i=1 uit

�2�1=2
, which is Op

�
C�1nT

�
in view of Lemma B.1 in Bai (2004). As

far as I is concerned, let the martingale approximations to Ft (from the Beveridge-Nelson
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decomposition) be F �t . Then

1p
nT

nX
i=1

TX
t=1

Ftuit =
1

T

TX
t=1

F �t

 
1p
n

nX
i=1

u�it

!
+

1p
nT

nX
i=1

TX
t=1

Rit

=
1

T

TX
t=1

F �t �nt +
1p
nT

nX
i=1

TX
t=1

Rit = Ia + Ib;

where Rit = F �t u
�
it � Ftuit. As shown above, an IP holds for T�1=2

PbTsc
t=1 �nt and for

T�1=2F �t ; also, �nt and F
�
t are independent for all n in light of Assumption 4(i). Thus,

standard arguments in the theory of convergence to stochastic integrals (see e.g. Phillips,

1988) yield Ia
d! �u

R
W"dWu. Finally, from Phillips and Moon (1999), it can be proved

that Ib = Op
�p

n
T

�
. Putting all together, (10) follows as (n; T )!1 with n

T ! 0.

Proof of Lemma 1. For simplicity, we suppress the subscripts in qF and qu;i

whenever possible. Consider (14); recall (11) and

�F̂t =

qX
j=1

�̂q;j�F̂t�j + ê
F
t;q; (59)

�Ft =

1X
j=1

�j�Ft�j + e
F
t : (60)

Using the de�nition of
n
eFt;b

oT
t=1
,

Eb
eFt;br =

1

T

TX
t=1

"
êFt;q �

1

T

TX
t=1

êFt;q

#r

� kHkr 1
T

TX
t=1

eFt r + kHkr 1T
TX
t=1

eFt;q � eFt r + 1

T

TX
t=1

êFt;q �H 0eFt;q
r +  1T

TX
t=1

êFt;q


r

= I + II + III + IV:

Assumptions 2 and 3 entail that kHk = Op (1). Consider I; Assumption 2(i) and the Law

of Large Numbers (LLN) ensure that 1
T

PT
t=1

eFt r p! E
eFt r < 1. As far as II is

concerned, it holds that eFt;q�eFt =
P1
j=q+1 �j�Ft�j and therefore Minkowski�s inequality

and the stationarity of �Ft yield

1

T

TX
t=1

eFt;q � eFt r = 1

T

TX
t=1


1X

j=q+1

�j�Ft�j


r

� 1

T

TX
t=1

k�Ftkr
0@ 1X
j=q+1

k�jk

1Ar :
40



Assumption 1(ii) entails that
P1
j=q+1 k�jk = o (q�s); Assumption 2(i) and the LLN yield

T�1
PT
t=1 k�Ftk

r = Op (1). Thus, II = op (q
�rs). As far as III is concerned, we have

êFt;q�H 0eFt;q =
Pq
j=0H

0�q;j (H 0)�1
�
�F̂t�j �H 0�Ft�j

�
�
Pq
j=1

h
�̂q;j �H 0�q;j (H 0)�1

i
�F̂t�j ,

where �q;0 = �1. Hence

III � 1

T

TX
t=1


qX
j=0

H 0�q;j
�
H 0��1 ��F̂t�j �H 0�Ft�j

�
r

+
1

T

TX
t=1


qX
j=1

h
�̂q;j �H 0�q;j

�
H 0��1i�F̂t�j


r

= IIIa + IIIb:

Using Minkowski�s inequality, IIIa � MT�1
PT
t=1

�F̂t ��Ftr �Pq
j=0 k�q;jk

�r
, withPq

j=0 k�q;jk �
P1
j=0 k�jk = O (1). Also, T�1

PT
t=1

�F̂t �H 0�Ft

r = Op
�
C�rnT

�
ac-

cording to Lemma A.2(i). Thus, IIIa = Op
�
C�rnT

�
. As far as IIIb is concerned, IIIb �

T�1
PT
t=1

�F̂tr �Pq
j=0

�̂q;j �H 0�q;j (H 0)�1
�r. Lemma A.2 ensures T�1PT

t=1

�F̂tr =
Op (1). Also,

Pq
j=0

�̂q;j �H 0�q;j (H 0)�1
 � qmax1�j�q �̂q;j �H 0�q;j (H 0)�1

, and Lemma
2 yields

h
qmax1�j�q

�̂q;j �H 0�q;j (H 0)�1
ir = Op hqrT�r=2 (log T )r=2 +qrn�r] + op (1).

Thus, III =Op
�
C�rnT

�
+Op

�
qr'FnT

�
. Finally, consider IV ; we have êFt;q = �

Pq
j=0 �̂q;j�F̂t�j

with �̂q;0 = �1. Thus

� 1
T

TX
t=1

êFt;q =

qX
j=0

H 0�q;j
�
H 0��1 1

T

TX
t=1

�F̂t�j

!
+

qX
j=0

h
�̂q;j �H 0�q;j

�
H 0��1i 1

T

TX
t=1

�F̂t�j

!
= IVa+IVb:

Since T�1
PT
t=1�F̂t�j = T

�1H 0PT
t=1�Ft�j+T

�1PT
t=1

�
�F̂t�j �H 0�Ft�j

�
= Op

�
T�1=2

�
+

op
�
T�1=2

�
for all js

IVa � M

0@ qX
j=0

k�q;jk2
1A1=20@ qX

j=0

 1T
TX
t=1

�F̂t�j


2
1A1=2

� O (1)

24q max
1�j�q

 1T
TX
t=1

�F̂t�j


2
351=2 = Op�r q

T

�
;

also, IVb �
�Pq

j=0

�̂q;j �H 0�q;j (H 0)�1
2�1=2 �Pq

j=0

 1T PT
t=1�F̂t�j

2�1=2 � (qmax1�j�q�̂q;j �H 0�q;j (H 0)�1
2�1=2 Op �q q

T

�
, and thus it is dominated. Lemma 2 yieldsmax1�j�q k�̂q;j

� H 0�q;j (H 0)�1
2 = Op

�
'FnT

�
+ Op

�
n�3=2T�1=2

�
. Hence, IV = Op

�
qr=2T�r=2

�
. Com-
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bining all these results

Eb
eFt;br = E eFt r+Op �q�rs�+Op �C�rnT �+Op �� q

'FnT

�r�
+op (1) = E

eFt r+op (1) ;
thus Assumption 5 ensures Eb

eFt;br = E eFt r + op (1). Also
T 1�

1
2
rEb

eFt;br = Op

�
T 1�

1
2
r
�
+Op

�
T 1�

1
2
rq�rs

�
+Op

�
T 1�

1
2
rqr'FnT

�
+

Op

�
T 1�

1
2
rC�rnT

�
+Op

�
T 1�rq

1
2
r
�
+ op (1) :

Thus, T 1�
1
2
rEb

eFt;br = op (1) for r > 2.
As far as (15) is concerned, recall that uit =

Pq
j=1 

(i)
q;juit�j + e

u
it;q, and let

ûit =

qX
j=1

̂
(i)
q;j ûit�j + ê

u
it;q; (61)

uit =
1X
j=1


(i)
j uit�j + e

u
it: (62)

We have

Eb
��euit;b��r =

1

T

TX
t=1

"
êuit;q �

1

T

TX
t=1

êuit;q

#r

� 1

T

TX
t=1

jeuitj
r +

1

T

TX
t=1

��euit;q � euit��r + 1

T

TX
t=1

��êuit;q � euit;q��r +
����� 1T

TX
t=1

êuit;q

�����
r

= I + II + III + IV:

Assumption 1(i) and similar arguments as in Park (2002) yield I = Op (1) and II =

op (q
�rs). Note that

III � 1

T

TX
t=1

������
qX
j=0


(i)
q;j (ûit�j � uit�j)

������
r

+
1

T

TX
t=1

������
qX
j=1

�
̂
(i)
q;j � 

(i)
q;j

�
ûit�j

������
r

= IIIa + IIIb;

with �uq;0 = 1. It holds that IIIa � T�1
PT
t=1 jûit � uitj

r
�Pq

j=0

���(i)q;j����r, and Lemma A.2
entails IIIa = Op

�
qr��rnT

�
for all i. Also, IIIb � T�1

PT
t=1 jûitj

r
�Pq

j=0

���̂(i)q;j � (i)q;j����r.
Lemma A.2 yields T�1

PT
t=1 jûitj

r = Op (1). Also,
Pq
j=0

���̂(i)q;j � (i)q;j��� � qmax1�j�q ���̂(i)q;j � (i)q;j���,
and from Lemma 2 we have

h
qmax1�j�q

���̂(i)q;j � (i)q;j���ir = Op (qr'unT ). Finally, similar pas-
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sages as for the proof of T�1
PT
t=1 ê

F
t;q above, IV = Op

h�q
q
T

�ri
. Thus

Eb
��euit;b��r = E ���eu(i)it

���r +Op �q�rs�+Op �qr��rnT �+Op �� q

'unT

�r�
+ op (1) ;

whence, for every i, Eb
���euit;b���r = E ���eu(i)it

���r+op (1). Assumption 1(i) then entailsmaxi;tEb ���euit;b���r <
1.

Proof of Lemma 2. For the sake of simplicity, the proof is reported for k = 1, and

suppressing the subscripts in qF and qu;i whenever possible.

Consider (16). Recall (11), (59) and (60) and let

�Ft =

qX
j=1

~�q;j�Ft�j + ~e
F
t;q;

which is the �tted version of (11). It holds thatmax1�j�q
����̂q;j �H 0�j (H 0)�1

��� �max1�j�q����̂q;j �H 0~�q;j (H 0)�1
���+max1�j�q ���H 0 (~�q;j � �q;j) (H 0)�1

���+max1�j�q ���H 0 (�q;j � �j) (H 0)�1
���

= I+II+III. As far as II is concerned, Assumptions 1(ii) and 2(ii) yieldmax1�j�q j�q;j � �j j �Pq
j=1 j�q;j � �j j = o (q�s) - see e.g. Theorem 2.1 in Hannan and Kavalieris (1986). Turn-

ing to III, Theorem 2.1 in Hannan and Kavalieris (1986) yields III = Op
�p

log T=T
�
.

We now show that I = Op
�
T�1=2C�1nT

�
+Op

�
C�2nT

�
. This is based on adapting the proof

of Lemma A.1 in Chang, Park and Song (2006): it su¢ ces to show that max1�i;j�q���T�1PT
t=maxfi;jg�F̂t�i�F̂

0
t�j � T�1

PT
t=maxfi;jgH

0�Ft�i�F 0t�jH
���=Op �T�1=2C�1nT �+Op �C�2nT �.

Since

1

T

TX
t=maxfi;jg

�F̂t�i�F̂
0
t�j �

1

T

TX
t=maxfi;jg

H 0�Ft�i�F
0
t�jH

=
1

T

TX
t=maxfi;jg

�
�F̂t�i �H 0�Ft�i

�
�F 0t�jH +

1

T

TX
t=maxfi;jg

H 0�Ft�i
�
�F̂t�j �H 0�Ft�j

�0
+
1

T

TX
t=maxfi;jg

�
�F̂t�i �H 0�Ft�i

��
�F̂t�j �H 0�Ft�j

�0
= Ia + Ib + Ic:

Using Lemma A.1(ii), Ia and Ib are of magnitude Op
�
T�1=2C�1nT

�
; Lemma A.1(iii) entails

that Ic = Op
�
C�2nT

�
. Putting all together,max1�j�q

����̂q;j �H 0�j (H 0)�1
��� =Op �plog T=T�
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+Op
�
T�1=2C�1nT

�
+ Op

�
T�3=2

�
+ o (q�s).

The proof of (17) follows similar lines. Consider (12), (61) and (62), and

uit =

qX
j=1

~
(i)
q;juit�j + ~e

u
it;q;

which is the �tted version of (12). We have max1�j�q
���̂(i)q;j � j��� � max1�j�q ���̂(i)q;j � ~(i)q;j���

+max1�j�q

���~(i)q;j � (i)q;j��� +max1�j�q ���(i)q;j � (i)j ��� = I + II + III. As above, II and III

are o (q�s) and Op
�p

log T=T
�
respectively. As far as I is concerned, we show that I =

Op
�
C�1nT

�
+ Op

�
C�2nT

�
. This holds because T�1

PT
t=maxfj;kg ûit�j ûit�k � T�1

PT
t=maxfj;kg

uit�juit�k = Op
�
C�1nT

�
+Op

�
C�2nT

�
, by adapting Lemma A.3. Thus,max1�i;j�q

���T�1PT
t=maxfj;kg

ûit�j ûit�k� T�1
PT
t=maxfj;kg uit�juit�k

��� = Op
�
C�1nT

�
+ Op

�
C�2nT

�
. Putting all together,

max1�j�q

���̂(i)q;j � j��� = Op �plog T=T� + Op �C�1nT � + o (q�s).
Proof of Lemma 3. Consider (18) and note that

Pq
j=1 �̂

(i)

q;j =
P1
j=1 �ij�

P1
j=q+1 �ij+Pq

j=1

�
�̂q;j � �q;j

�
. Assumption 1(ii) and 2(ii) entail

P1
j=q+1

�j = o (q�s). Using

Lemma 2,
Pq
j=1

�
�̂q;j � �q;j

�
� qmax1�j�q

����̂q;j � �q;j��� = op (1), where the last equality
follows from Assumption 5. Thus, �̂

�1
q (1)

p! ��1 (1). Furthermore, from the boot-

strap IP in Lemma 1 it holds that T�1=2
PbTsc
t=1 eit;b

db! Wi (s). Also, following the same

lines as Park (2002, proof of Theorem 3.3, p. 486), we have, for all i and some � > 0,

P b
�
maxt

T�1=2��it;b > �� � ��rT 1�r=2Eb ��it;br. Using Minkowski�s inequality and the
fact that ��it;b is stationary by construction, E

b
��it;br � hPq

j=1 j
�̂(i)q;jir Eb �it;br.

Lemma 2 yields, for all i,
Pq
j=1 j

�̂(i)q;j = P1
j=1 j

�ij + op (1); also, from Lemma 1,

Eb
�it;br <1. Thus, for every i, T�1=2 sup1�t�T ��it;b = op (1). Therefore

1p
T

bTscX
t=1

�it;b = �̂
�1
i;q (1)

0@ 1p
T

bTscX
t=1

eit;b

1A+ op (1) db! ��1i (1)Wi (s) :

Proof of Theorem 1. The proof is similar to the proof of Lemma 3.4 in Chang,

Park and Song (2006); thus, some passages are omitted. Consider (19), and assume, for

simplicity, that F0;b = 0. Letting W
(b)
";nT (s) = T

�1=2PbTsc
t=1 �Ft;b, Lemma 3 states that, as
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(n; T )!1, W (b)
";nT (s)

d�!W" (s). Then

1

T 2

TX
t=1

Ft;bF
0
t;b =

db

Z
W
(b)
";nT (s)W

(b)
";nT (s)

0 +
1

T 2

TX
t=1

FT;bF
0
T;b;

and T�1=2FT;b = op (1), which proves (19). As far as (20) is concerned, de�ne the martin-

gale approximations to Ft;b and uit;b as F �t;b and u
�
it;b; also, let �F t;b and �uit;b be the �rst

k and the last element of ��it;b respectively. Then

1

T

TX
t=1

Ft;buit;b =
1

T

TX
t=1

F �t;bu
�
it;b +

1

T

TX
t=1

�Ft;b�uit;b �
1

T
FT;b�uiT;b

+
1

T
�F 0;b

TX
t=1

u�it;b �
1

T

TX
t=1

�F t�1;bu
�
it;b

= I + II + III + IV + V:

It holds straightforwardly that III+IV+V = Op
�
T�1=2

�
; also, II �

h
T�1

PT
t=1 k�Ft;bk

2
i1=2

h
T�1

PT
t=1 k�uit;bk

2
i1=2

=Op (1)Op
�
T�1=2

�
. Thus, T�1

PT
t=1 Ft;buit;b = T

�1PT
t=1 F

�
t;bu

�
it;b+

op (1). The convergence of T�1
PT
t=1 F

�
t;bu

�
it;b to

R
W"dWu;i follows from Lemma 3 using

the same approach as in Phillips (1988).

Proof of Proposition 2. Equation (28) follows from Proposition 1 (for �̂
OLS(1)

i;b )

or Theorem 1 (for �̂
OLS(2)

i;b ) and the CMT. The proof of (29) is reported for �̂
OLS(2)

i;b - the

case of �̂
OLS(1)

i;b follows very similar passages. Note that

T h�̂OLS(2)i;b � �̂i
i2+� =


 
1

T 2

TX
t=1

Ft;bF
0
t;b

!�1 
1

T

TX
t=1

Ft;buit;b

!
2+�

�
p
k


 
1

T 2

TX
t=1

Ft;bF
0
t;b

!�1
2+�

1


 
1

T

TX
t=1

Ft;buit;b

!
2+�

:

By symmetry,

�T�2PT
t=1 Ft;bF

0
t;b

��1
1

= `�1min

�
T�2

PT
t=1 Ft;bF

0
t;b

�
, where `min (�) de-

notes the smallest eigenvalue. Theorem 1 ensures that, for su¢ ciently large n and T ,

T�2
PT
t=1 Ft;bF

0
t;b = T�2H 0PT

t=1 FtF
0
tH + op (1); thus, in light of Assumption 2(iii) and

the invertibility of H,

�T�2PT
t=1 Ft;bF

0
t;b

��12+�
1

is bounded with probability 1. As

far as
�T�1PT

t=1 Ft;buit;b

�2+� is concerned, it holds that � 1T PT
t=1 Ft;buit;b

�2+� �
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1
T 2+�

PT
t=1 kFt;bk

2+� juit;bj2+�. Lemmas 1 and 2 (and the fact that k is �xed) ensure

that
�T�1PT

t=1 Ft;buit;b

�2+� = Op (1). Thus, T h�̂OLS(2)i;b � �̂i
i2+� = Op (1), thereby

proving (29).

Proof of Proposition 3. The proof of equation (30) is similar to the proof of

Theorem 3 in Bai (2004). We report only the main passages for the proof of �̂
PC(2)

i;b . We

have
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Consider the denominator. Using Lemma A.4, is given by T�2
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Turning to the numerator, Lemma A.4(iii) yields T�1
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I
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Equation (30) follows by applying the CMT. Turning to (31), from (63)
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35 :

As far as the denominator is concerned, the proof is similar to that of (29), in view of

(36) and of the invertibility of H1. As far as the numerator is concerned, the �rst term
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is bounded by
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which is op (1) using Lemma A.4(i) and Lemmas 1 and 2. The second term in the numer-

ator is bounded by
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is op (1) in light of Lemma A.4(ii), the invertibility of H1 and (29).

Proof of Proposition 4. Consider (34). It holds that
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and the same expression holds for F̂OLS(1)t;b � F̂t. Recall that �̂i�H�1�i = Op
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; thus,
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in P , which proves the �rst part of the Proposition. Turning to (35), the proof is similar,

in spirit, to the proofs of (29) and (31), and therefore we report only the main passages. It

holds that
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Proof of Proposition 5. The proof is very similar to the proof of Theorem 2

in Bai (2004, p. 171) and therefore only the main passages are reported. In light of

Lemma A.4(iv), under n
T 3
! 0,

p
n
h
F̂
PC(2)
t;b �H 0

1Ft;b

i
= 1p

nT 2

�
V bnT

��1PT
s=1 F̂s;bF

0
s;b�̂

0ut;b

+op (1). It holds that

1p
nT 2

�
V bnT

��1 TX
s=1

F̂s;bF
0
s;b�̂

0ut;b

=
�
V bnT

��1 1

T 2

TX
s=1

F̂s;bF
0
s;b

!
1p
n

nX
i=1

�̂iuit;b

=
�
V bnT

��1 1

T 2

TX
s=1

F̂s;bF
0
s;b

! 
1

n

nX
i=1

�̂i�̂
0
i

! 
1

n

nX
i=1

�̂i�̂
0
i

!�1
1p
n

nX
i=1

�̂iuit;b

= H 0
1

h
H�1��

�
H 0��1i�1H�1N [0;�t] + op (1) ;

which proves (36). The proof of (37) is very similar to the proof of (35), and thus it is

omitted.
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Proof of Proposition 6. Consider the case n
T ! 0. We have
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Proposition 5 entails that I = op (1); also, in view of Propositions 3 and 5, III and IV

are both op (1). The asymptotics is driven by II. The IP entails that T�1=2Ft = Op (1)
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Equation (41) follows from combining the two results. The proof of (42) follows from

combining (31) and (37).

Proof of Theorem 2. Consider (44). Similarly to the proof of (9), we may write
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where the superscript ���denotes the martingale approximation, �� (1) = [B� (1)]�1 and

Rub;it denotes the remainder in the Beveridge-Nelson decomposition. Consider I, and

de�ne �nt;b = n�1=2 i0n� (1) e
�u
t;b. The sequence �nt;b is an MDS by construction. Also,

E
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where the last inequality comes from Assumption 1(i) - note that this holds uniformly in s.
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where, as before, the superscript ���denotes the martingale approximation and Rit is the

remainder in the Beveridge-Nelson decomposition. Consider I. Theorem 1 and (44) ensure

that an IP for MDS holds for T�1=2F �t;b andT
�1=2PbTsc

t=1 �nt;b respectively. Also, F
�
t;b and

�nt;b are independent by construction and for each n. Thus, the theory of convergence to
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where the last inequality comes from Assumption 1(i). Again, this is op (1) if supj
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��� = op (1). Finally, as far as III is concerned, similar passages as in the proof of
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Proof of Theorem 3. Consider equation (48); note that
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Let k = 1 for simplicity; in this case, H is a scalar, but we employ the matrix nota-

tion for consistency. By de�nition ûqt = uqt+
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sidering the numerator of (64), recall
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ûtû
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0
qt
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8<: 1T
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� h
F̂q;t � (H 
 Iq)Fq;t

i09=;
 � �H 0H
��1

�0

+

0@ 1
T
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0
q;t

1A
 h�̂� � �H 0��1i h�̂� � �H 0��1i0

+

24 1
T

TX
t=q+1

�
F̂t �H 0Ft

�
F̂ 0q;t

35
 � �H 0��1 h�̂� � �H 0��1i0

+

24 1
T

TX
t=q+1

�
F̂t �H 0Ft

�
u0qt

35
 � �H 0��1
+

0@ 1
T

TX
t=q+1

F̂tu
0
qt

1A
 h�̂� � �H 0��1i+ C +D
= I + II + III + IV + V + C +D;

with C and D being the transposes of IV and V . Similar results as for the denominator

hold. We have kIk1 = Op
�
nC�2nT

�
, kIIk1 = Op

�
nqT�1

�
, kIIIk1 = Op

�
nqT�1C�1nT

�
,

kIV k1 = Op
�
nqC�1nT

�
and kV k1 = Op

�
nqT�1

�
. Putting all together, it holds that\Bq (1)�B (1)

1
= o (q�s) + qOp

�
nqC�1nT

�
+ qOp

�q
log T
T

�
.

Consider now (49), and let Bq � Bdq + B
od
q , where B

d
q =

�
Bdq;1j:::jBdq;q

�
with Bdq;j =

diag
n

(i)
q;j

o
and Bodq =

�
Bodq;1j:::jBodq;q

�
de�ned so that Bodq;j contains the o¤-diagonal el-

ements of Bq;j . As before, B̂q (1) � B (1) =
�fBq �Bq� (iq 
 In) +P1

j=q+1Bj . SincefBq � Bq = fBq � Bdq � Bodq , fBq �Bq
1
�
fBq �Bdq

1
+
Bodq 1. By construction,Bodq 1 = supjPi6=j j� ij j = Op

�
n��

�
where the last equality holds by assumption. Also,fBq �Bdq

1
= supi;j

���̂(i)q;j � (i)q;j��� = Op ('
u
nT ) in light of Lemma 2. Thus, putting every-

thing together
�fBq �Bq� (iq 
 In)

1
� q

fBq �Bq
1
� qOp ('

u
nT ) + qOp

�
n��

�
; this

proves (49).

Proof of Proposition 7. The proof follows the same passages as in the proofs of

Lemmas 1 and 2, based on the results in Lemma A.5.

53


