Coherent mortality forecasting for less developed countries

Pintao Lyu

Department of Econometrics & Operations Research and Netspar, Tilburg University p.lyu@uvt.nl

Joint work with Hong Li and Yang Lu Sponsored by the Society of Actuaries

> Longevity 14 Sept 20, 2018

Motivation

- Less developed countries (LD) have the majority of global population:
 - ▶ 6.13 billion in 2015, about **5 times** the population in the more developed (MD) world (1.25 billion).
- Drastic increase in life expectancy in LD over the past decades.
 According to World Population Perspective 2017 (United Nations)
 - **27.4 years** (41.7 to 69.1) for LD; **13.6 years** (64.8 to 78.4) for MD.
- WPP 2017 predicts that faster increase in life expectancy of LD will continue in the future.
- Credible and detailed mortality projections are needed.

Existing studies for mortality projections of LDs

- Extensive literature on the forecasting of life expectancy at birth for the LD countries. [Lin et al., 2012, Lutz et al., 2008]
- Little attention has been paid to the forecasting of age-specific mortality rates.
- The latter is rather important:
 - more detailed mortality information;
 - necessary inputs to estimate population structure, dependency ratio, life expectancy at 65, etc.

Modeling of age-specific mortality rates

• The Lee-Carter model [Lee and Carter, 1992]

$$\log m_{x,t} = a_x + b_x k_t + \varepsilon_{x,t}$$

- ▶ $\log m_{x,t}$ \log of death rate at age x and year t;
- ▶ a_x mortality level;
- ▶ k_t aggregate mortality trend;
- \blacktriangleright b_x loadings to the aggregate trend, i.e., the age effects.

Lee-Carter model

- Two crucial assumptions
 - 1 linear aggregate mortality trend $k_t = d + k_{t-1} + \epsilon_t$
 - 2 time-invariant age effects (b_x)
- Compatible with post-war data for MDs. [Tuljapurkar et al., 2000, Lee and Miller, 2001]
- But questionable for the LD.

Age-specific mortality rates, 1960 and 2015

Age-specific mortality rates, 1960 and 2015

- Compared to the US, LD countries have
 - Faster aggregate mortality declines;
 - Imbalanced age-specific improvements, faster for the young, slower for the old
- Lee-Carter model will extrapolate these patterns into the future.

The historical pattern of LDs will not persist

- Largely driven by modernization and better prevention of infectious diseases in the past decades [Austin and McKinney, 2012, Jeuland et al., 2013]
 - very fast improvements;
 - benefit mostly the younger ages;
- As the chronic diseases might be more prominent in the future, they are likely to become closer to the more developed countries
 - slower aggregate improvements;
 - more focused on old ages.

Existing solutions in the literature

• The Li-Lee model [Li and Lee, 2005]

$$\log m_{i,x,t} = a_{i,x} + B_x K_t + b_{i,x} k_{i,t} + \varepsilon_{i,x,t}, \qquad \forall i, x, t$$
 (1)

$$K_t = \frac{d_0}{d_0} + K_{t-1} + v_t, \tag{2}$$

$$k_{i,t} = \alpha_{0,i} + \alpha_{1,i} k_{i,t-1} + \epsilon_{i,t}.$$
 (3)

- The Li-Lee model
 - estimate B_x and K_t using a group of MD countries;
 - ▶ impose \hat{B}_x and \hat{K}_t on the LD country to produce coherent forecasts.
- Potential limitations:
 - historical mortality patterns of the LD country play no role in projecting its own mortality;
 - artificial structural break in the beginning of projection;

This paper

- We propose rotation method to produce coherent mortality forecasts for the LD countries. The main idea is :
 - Start from their historical mortality pattern in the short term, gradually rotate to the mortality patterns of MD in the long term, inspired by [Li et al., 2013];
 - In the rotation for LD, mortality pattern of MDs gains larger weights in projections, as the LD become more similar as MDs, i.e., life expectancy gap narrows down to a long-term value.
 - **3** Coherent projections in the long-run
- Our approach avoids the limitations of Li-Lee model.

Our approach: extended Lee-Carter model for LD

log
$$m_{x,s} = a_x + b_{x,s}k_s + \varepsilon_{x,s}$$

 $k_{s+1} = d_s + k_s + v_s, s \in \{T + 1, ...\}$

- Time-varying age effects $b_{x,s}$
- Time-varying aggregate mortality trend d_s .

Our approach: rotations for $b_{x,s}$ and d_s

For $\forall x$

$$d_{s+1} = \begin{cases} (1 - w_s(g_s))\hat{d}^{LC} + w_s(g_s)\hat{d}_0^{LL}, & \text{if } g_s > g_0, \\ \hat{d}_0^{LL}, & \text{if } g_s \le g_0, \end{cases}$$
(4)

$$b_{x,s+1} = \begin{cases} (1 - w_s(g_s)) \hat{b}_x^{LC} + w_s(g_s) \hat{B}_x^{LL}, & \text{if } g_s > g_0, \\ \hat{B}_x^{LL}, & \text{if } g_s \le g_0, \end{cases}$$
(5)

- d_{s+1} is the time-varying weighted average of the aggregate mortality trend of LD (\hat{d}^{LC}) and the one of MDs (\hat{d}_0^{LL}) . LD's d_{s+1} starts from historical \hat{d}^{LC} and gradually rotates to MDs' benchmark \hat{d}_0^{LL} . Similar logic applies to the time-varying age effect $b_{x,s}$.
- The weights depend on life expectancy gap between LD and MDs g_s

Our approach: weighting parameters

$$w_{s} = \frac{1}{2} \left(1 + \sin \left[\frac{\pi}{2} (2w_{0,s} - 1) \right] \right), \tag{6}$$
where
$$w_{0,s} = \frac{g_{T} - g_{s}}{g_{T} - g_{0}}. \tag{7}$$

- The weight of MDs' mortality pattern (\hat{B}_x^{LL}) and \hat{d}_0^{LL} goes smoothly from 0 to 1, as the life expectancy gap decreases.
- The weight become 1 and LD's mortality projections are fully based on the MDs' mortality pattern (\hat{B}_{x}^{LL} and \hat{d}_{0}^{LL}), when the life expectancy gap narrows down to a long-term value g_{0} , i.e., LD become similar enough as MDs.

Our approach: determining g_0

Our approach: determining g_0

Optimal logistic function for general transition

$$\begin{split} g_t &= k_1 + \frac{k_2 - k_1}{1 + \exp(-\frac{A_1}{b_2}(e_{0,t} - b_1 - A_2b_2))} \\ &+ \frac{g_0 - k_2}{1 + \exp(-\frac{A_1}{b_4}(e_{0,t} - \sum_{i=1}^3 b_i - A_2b_4))} + \epsilon_t, double \ or \\ g_t &= k + \frac{g_0 - k}{1 + \exp(-\frac{A_1}{b_2}(e_{0,t} - b_1 - A_2b_2))} + \epsilon_t, single \end{split}$$

Empirical Study

- Case study for China, Brazil, and Nigeria the most populous country in Asia, South America, and Africa.
- Mortality data
 - ► Age: 0-4, 5-9, ..., 95-99; Year: 1960 2015.
 - ▶ 3 LD countries merge of two data sources: The United Nations and the World Health Organization .
 - ▶ 10 MD countries as benchmark: Germany, Denmark, Finland, France, The Netherlands, Switzerland, Sweden, UK, US, and Japan. Data from the Human Mortality Database.

China: Mortality pattern

China: Projected age-specific log *m* in 2065

China: Remaining life expectancy at 65

China: Remaining life expectancy at 65

China: g_0

- AIC and BIC both suggest that single logistic function is optimal for China.
- g₀ for China is 3.9.
- Coherence achieved in 2022.

Brazil: Mortality pattern

Brazil: Projected age-specific log m and e_{65} in 2065

Brazil: g_0

- AIC and BIC both suggest that double logistic function is optimal for Brazil.
- g_0 for Brazil is 5.6
- Coherence achieved in 2029.

Nigeria: Mortality pattern

Nigeria: Projected age-specific $\log m$ and e_{65} in 2065

Nigeria: g_0

- AIC and BIC both suggest that double logistic function is optimal for Nigeria.
- g_0 for Nigeria is 3.9.
- Coherence achieved in 2100.

Conclusion

- This paper proposes an innovative method to generate coherent mortality forecasts for less developed countries.
- Mortality patterns of a less developed country
 - follow its own history in the beginning of projection;
 - gradually rotate to the patterns of a set of more developed countries;
 - achieved coherence in the long-run.
- More reasonable projections are obtained compared with the independent Lee-Carter model.

Reference

- Ke. F Austin and L. A. McKinney. Disease, war, hunger, and deprivation: A cross-national investigation of the determinants of life expectancy in less-developed and sub-saharan african nations. *Sociological Perspectives*, 55(3):421–447, 2012.
- M. A. Jeuland, D. E. Fuente, S. Ozdemir, M. C. Allaire, and D. Whittington. The long-term dynamics of mortality benefits from improved water and sanitation in less developed countries. *PloS one*, 8 (10):e74804, 2013.
- R. Lee and T. Miller. Evaluating the performance of the lee-carter method for forecasting mortality. *Demography*, 38(4):537–549, 2001.
- R. D. Lee and L. R. Carter. Modeling and forecasting US mortality. *Journal of the American Statistical Association*, 87(419):659–671, 1992.
- N. Li and R.D. Lee. Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. *Demography*, 42 (3):575–594, 2005.

- N. Li, R. Lee, and P. Gerland. Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. *Demography*, 50(6):2037–2051, 2013.
- R. Lin, Y. Chen, L. Chien, and C. Chan. Political and social determinants of life expectancy in less developed countries: a longitudinal study. *BMC Public Health*, 12(1):85, 2012.
- W. Lutz, W. Sanderson, and S. Scherbov. The coming acceleration of global population ageing. *Nature*, 451(7179):716, 2008.
- S. Tuljapurkar, N. Li, and Carl Boe. A universal pattern of mortality decline in the G7 countries. *Nature*, 405(6788):789, 2000.