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Motivation

I European Court of Justice, 2011

Different insurance premiums according to gender are
prohibited (Gender directive 2004/113EC).

I But: Life insurance risk differs by gender (statistically significant).
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Motivation, research question, introduction

Consistent mortality models

Numerical examples
Consistency: Lee-Carter mortality model
Reserves: (un)observed heterogeneity
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Research question

Given: Two groups with differing mortality risk
and mortality model for each group.

I male/female

I smoker/non-smoker

How to create unisex mortality models / unisex mortality tables that
are consistent with a given male/female mortality model?

I male/female model for risk management.

I unisex model for premium calculation.
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Portfolio at time t = 0
female/male portfolio (n = 20) unisex portfolio (n = 20)
age y , survival probability T py age z, survival probability T pz =?

Ny
0 = Nx

0 = 10 Nz
0 = n = 20

age x , survival probability T px
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Portfolio at time t = T
female/male portfolio (n = 20) unisex portfolio (n = 20)
age y + T age z + T

Ny
T = 8, Nx

T = 9 Nz
T = 17

age x + T
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Consistency: Example

Consider an annuity portfolio of Ny
0 females and Nx

0 males. Mortality risk is
specified by two Lee-Carter models with parameters (Ay

t ,B
y
t , θy , cy ) and

(Ax
t ,Bx

t , θx , cx). This implies a time-T -survival probability

T py := P(“female survives T ”) and T px := P(“male survives T ”)

For a unisex portfolio, this leads to the survival probability:

T pz :=
Ny

0
Nx

0 +Ny
0
· P(“female survives T ”) + Nx

0
Nx

0 +Ny
0
· P(“male survives T ”)

What is the consistency error if we use a unisex Lee-Carter model with
parameters (Az

t ,Bz
t , θz , cz)?

What happens if the group composition (Ny
0 ,N

x
0 ) is not observable?
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Consistency: Deterministic mortality tables

In this talk, 2 consistent unisex mortality models are introduced.

female/male portfolio unisex portfolio

Consistency criterion 1 (unobservable)

(C1) survival probability ξ̂0·tpx +(1− ξ̂0)·tpy = tpz , for all t ∈ [0,T ].

(ξ̂0: initial guess of share of group x).

Consistency criterion 2 (observable)

(C1∗) portfolio members Nx
t +Ny

t = Nz
t , for all t ∈ [0,T ].
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Demography in Germany

M1
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Motivation, research question, introduction

Consistent mortality models

Numerical examples
Consistency: Lee-Carter mortality model
Reserves: (un)observed heterogeneity
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Survival curve {tpy}t∈[0,T ], {tpx}t∈[0,T ]
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female survival probability 60−year old
life expectancy female
male survival probability 60−year old
life expectancy male

DAV 2004R, annuity table (includes risk margins).
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Survival curve
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female survival probability 60−year old
life expectancy female
male survival probability 60−year old
life expectancy male
unisex survival probability 60−year old
life expectancy unisex

DAV 2004R, annuity table (includes risk margins).
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Unisex survival curve {tpz}t∈[0,T ]
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unisex survival probability 60−year old
life expectancy unisex

For an initial share of males ξ0, choose:

tpz = ξ0 · tpx + (1− ξ0) · tpy .
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Stochastic mortality rates
a
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female mortality intensity

Plots {λx
t }t∈[0,20] (male) and {λy

t }t∈[0,20] (female).
Survival curves tpx := e−

∫ t
0 λ

x
s ds, tpy := e−

∫ t
0 λ

y
s ds.
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Assumption (Mortality model)
For i ∈ {x , y , z}, we assume that

I Given the survival curve {tpi}t∈[0,T ], individual deaths are
independent. Choose tpi := e−

∫ t
0 λ

i
sds. Number of survivors at ti e

t > 0 is binomially distributed:

N i
t ∼ Bin

(
N i

0, tpi
)
.

I Randomness in the survival curve {tpi}t∈[0,T ] (systematic mortality
risk) is conditionally independent of the binomial distribution
(unsystematic mortality risk).

I The intensity {λi
t}t≥0 is continuous.
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Definition (Unisex mortality model (unobservable))

For initial share of males ξ̂0, define

λz
t :=

ξ̂0 · e−
∫ t

0 λ
x
s ds

ξ̂0 · e−
∫ t

0 λ
x
s ds + (1− ξ̂0) · e−

∫ t
0 λ

y
s ds︸ ︷︷ ︸

time-t share of males

·λx
t

+
(1− ξ̂0) · e−

∫ t
0 λ

y
s ds

ξ̂0 · e−
∫ t

0 λ
x
s ds + (1− ξ̂0) · e−

∫ t
0 λ

y
s ds︸ ︷︷ ︸

time-t share of females

·λy
t .

We obtain: Nz
T ∼ Bin

(
n, ξ̂0 · tpx + (1− ξ̂0) · tpy

)
.

How to obtain λz : Solve tpz = ξ̂0 · tpx + (1− ξ̂0) · tpy for λz
t .
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Definition (Unisex mortality model (observable))

For initial share of males ξ̂0, define

µz
t :=

Nx
t

Nx
t + Ny

t︸ ︷︷ ︸
time-t share of males

·λx
t +

Ny
t

Nx
t + Ny

t︸ ︷︷ ︸
time-t share of females

·λy
t . (1)

We obtain: Nz∗
T = Nx

t + Ny
t , where Nx

t ∼ Bin
(
ξ0n, tpx

)
and

Nz
t ∼ Bin

(
(1− ξ0)n, tpy

)
.

(µz
t is still the “instantaneous” death probability, but does not define a

mortality model).
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I For the observable case, it is necessary, to observe deaths
immediately (no reporting delays etc.) and to observe the group
membership.

I For the unobservable case, we do not observe the group
membership or deaths immediately.
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Implications for risk management M2

Unisex portfolio: Nz
T ∼ Bin

(
Nz

0 , T pz
)
, where

tpz = ξ0 · tpx + (1− ξ0) · tpy .

Female/male portfolio: Ny
T ∼ Bin

(
Ny

0 , T py
)
, Nx

T ∼ Bin
(
Nx

0 , T px
)
.

Lemma (Prudence of the unisex mortality model (C1))

E[Nz
T ] = E[Nx

T + Ny
T ] , (2)

Var(Nz
T ) ≥ Var(Nx

T + Ny
T ) . (3)

Proof: special cases: e.g. Feller [1950].

,
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Motivation, research question, introduction

Consistent mortality models

Numerical examples
Consistency: Lee-Carter mortality model
Reserves: (un)observed heterogeneity
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Consistency: Lee-Carter mortality model
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Parameters: Belgian Actuarial Society, IA|BE (available online).
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Reserves: (un)observed heterogeneity

Consider a portfolio of n pure endowment insurance contracts with
survival benefit S =e1 at maturity T = 10. Risk-free rate r = 0%.
10% of the portfolio is disabled with life expectancy:

T pdisabled
z = 60% · T pz .

We choose the standard deviation principle and define the per-contract
actuarial reserve (in % of the contract’s nominal e1) as

R j :=
1
n
· α

2

√
Var

(
Nz

T−
)
. (4)
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Reserves: (un)observed heterogeneity
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 n = 10, unobserved group membership
 n = 10, observed group membership
 n = 100, unobserved group membership
 n = 100, observed group membership
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Reserves annuity portfolio with 10% disabled persons. M2
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Conclusion

How to create unisex mortality models / unisex mortality tables that are
consistent with a given male/female mortality model?

M1 Change/stochasticity in male/female mortality rates affects also
male/female share in the annuity portfolio (also stochastic!).

M2 Observed heterogeneity reduces mortality risks (e.g. the portfolio’s
variance), compare two consistency criteria.

Further interesting aspects: adverse selection, effect of portfolio size n.
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