

Consistently modeling unisex mortality rates

Dr. Peter Hieber, Longevity 14, 20.09.2018 University of Ulm, Germany

Motivation

European Court of Justice, 2011

Different insurance premiums according to gender are prohibited (Gender directive 2004/113EC).

But: Life insurance risk differs by gender (statistically significant).

Motivation, research question, introduction

Consistent mortality models

Numerical examples

Consistency: Lee-Carter mortality model Reserves: (un)observed heterogeneity

Research question

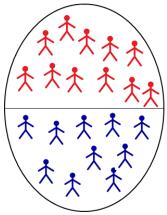
Given: <u>*Two*</u> groups with <u>differing mortality risk</u> and mortality model for each group.

How to create **unisex mortality models** / unisex mortality tables that are **consistent** with a given male/female mortality model?

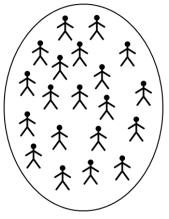
- male/female model for risk management.
- unisex model for premium calculation.

Portfolio at time t = 0

female/male portfolio (n = 20) age y, survival probability $_T \rho_y$



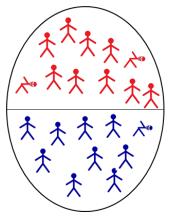
 $N_0^y = N_0^x = 10$ age *x*, survival probability $_T \rho_x$ unisex portfolio (n = 20) age z, survival probability $_T p_z = ?$



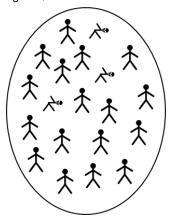
 $N_0^z = n = 20$

Portfolio at time t = T

female/male portfolio (n = 20) age y + T



 $N_T^y = 8, N_T^x = 9$ age x + T unisex portfolio (n = 20) age z + T



 $N_{T}^{z} = 17$

Consistency: Example

Consider an annuity portfolio of N_0^{y} females and N_0^{x} males. Mortality risk is specified by two **Lee-Carter models** with parameters $(A_t^{y}, B_t^{y}, \theta_y, c_y)$ and $(A_t^{x}, B_t^{x}, \theta_x, c_x)$. This implies a time-*T*-survival probability

 $_{T}p_{y} := \mathbb{P}(\text{"female survives } T") \text{ and } _{T}p_{x} := \mathbb{P}(\text{"male survives } T")$

For a unisex portfolio, this leads to the survival probability:

 $_{T}p_{z} := \frac{N_{0}^{v}}{N_{0}^{x} + N_{0}^{y}} \cdot \mathbb{P}(\text{``female survives } T'') + \frac{N_{0}^{x}}{N_{0}^{x} + N_{0}^{y}} \cdot \mathbb{P}(\text{``male survives } T'')$

What is the **consistency error** if we use a unisex **Lee-Carter model** with parameters $(A_t^z, B_t^z, \theta_z, c_z)$?

What happens if the group composition (N_0^y, N_0^x) is **not** observable?

Consistency: Deterministic mortality tables

In this talk, 2 consistent unisex mortality models are introduced.

female/male portfolio

unisex portfolio

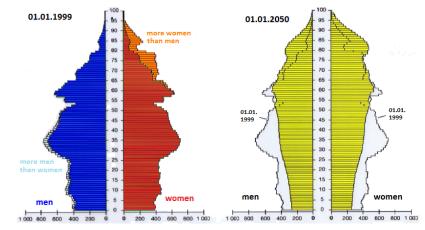
Consistency criterion 1 (unobservable) (C1) survival probability $\hat{\xi}_0 \cdot t p_x + (1 - \hat{\xi}_0) \cdot t p_y = t p_z$, for all $t \in [0, T]$.

 $(\hat{\xi}_0$: initial guess of share of group *x*).

Consistency criterion 2 (observable)

(C1^{*}) portfolio members $N_t^x + N_t^y$ = N_t^z , for all $t \in [0, T]$.

Demography in Germany



M1

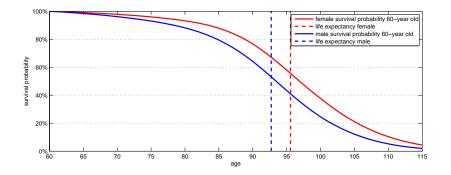
Motivation, research question, introduction

Consistent mortality models

Numerical examples

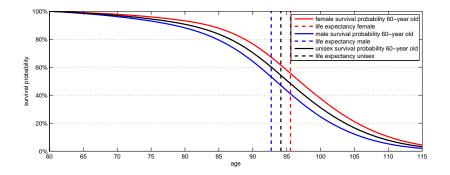
Consistency: Lee-Carter mortality model Reserves: (un)observed heterogeneity

Survival curve $\{{}_t p_y\}_{t \in [0,T]}, \{{}_t p_x\}_{t \in [0,T]}$



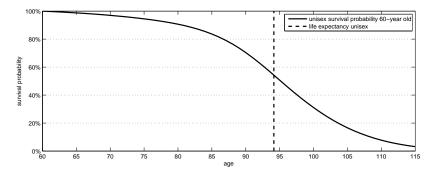
DAV 2004R, annuity table (includes risk margins).

Survival curve



DAV 2004R, annuity table (includes risk margins).

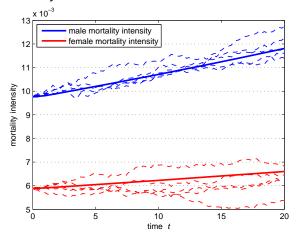
Unisex survival curve $\{{}_tp_z\}_{t\in[0,T]}$



For an initial share of males ξ_0 , choose:

$${}_t\boldsymbol{p}_z = \xi_0 \cdot {}_t\boldsymbol{p}_x + (1 - \xi_0) \cdot {}_t\boldsymbol{p}_y.$$

Stochastic mortality rates



Plots $\{\lambda_t^x\}_{t\in[0,20]}$ (male) and $\{\lambda_t^y\}_{t\in[0,20]}$ (female). Survival curves $_tp_x := e^{-\int_0^t \lambda_s^x ds}, _tp_y := e^{-\int_0^t \lambda_s^y ds}.$

Assumption (Mortality model)

For $i \in \{x, y, z\}$, we assume that

Given the survival curve {tpi}t∈[0,T], individual deaths are independent. Choose tpi := e^{-∫₀^t λ_s^{ids}. Number of survivors at ti e t > 0 is binomially distributed:}

$$N_t^i \sim \operatorname{Bin}\left(N_0^i, tp_i\right).$$

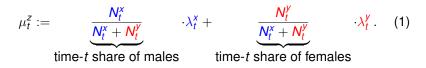
- Randomness in the survival curve {tpi}te[0,T] (systematic mortality risk) is conditionally independent of the binomial distribution (unsystematic mortality risk).
- The intensity $\{\lambda_t^i\}_{t\geq 0}$ is continuous.

Definition (Unisex mortality model (unobservable)) For initial share of males $\hat{\xi}_0$, define

$$\begin{split} \lambda_t^z &:= \underbrace{\frac{\hat{\xi}_0 \cdot e^{-\int_0^t \lambda_s^x \mathrm{d}s}}{\hat{\xi}_0 \cdot e^{-\int_0^t \lambda_s^x \mathrm{d}s} + (1 - \hat{\xi}_0) \cdot e^{-\int_0^t \lambda_s^y \mathrm{d}s}}_{\text{time-}t \text{ share of males}} \cdot \lambda_t^x \\ &+ \underbrace{\frac{(1 - \hat{\xi}_0) \cdot e^{-\int_0^t \lambda_s^y \mathrm{d}s}}{\hat{\xi}_0 \cdot e^{-\int_0^t \lambda_s^y \mathrm{d}s} + (1 - \hat{\xi}_0) \cdot e^{-\int_0^t \lambda_s^y \mathrm{d}s}}_{\text{time-}t \text{ share of females}} \cdot \lambda_t^y \,. \end{split}$$
We obtain: $N_T^z \sim \text{Bin} \left(n, \hat{\xi}_0 \cdot t \rho_x + (1 - \hat{\xi}_0) \cdot t \rho_y\right).$

How to obtain λ^z : Solve $_t p_z = \hat{\xi}_0 \cdot _t p_x + (1 - \hat{\xi}_0) \cdot _t p_y$ for λ_t^z .

Definition (Unisex mortality model (observable)) For initial share of males $\hat{\xi}_0$, define



We obtain: $N_T^{z*} = N_t^x + N_t^y$, where $N_t^x \sim \text{Bin}(\xi_0 n, tp_x)$ and $N_t^z \sim \text{Bin}((1 - \xi_0)n, tp_y)$.

(μ_t^z is still the "instantaneous" death probability, but does not define a mortality model).

For the observable case, it is necessary, to observe deaths immediately (no reporting delays etc.) and to <u>observe</u> the group membership.

For the unobservable case, we do <u>not observe</u> the group membership or deaths immediately.

Implications for risk management

Unisex portfolio:
$$N_T^z \sim \text{Bin} (N_0^z, \tau p_z)$$
, where
 $tp_z = \xi_0 \cdot tp_x + (1 - \xi_0) \cdot tp_y$.

Female/male portfolio: $N_T^y \sim \text{Bin} (N_0^y, _T p_y), N_T^x \sim \text{Bin} (N_0^x, _T p_x).$

Lemma (Prudence of the unisex mortality model (C1))

$$\mathbb{E}[N_T^z] = \mathbb{E}[N_T^x + N_T^y], \qquad (2)$$

$$\operatorname{Var}(N_T^z) \ge \operatorname{Var}(N_T^x + N_T^y). \tag{3}$$

Proof: special cases: e.g. Feller [1950].

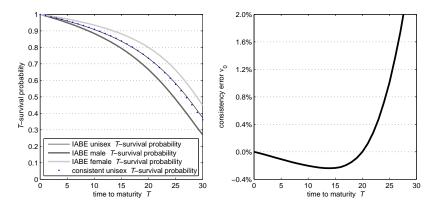
Motivation, research question, introduction

Consistent mortality models

Numerical examples

Consistency: Lee-Carter mortality model Reserves: (un)observed heterogeneity

Consistency: Lee-Carter mortality model



Parameters: Belgian Actuarial Society, IA|BE (available online).

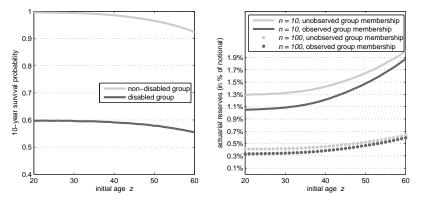
Reserves: (un)observed heterogeneity

Consider a portfolio of *n* pure endowment insurance contracts with **survival benefit** $S = \in 1$ at maturity T = 10. Risk-free rate r = 0%. 10% of the portfolio is disabled with life expectancy:

$$_T p_z^{\text{disabled}} = 60\% \cdot _T p_z$$
 .

We choose the standard deviation principle and define the **per-contract** actuarial reserve (in % of the contract's nominal \in 1) as

$$R^{i} := \frac{1}{n} \cdot \frac{\alpha}{2} \sqrt{\operatorname{Var}\left(N_{T-}^{z}\right)} \,. \tag{4}$$



Reserves annuity portfolio with 10% disabled persons.

Conclusion

How to create **unisex mortality models** / unisex mortality tables that are **consistent** with a given male/female mortality model?

- M1 Change/stochasticity in male/female mortality rates affects <u>also</u> <u>male/female share</u> in the annuity portfolio (also stochastic!).
- M2 <u>Observed</u> heterogeneity reduces mortality risks (e.g. the portfolio's variance), compare two consistency criteria.

Further interesting aspects: adverse selection, effect of portfolio size n.

Literature

- T. R. Bielecki and M. Rutkowski. Credit risk: modeling, valuation and hedging. Springer, 2004.
- E. Biffis. Affine processes for dynamic mortality and actuarial valuations. *Insurance: Mathematics & Economics*, Vol. 37:pp. 443–468, 2005.
- E. Biffis, M. Denuit, and P. Devolder. Stochastic mortality under measure changes. Scandinavian Actuarial Journal, Vol. 4:pp. 284–311, 2010.
- A. Chen and E. Vigna. A unisex stochastic mortality model to comply with EU gender directive. *Insurance: Mathematics & Economics*, Vol. 73:pp. 124–136, 2017.
- M. Dahl. Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts. Insurance: Mathematics & Economics, Vol. 35, No. 1:pp. 113–136, 2004.
- M. Dahl and T. Møller. Valuation and heding of life insurance liabilities wih systematic mortality risk. *Insurance: Mathematics & Economics*, Vol. 39:pp. 193–217, 2006.
- P. Hieber. Modeling unisex mortality rates: A discussion of consistency, (un)observed heterogeneity and adverse selection. Working Paper, 2018.