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Introduction. Quoting Jesper Andreasen from ”Risk 25: No more
heroes in quantitative finance?”, Risk Magazine, August 2012:
”Quants have hundreds of models and, even in one given asset class,
a quant will have 10 models that can fit the smile. The question
is, which is the right delta? That’s still an open question, even
restricting it to vanilla business. It’s one reason why there’s so
little activity in the interest rate options markets.”

Quoting Jim Gatheral from the same article: ”With less trading in
exotics and vanillas moving to exchanges, we need to focus on
generating realistic price dynamics for underlyings.”

I present a stochastic volatility model that:
1) can be made consistent with different volatility regimes (thus,
potentially computing a correct delta)
2) is consistent with observed dynamics of the spot and its volatility
3) has very intuitive model parameters

The model is based on joint article with Piotr Karasinski:
Karasinski P and Sepp A, Beta Stochastic Volatility Model, Risk
Magazine, pp. 66-71, October 2012
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Plan of the presentation

1) Discuss existing volatility models and their limitations

2) Discuss volatility regimes observed in the market

3) Introduce beta stochastic volatility (SV) model

4) Emphasize intuitive and robust calibration of the beta SV model

5) Case study I: application of the beta SV model to model the
correlation skew

6) Case study II: application of the beta SV model to model the
conditional forward skew
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Motivation I. Applications of volatility models
1) Interpolators for implied volatility surface
⊗ Represent functional forms for implied volatility at different strikes
and maturities
⊗ Assume no dynamics for the underlying (”apart from the SABR
model”)
⊗ Applied for marking vanilla options and serve as inputs for calibration
of dynamic volatility models (local vol, stochastic vol)

2) Hedge computation for vanilla options
⊗ Apply deterministic rules for changes in model parameters given change
in the spot
⊗ The most important is the volatility backbone - the change in the
ATM volatility (and its term structure) given change in the spot price
⊗ Applied for computation of hedges for vanilla and exotic books

3) Dynamics models (local vol, stochastic vol, local stochastic vol)
⊗ Compute the present value and hedges of exotic options given in-
puts from 1) and 2)
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Motivation II. Missing points
1) Interpolators
⊗ Do not assume any specific dynamics
⊗ Provide a tool to compute the market observables from given snap-
shot of market data: at-the-money (ATM) volatility, skew, convexity,
and term structures of these quantities

2) Vanilla hedge computation
⊗ Assume specific functional rules for changes in market observables
given changes in market data

3) Dynamic models (local vol, Heston) for pricing exotic options
⊗ No explicit connection to market observables and their dynamics
⊗ Apply ”blind” non-linear and non-intuitive fitting methods for cal-
ibration of model parameters (correlation, vol-of-vol, etc)

We need a dynamic volatility model that could
connect all three tools in a robust and intuitive way!
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Motivation III. Beta stochastic volatility model
Propose the beta stochastic volatility model that:

1) In its simplified form, the model can be used as an interpolator
⊗ Takes market observables (ATM volatility and skew) for model cal-
ibration with model parameters easily interpreted in terms of market
observable - volatility skew (with a good approximation)

2) The model is consistent with vanilla hedge computations -
it has a model parameter to replicate the volatility backbone (with a
good approximation)
⊗ The model assumes the dynamics of the ATM volatility specified
by the volatility backbone

3) The model provides robust dynamics for exotic options:
⊗ It produces steep forward skews, mean-reversion
⊗ The model has a mean-reversion and volatility of volatility
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Implied volatility skew I
First I describe implied volatility skew and volatility regimes

For time to maturity T , the implied volatility, which is applied to value
vanilla options using the Black-Scholes-Merton (BSM) formula, can
be parameterized by a linear function σ(K;S0) of strike price K:

σ(K;S0) = σ0 + β

(
K

S0
− 1

)
β, β < 0, is the slope of the volatility skew near the ATM strike

Lets take strikes at K± = (1± α)S0, where typically α = 5%:

β =
1

2α
(σ((1 + α)S0;S0)− σ((1− α)S0;S0)) ≡ Skewα

where Skewα is the implied skew normalized by strike width α

The equity volatility skew is negative, as consequence of the fact that,
relatively, it is more expensive to buy an OTM put option than an
OTM call option.
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Implied volatility skew II for 1m options on the S&P 500 index from
October 2007 to July 2012
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β = −1.0 means that the implied volatility of the put struck at 95% of
the spot price is −5%× β = 5% higher than that of the ATM option
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Sticky rules (Derman) I
1) Sticky-strike:

σ(K;S) = σ0 + β

(
K

S0
− 1

)
, σATM(S) ≡ σ(S;S) = σ0 + β

(
S

S0
− 1

)
ATM vol increase as the spot declines - typical of range-bounded
markets
2) Sticky-delta:

σ(K;S) = σ0 + β

(
K − S
S0

)
, σATM(S) = σ0

The level of the ATM volatility does not depend on spot price -typical
of stable trending markets
3) Sticky local volatility:

σ(K;S) = σ0 + β

(
K + S

S0
− 2

)
, σATM(S) = σ0 + 2β

(
S

S0
− 1

)
ATM vol increase as the spot declines twice as much as in the sticky
strike case - typical of stressed markets
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Sticky rules II
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10% and the volatility skew moves upwards
Sticky-delta regime: the ATM volatility remains unchanged with
the volatility skew moving downwards
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Impact on option delta

The key implication of the volatility rules is the impact on option
delta ∆

We can show the following rule for call options:

∆Sticky−Local ≤∆Sticky−Strike ≤∆Sticky−Delta

As a result, for hedging call options, one should be over-hedged (as
compared to the BSM delta) in a trending market and under-hedged
in a stressed market

Thus, the identification of market regimes plays an important role to
compute option hedges

While computation of hedges is relatively easy for vanilla options and
can be implemented using the BSM model, for path-dependent exotic
options, we need a dynamic model consistent with different volatility
regimes
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Stickiness ratio I
To identify volatility regimes we introduce the stickiness ratio

Given price return from time tn−1 to tn:

X(tn) =
S(tn)− S(tn−1)

S(tn−1)

We make prediction for change in the ATM volatility:

σATM(tn) = σATM(tn−1) + βR(tn)X(tn)

where the stickiness ratio R(tn) indicates the rate of change in the
ATM volatility predicted by the skew and price return

Stickiness ratio R is a model-dependent quantity, informally:

R ≈
1

β

∂

∂S
σATM(S)

We obtain that:
R = 1 under sticky-strike
R = 0 under sticky-delta
R = 2 under sticky-local vol
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Stickiness ratio II
Empirical test is based on using market data for S&P500 (SPX)
options from 9-Oct-07 to 1-Jul-12 divided into three zones

crisis recovery range-bound
start date 9-Oct-07 5-Mar-09 18-Feb-11
end date 5-Mar-09 18-Feb-11 31-Jul-12

number days 354 501 365
start SPX 1565.15 682.55 1343.01
end SPX 682.55 1343.01 1384.06

return -56.39% 96.76% 3.06%
start ATM 1m 14.65% 45.28% 12.81%
end ATM 1m 45.28% 12.81% 15.90%

vol change 30.63% -32.47% 3.09%
start Skew 1m -72.20% -61.30% -69.50%
end Skew 1m -57.80% -69.50% -55.50%
skew change 14.40% -8.20% 14.00%
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Stickiness ratio III
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Stickiness ratio IV
To test Stickiness empirically, we apply the regression model for pa-
rameter R within each zone using daily changes:

σATM(tn)− σATM(tn−1) = R× Skew5%(tn−1)X(tn) + εn

where X(tn) is realized return for day n
σATM(tn) and Skewα(tn) are the ATM volatility and skew observed at
the end of the n-th day
εn is iid normal residuals

Informal definition of the stickiness ratio:

R(tn) =
σATM(tn)− σATM(tn−1)

X(tn)Skew5%(tn−1)

We expect that the average value of R, R, as follows:
R = 1 under the sticky-strike regime
R = 0 under the sticky-delta regime
R = 2 under the sticky-local regime
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Stickiness ratio (crisis) for 1m and 1y ATM vols
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R² = 0.7738
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Stickiness ratio (recovery) for 1m and 1y ATM vols

y = 1.4561x
R² = 0.6472
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Stickiness ratio (range) for 1m and 1y ATM vols

y = 1.3036x
R² = 0.6769
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Stickiness ratio V. Conclusions
Summary of the regression model:

crisis recovery range-bound
Stickiness, 1m 1.63 1.46 1.30
Stickiness, 1y 1.60 1.56 1.41

R2, 1m 77% 65% 68%
R2, 1y 82% 68% 72%

1) The concept of the stickiness is statistically significant explaining
about 80% of the variation in ATM volatility during crisis period and
about 70% of the variation during recovery and range-bound periods

2) Stickiness ratio is
stronger during crisis period, R ≈ 1.6 (closer to sticky local vol)
less strong during recovery period, R ≈ 1.5
weaker during range-bound period, R ≈ 1.35 (closer to sticky-strike)

3) The volatility regime is typically neither sticky-local nor sticky-
strike but rather a combination of both
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Stickiness ratio VI. Time series
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Stickiness ratio VII. Dynamic models A
Now we consider how to model the stickiness ratio within the dynamic
SV models

The primary driver is change in the spot price, ∆S/S

The key in this analysis is what happens to the level of model volatility
given change in the spot price (for a very nice discussion see ”A Note
on Hedging with Local and Stochastic Volatility Models” by Mercurio-
Morini, on ssrn.com)

The model-consistent hedge:
The level of volatility changes by (approximately): Skew×∆S/S

The model-inconsistent hedge:
The level of volatility remains unchanged

Implication for the stickiness under pure SV models:
R = 2 under the model-consistent hedge
R = 0 under the model-inconsistent hedge
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Stickiness ratio VII. Dynamic models B
How to make R = 1.5 using SV models?
Under the model-consistent hedge: impossible?
Under the model-inconsistent hedge: mix SV with local volatility

Remedy: add jump process
Under any spot-homogeneous jump model, R = 0

The only way to have a model-consistent hedging that fits the desired
stickiness ratio is to mix stochastic volatility with jumps:
the higher is the stickiness ratio, the lower is the jump premium
the lower is the stickiness ratio, the higher is the jump premium

Jump premium is lower during crisis periods (after a big crash or ex-
cessive market panic, the probability of a second one is lower because
of realized de-leveraging and de-risking of investment portfolios, cen-
tral banks interventions)

Jump premium is higher during recovery and range-bound periods (re-
newed fear of tail events, increased leverage and risk-taking given
small levels of realized volatility and related hedging)
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Stickiness ratio VII. Dynamic models C
The above consideration explain that the stickiness ratio is
stronger during crisis period, R ≈ 1.6 (closer to sticky local vol)
weaker during range-bound and recovery periods, R ≈ 1.35 (closer to
sticky-strike)

To model this feature within an SV model, we need to specify a
proportion of the skew attributed to jumps (see my 2011 presentation
for Risk Quant congress and 2012 presentation for Global derivatives)

During crisis periods, the weight of jumps is about 20%
During range-bound and recovery periods, the weight of jumps is
about 40%
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Beta stochastic volatility I
First, I present a simplified version of the beta stochastic volatil-
ity model introduced in Karasinski and Sepp (2012) with no mean-
reversion and volatility-of-volatility:

dS(t)

S(t)
= σ(t)(S(t))βSdW (t), S(0) = S0

dσ(t) = βV
dS(t)

S(t)
, σ(0) = σ0

(1)

where S(t) is the spot price
σ(t) is instantaneous volatility and σ0 is initial level of ATM volatility
W (t) is a Brownian motion - the only source of randomness

To produce the volatility skew and the dependence between the price
and implied volatility, the model relies on the two parameters:
βS is the backbone beta
βV is the volatility beta

Estimates of βS and βV are easily inferred from implied/historical data
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Volatility beta

We replicate σ(t) by short-term ATM volatility, σ(t) = σATM(S(t)) to
estimate model parameters by the regression model

Volatility beta βV is a measure of linear dependence between daily
returns and changes in the ATM volatility:

σATM(S(tn))− σATM(S(tn−1)) = βV
S(tn)− S(tn−1)

S(tn−1)

Next we examine this regression model empirically
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Volatility beta (crisis) for 1m and 1y ATM vols
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Volatility beta (recovery) for 1m and 1y ATM vols

y = -0.9109x
R² = 0.603
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Volatility beta (range) for 1m and 1y ATM vols
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R² = 0.6786
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Volatility beta. Summary

crisis recovery range-bound
Volatility beta 1m -1.11 -0.91 -1.07
Volatility beta 1y -0.39 -0.39 -0.44

R2 1m 76% 60% 68%
R2 1y 80% 65% 71%

The volatility beta is pretty stable across different market regimes

The longer term ATM volatility is less sensitive to changes in the spot

Changes in the spot price explain about:
80% in changes in the ATM volatility during crisis period
60% in changes in the ATM volatility during recovery period (ATM
volatility reacts slower to increases in the spot price)
70% in changes in the ATM volatility during range-bound period
(jump premium start to play bigger role n recovery and range-bound
periods)
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The backbone beta

The backbone beta βS is a measure of daily changes in the logarithm
of the ATM volatility to daily returns on the stock

ln [σATM(S(tn))]− ln
[
σATM(S(tn−1))

]
= βS

S(tn)− S(tn−1)

S(tn−1)

Next we examine this regression model empirically
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Backbone beta (crisis) for 1m and 1y ATM vols
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Backbone beta (recovery) for 1m and 1y ATM vols

y = -3.6353x
R² = 0.5438
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Backbone beta (range) for 1m and 1y ATM vols
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The backbone beta. Summary A

crisis recovery range-bound
Backbone beta 1m -2.81 -3.64 -4.54
Backbone beta 1y -1.22 -1.43 -1.81

R2 1m 67% 54% 62%
R2 1y 77% 61% 70%

The value of the backbone beta appears to be less stable across
different market regimes (compared to volatility beta)

Explanatory power is somewhat less (by 5-7%) for 1m ATM vols
(compared to volatility beta)

Similar explanatory power for 1y volatilities
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The backbone beta. Summary B
Change in the level of the ATM volatility implied by backbone beta
βS is proportional to initial value of the ATM volatility
High negative value of βS implies a big spike in volatility given a
modest drop in the price - a feature of sticky local volatility model

In the figure, using estimated parameters βV = −1.07, βS − 4.54 in
range-bound period, σ(0) = 20%
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Connection to the SABR model (Hagan et al (2002) )

Model parameters are related to the SABR model as follows:

â = σ0 , ρ = −1 , ν = −βV , β = βS + 1

Using formula (3.1a) in Hagan et al (2002) for a short maturity and
small log-moneynes k, k = ln(K/S0), we obtain the following relation-
ship for the BSM implied volatility σIMP (k):

σIMP (k) =
σ0

SβS

1 +
1

2

(
βS +

βV
σ0

)
k +

1

12

β2
S −

(
βV
σ0

)2
 k2



Thus, in a simple case, the model can be directly linked to the implied
volatility interpolator represented by the SABR model
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Model implied skew
We obtain the following approximate but accurate relationship be-
tween the model parameters and short-term implied ATM volatility,
σATM(S), and skew Skewα:

σ0S
βS = σATM(S)

βS +
βV
σ0

=
2Skewα

σATM(S)
≡ Λ

The first equation is known as the backbone that defines the trajec-
tory of the ATM volatility given a change in the spot price:

σATM(S)− σATM(S0)

σATM(S0)
≈ βS

S − S0

S0
(2)
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Model implied stickiness and volatility regimes
If we insist on model-inconsistent delta (change in spot with volatility
level unchanged):
fit backbone beta βS to reproduce specified stickiness ratio
adjust βV so that the model fits the market skew

Using stickiness ratio R(tn) along with (2), we obtain that empirically:

βS(tn) =
Skewα(tn−1)

σATM(tn−1)
R(tn)

Thus, given an estimated value of the stickiness rate we imply βS

Finally, by mixing parameters βS and βV we can produce different
volatility regimes:
sticky-delta with βS = 0 and βV ≈ 2Skewα
sticky-local volatility with βV = 0 and βS ≈ Λ

From the empirical data we infer that, approximately,
βS ≈ 70%Λ and βV = 30%× 2Skewα
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Beta stochastic volatility model
Let me consider pure SV beta expressed in terms of normalized volatil-
ity factor Y (t) (this version is applied in practice for beta SV with local
volatility):

dS(t)

S(t)
= (1 + Y (t))σdW (t), S(0) = S0

dY (t) = β̃V
dS(t)

S(t)
, Y (0) = 0

(3)

where σ is the overall level of the volatility (can be deterministic or
local σ(t, S))
Y (t) is the normalized volatility factor fluctuation around zero

Volatility parameter β̃V can be implied from short term ATM volatility
σATM and skew Skewα:

β̃V =
2Skewα

σATM
(4)

The goal now is to investigate the dynamics of the skew
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Beta stochastic volatility model. Skew
Inverting the above equation:

Skew(t) =
1

2
β̃V σATM(t) (5)

Dynamically, using (4):

dSkew(t) =
1

2
β̃V dσATM(t) ∝

1

2
β̃V σATM(t)dY (t)

∝
1

2
σATM(t)

(
β̃V
)2 dS(t)

S(t)

To test the above equation empirically, we apply the regression model
for coefficient q:

Skew(tn)− Skew(tn−1) = q

[
2
(
Skew(tn−1)

)2 1

σATM(tn−1)

S(tn)− S(tn−1)

S(tn−1)

]
(6)

First, we test (5)
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Skew vs ATM volatility (crisis) for 1m and 1y ATM vols
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Skew vs ATM volatility (recovery) for 1m and 1y ATM vols
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Skew vs ATM volatility (range) for 1m and 1y ATM vols
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Skew vs ATM volatility. Summary

crisis recovery range-bound
Skew-vol beta 1m -0.25 -0.01 -1.23
Skew-vol beta 1y -0.01 -0.27 -0.10

R2 1m 10% 0% 52%
R2 1y 1% 13% 3%

Empirically, in general, a high level of ATM volatility implies a higher
level of the skew but the relationship is not strong and is mixed

For short-term skew, the relationship is stronger in crisis and range-
bound periods

For longer-term skew, the relationship is stronger in recovery periods

Next, we test (6) for relationship between changes in the skew and
spot returns
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Skew vs price return (crisis) for 1m and 1y skews
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Skew vs price return (recovery) for 1m and 1y skews
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Skew vs price return (range) for 1m and 1y skews
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Skew vs price return. Summary

crisis recovery range-bound
Skew-return beta 1m -0.14 0.37 0.21
Skew-return beta 1y -0.16 -0.03 0.00

R2 1m 6% 18% 13%
R2 1y 6% 0% 0%

The short-term skew appears to be somewhat dependent on spot
changes:
during crisis periods, negative returns decrease the skew (de-leveraging
reduces need for downside protection)
during recovery and range-bound periods, negative returns increase
the skew (risk-aversion is high especially during recovery period)

The long-term skew does not appear to depend on spot returns
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Skew vs price return. Conclusions

The skew does not seem to depend on either volatility or spot dy-
namics (especially for longer maturities)

About 20% of variations in the short-term skew can be attributed to
changes in the spot

Only jumps appear to have a reasonable explanation for the skew
(the fear of a crash does not (or little) depend on current values of
variables)
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Full beta stochastic volatility model I
The pricing version of the beta model is specified as follows:

dS(t)

S(t)
= µ(t)dt+ (1 + Y (t))σdW (0)(t), S(0) = S

dY (t) = −κY (t)dt+ βV (1 + Y (t))σdW (0)(t) + εdW (1)(t), Y (0) = 0
(7)

where:
βV (βV < 0) is the rate of change in the volatility corresponding to
change in the spot price
ε is idiosyncratic volatility of volatility
κ is the mean-reversion rate
W (0)(t) and W (1)(t) are two Brownians with dW (0)(t)dW (1)(t) = 0
µ(t) is the risk-neutral drift

σ is the overall level of volatility
σ is set to either constant volatility σCV or deterministic volatility
σDV (t), or local stochastic volatility σLSV (t, S)
σ = {σCV , σDV (t), σLSV (t, S)}
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Beta stochastic volatility model. II

Using dynamics (7), for the log-spot, X(t) = ln
(
S(t)
S(0)

)
we obtain:

dX(t) = µ(t)dt−
1

2
σ2(1 + Y (t))2dt+ σ(1 + Y (t))dW (0)(t), X(0) = 0

dY (t) = βσ(1 + Y (t))dW (0)(t)− κY (t)dt+ εdW (1)(t), Y (0) = 0
(8)

with

dY (t)dY (t) =
(
ε2 + β2σ2(1 + Y (t))2

)
dt

dX(t)dY (t) = βσ2(1 + Y (t))2dt

The pricing equation for value function U(t, T,X, Y ) has the form:

Ut +
1

2
σ2(1 + 2Y + Y 2) [UXX − UX] + µ(t)UX

+
1

2

(
ε2 + β2σ2

(
1 + 2Y + Y 2

))
UY Y − κY UY

+ βσ2
(
1 + 2Y + Y 2

)
UXY − r(t)U = 0

(9)

where r(t) is the discount rate and subscripts denote partial derivatives
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Beta stochastic volatility model. III
The parameters of the stochastic volatility, β, ε and κ are specified
before the calibration

We calibrate the local volatility σ ≡ σLSV (t, S), using either a para-
metric local volatility (CEV) or non-parametric local volatility, so that
the vanilla surface is matched by construction

For calibration of σLSV (t, S) we apply the conditional expectation
(Lipton A, The vol smile problem, Risk, February 2002):

σ2
LSV (T,K)E

[
(1 + Y (T ))2 |S(T ) = K

]
= σ2

LV (T,K)

where σ2
LV (T,K) is the local Dupire volatility

The above expectation is computed by solving the forward PDE cor-
responding to pricing PDE (9) using finite-difference methods and
computing σ2

LSV (T,K) stepping forward in time

Once σLSV (t, S) is calibrated we use either backward PDE-s or MC
simulation for valuation of exotic options
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Beta SV model. Approximation for call price I
I propose an affine approximation for pricing equation (9) with con-
stant or deterministic volatility σ:

G(t, T,X, Y ; Φ) = exp
{
−ΦX +A(0) +A(1)Y +A(2)Y 2

}
with A(n)(T ;T ) = 0, n = 0,1,2

By substitution this into PDE (9) and collecting terms proportional
to Y and Y 2 only, we obtain a system of ODE-s for A(n)(t):

A(0)
t + v0A

(2) +
1

2
v0(A(1))2 −ΦA(1)c0 +

1

2
q = 0

A(1)
t +

1

2
v1(A(1))2 + 2v0A

(1)A(2) + v1A
(2) − κA(1) −Φ

(
2c0A

(2) + c1A
(1)
)

+ q = 0

A(2)
t +

1

2
v2(A(1))2 + 2v0(A(2))2 + 2v1A

(1)A(2) + v2A
(2) − 2κA(2) −Φ

(
2c1A

(2) + c2A
(1)
)

+
1

2
q = 0

where

q = σ2
(
Φ2 + Φ

)
, v0 = ε2 + β2σ2, v1 = 2β2σ2, v2 = β2σ2, c0 = βσ2, c1 = 2βσ2, c2 = βσ2

This is system is solved by means of Runge-Kutta methods
It is straightforward to incorporate time-dependent model parameters
(but not space-dependent local volatility σLSV (t,X))
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Beta SV model. Approximation for call price II
As a result, for pricing vanilla options, we can apply the standard
methods based on the Fourier inversion

The value of the call option with strike K is computed by applying
Lipton-Lewis formula:

C(t, T, S, Y ) = e−
∫ T
t r(t′)dt′

(
e
∫ T
t µ(t′)dt′S −

K

π

∫ ∞
0
<
[
G(t, T, x, Y ; ik − 1/2)

k2 + 1/4

]
dk

)

where x = ln(S/K) +
∫ T
t µ(t′)dt′
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Beta SV model. Approximation for call price III
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Properties of the volatility process, assuming constant vol σCV
Instantaneous variance of Y (t) is given by:

dY (t)dY (t) =
(
β2σ2

CV (1 + Y (t))2 + ε2
)
dt

which has systemic part proportional to Y (t) and idiosyncratic part ε

In a stress regime, for large values of Y (t), the variance is dominated
by β2σ2

CV Y
2(t) (close to a log-normal model for volatility process)

The volatility process has steady-state variance (so that the volatil-
ity approaches stationary distribution in the long run):

E
[
Y 2(t) |Y (0) = 0

]
=
ε2 + β2σ2

CV

2κ− β2σ2
CV

(
1− e−(2κ−β2σ2

CV )t
)

Effective mean-reversion for the volatility of variance is:

2κ− β2σ2
CV

Steady state variance of volatility is

ε2 + β2σ2
CV

2κ− β2σ2
CV
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Instantaneous correlation between dY (t) and dX(t):

ρ(dX(t)dY (t)) =
βσ2

CV (1 + Y (t))2√(
ε2 + β2σ2

CV (1 + Y (t))2
)√
σ2
CV (1 + Y (t))2

With high volatility Y (t) is large so letting Y (t)→∞ we obtain that

ρ(dX(t)dY (t))|Y (t)≈∞ = −1

In a normal regime, Y (t) ≈ 0, so that obtain:

ρ(dX(t)dY (t))|Y (t)≈0 = −
1√(

ε2

β2σ2
CV

+ 1
)

The beta SV model introduces state-dependent spot-volatility cor-
relation, with high volatility leading to absolute negative correlation

In contrast, Heston and Ornstein-Uhlenbeck based SV models always
assume constant instantaneous correlation
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The steady state density
Steady state density function G(Y ) of volatility factor Y (t) in dynam-
ics (7) solves the following equation:

1

2

[(
ε2 + β2σ2

CV

(
1 + 2Y + Y 2

))
G
]
Y Y

+ [κY G]Y = 0

We can show that G(Y ) exhibits the power-like behavior for large
values of Y :

lim
Y→+∞

G(Y ) = Y −α , α = 2

(
1 +

κ

(βσCV )2

)
This power-like behavior contrasts with Heston and exponential volatil-
ity models which imply exponential tails for the steady-state density
of the volatility

Thus, the beta SV model predicts higher probabilities of large values
of instantaneous volatility
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The steady state density. Tails
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Case Study I: Correlation skew
Apply experiment:
1) Compute implied volatilities from options on the index (say, S&P500)
2) Using implied volatilities (probability density function) of stocks in
this index, and stock-stock Gaussian correlations, compute option
prices on the index, compute the implied volatility from these prices

Empirical observation (correlation skew):
The index skew computed in 1) is steeper than that computed in 2)
Explanation:
Stocks become strongly correlated during big sell-offs
Index skew reflects premium for buying puts on a basket of stocks

Modelling approach:
Correlation skew cannot be replicated using Gaussian correlation
Stochastic and/or local correlations can be applied
But only SV model with jumps can produce realistic dynamics
and reproduce the correlation skew

Next we augment the beta SV model with jumps and apply it to
reproduce the correlation skew
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SPY and select sector ETF-s
Consider:
SPY - the ETF tracking the S&P500 index
Select sector ETF-s - ETF-s tracking 9 sectors of the S&P500 index

ETF SPY weight Sector
1 XLK 20.46% INFORMATION TECHNOLOGY
2 XLF 14.88% FINANCIALS
3 XLV 12.38% HEALTH CARE
4 XLP 11.66% CONSUMER STAPLES
5 XLY 11.31% CONSUMER DISCRETIONARY
6 XLE 11.15% ENERGY
7 XLI 10.81% INDUSTRIALS
8 XLU 3.84% UTILITIES
9 XLB 3.51% MATERIALS
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Index and sector vols and skews
Term structure of ATM volatilities (left) and 105%-95% skews (right)
SPY ATM vol (black line) can be viewed as a weighted average
of sector ATM vols
SPY skew (black line) is steeper than weighted average skews of
sectors
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Calibration of the beta SV model I
First, calibrate the beta SV model with constant SV parameters
Calibration is based on intuition and experience with the model

Volatility beta, β, is set by

β =
σIMP (6m,5%)− σIMP (6m,−5%)

0.05σIMP (6m,0%)
=

2Skew5%(6m)

σATM(6m)

where σIMP (6m, k%) is 6m implied vol for forward-based log-strike k
Idiosyncratic volatility ε is set according to:

ε2 = σ2
IMP (6m,0%)β21− (ρ∗)2

(ρ∗)2

ρ∗ is spot-vol correlation for 6m vol implied by SV model with Orstein-
Uhlenbeck process for SV driver

Reversion speed κ is adjusted to fit term structure of 1y-3y 105%−
95% skew

Term structure of model level vols σDV (t) are calibrated by construc-
tion (by root search) so that the ATM implied vol is fitted exactly
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Calibration of the beta SV model II
Calibrated parameters of the beta SV model to SPY and sector ETF-s

SPY XLK XLF XLV XLP XLY XLE XLI XLU XLB
β -4.77 -3.72 -2.78 -5.34 -5.31 -3.93 -2.75 -3.06 -5.55 -2.89
ε 0.40 0.39 0.67 0.35 0.33 0.42 0.55 0.41 0.38 0.39
κ 1.45 1.60 1.30 1.25 1.15 1.40 1.40 1.30 1.25 1.45
ρ∗ -0.81 -0.78 -0.60 -0.80 -0.80 -0.76 -0.66 -0.72 -0.79 -0.73

Next we illustrate plots of the term structure of market and model
implied 105%−95% skew and 1y implied vols accross range of strikes

Typically, if the beta SV model is fits 105%− 95% skew, then it will
fit the skew accross different strikes

Beta SV model is similar to one-factor SV models - the model fits well
longer-term skews (above one-year) while it is unable to fit short-term
skews (up to one year) unless beta parameter β is large

By actual pricing, small discrepancies in implied vols are eliminated
by local vol part
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Calibrated parameters
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SPY
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XLK - information technology
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XLF - financials
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XLV - health care

-0.30

-0.20

-0.10

0.00

3
m

6
m

9
m

1
2

m

1
5

m

1
8

m

2
1

m

2
4

m

2
7

m

3
0

m

3
3

m

3
6

m

s
k
e

w

T

XLV, Market Skew

-0.50

-0.40

-0.30
XLV, Market Skew

XLV, Model Skew 

15%

25%

35%

Im
p

l 
V

o
l

1y Implied vols

XLV, Market impl vol

XLV, Model impl vol

5%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0
0
%

1
1
0
%

1
2
0
%

1
3
0
%

1
4
0
%

1
5
0
%

K

69



XLP - consumer staples
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XLY - consumer discretionary
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XLE - energy
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XLI - industrials
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XLU - utilities
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XLB - materials
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Multi-asset beta SV model
The SV model without jumps cannot reproduce the correlation skew

We present multi-asset beta SV model with simultaneous jumps in
assets and their volatilities:

dSn(t)

Sn(t)
= µn(t)dt+ (1 + Yn(t))σndWn(t) + (eνn − 1) (dN(t)− λdt)

dYn(t) = −κnYn(t)dt+ βn(1 + Yn(t))σndWn(t) + εndW
(1)(t) + ηndN(t)

where n = 1, ..., N
dWn(t) are Brownians for asset prices with specified correlation matrix
W (1)(t) is the joint driver for idiosyncratic volatilities
N(t) is the joint Poisson process with intensity λ for simultaneous
shocks in prices and volatilities
νn, νn < 0, are constant jump amplitudes in log-price
ηn, ηn > 0, are constant jump amplitudes in volatilities
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Jump calibration
Based on my presentation for Global Derivatives in Paris, 2011
The idea is based on linear impact of jumps on the short-term implied
skew:

σimp(K) ≈ σ −
λν

σ
ln (S/K)

Specify wjd - the percentage of the skew attributed to jumps
Set jump intensity as follows:

λ =

(
Skew5%(1y)

)2

wjd

The jump size is implied as follows:

ν = −
√
wjdσATM(1y)

√
λ

=
wjdσATM(1y)

Skew5%(1y)

Jump size in volatility, η, can be calibrated to options on the VIX
skew or options on the realized variance
Empirically, η ≈ 2
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Jump calibration for ETF. I
Set wjd = 50% and imply jump intensity λSPY from 1y 5% skew for
SPY ETF
Individual jump sizes are set using λSPY and sector specific ATM
volatility σATM,n(1y):

νn = −
√
wjdσATM,n(1y)
√
λSPY

Jump size in volatility, η, is set uniformly η = 2 (realized jump in
ATM volatility will be proportional to ATM volatility of sector ETF)

Previously specified β, ε and κ are reduced by 25%

Next we illustrate plots of term structure of market and model implied
105%− 95% skew and 1y implied volatilities accross range of strikes

Beta SV model with jumps produces steep forward skews for short
maturities and is consistent with term structure of skew

Again, by actual pricing, small discrepancies in implied vols are elimi-
nated by local vol part
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Jump calibration for ETF. II
For recent data, λ = 0.17 and jump sizes are shown in table and figure

SPY XLK XLF XLV XLP XLY XLE XLI XLU XLB
-0.32 -0.37 -0.35 -0.28 -0.26 -0.35 -0.41 -0.37 -0.26 -0.41
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SPY
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XLK - information technology
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XLF - financials
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XLV - health care
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XLP - consumer staples
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XLY - consumer discretionary
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XLE - energy
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XLI - industrials
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XLU - utilities
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XLB - materials
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Correlation matrix for sector ETF-s
Sector-wise correlation are estimated using time series

XLK XLF XLV XLP XLY XLE XLI XLU XLB
XLK 100%
XLF 85% 100%
XLV 64% 80% 100%
XLP 69% 77% 77% 100%
XLY 92% 87% 84% 83% 100%
XLE 85% 84% 75% 48% 83% 100%
XLI 90% 89% 86% 81% 94% 88% 100%

XLU 67% 66% 74% 82% 72% 66% 72% 100%
XLB 89% 87% 80% 73% 88% 88% 91% 63% 100%
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Correlation skew. Illustration
Next we compare the index skew implied from:
1) SPY options (SPY)
2) basket of ETF priced using local volatility with Gaussian correla-
tions (Local Vol)
3) basket of ETF priced using beta SV model (Beta LSV)
4) basket of ETF priced using beta SV model with jumps (Beta
LSV+Jumps)
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Correlation skew. Conclusion

Local volatility and stochastic volatility models without jumps cannot
reproduce the correlation skew

Only jumps can introduce the correlation skew in a robust way

In my example, I calibrated jumps to 1y skew so the model fits 1y
correlation skew, but model correlation skew flattens for 2y (problem
with data for long-dated ETF options?)

Perhaps more elaborate jump process is necessary (probably though
spot- and volatility-dependent intensity process)
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Case Study II: Conditional forward skew
We imply forward volatility by computing forward-start option condi-
tional that S(τ) starts in range (D −∆, D + ∆), typically ∆ = 5%,
with the following pay-off:

1{D−∆<S(τ)<D+∆}

(
S(T )

S(τ)
−K

)+

In the BSM model, the variables S(τ) and S(T )
S(τ) are independent so

that the BSM value of this pay-off is the probability of S(τ) hitting
the range times the value of the forward start call

Under alternative models, we compute the above expectation, PV,
by means of MC simulations and in addition compute the hitting
probability, P , P = E

[
1{D−∆<S(τ)<D+∆}

]
Then we imply the conditional volatility using the BSM inversion for
call with strike K, time to maturity T − τ , and value PV/P

We compare two models: local volatility (LV) and beta SV with local
vol (LSV)
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Conditional forward skew II
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Conditional forward skew III

6m6m, 120%-130%
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Conditional forward skew IV

6m6m, 135%-145%
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6m6m, 55%-65%
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Conclusions
I presented the beta stochastic volatility model that

1) Has intuitive parameters (volatility beta) that can be explained
using empirical data

2) Calibration of parameters for SV process and jumps is straightfor-
ward and intuitive (no non-linear optimization methods are necessary)

3) Allows to mix parameters to reproduce different regimes of volatil-
ity and the equity skew

4) Equipped with jumps, allows to reproduce correlation skew for
multi-underlyings

5) Produces very steep forward skews

6) The driver for the instantaneous volatility has nice properties: fat
tails and level dependent spot-volatility correlations
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Open questions
1) Better understanding of relationship between model parameters of
market observables (ATM vol, skew, their term structures)

2) Model implied risk incorporating the stickiness ratio

3) Numerical methods (numerical PDE, analytic approximations)

4) Calibration of jumps and correlation skew

5) Illustrate/proof that only SV model with jumps is consistent with
observed empirical features:
A) Stickiness ratio is between 1 and 2
B) Steep correlation skew

Models with local volatility and correlation may be consistent with
A) and B) but they are not consistent with observed dynamics thus
producing wrong hedges

Thank you for your attention!
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Disclaimer

The opinions and views expressed in this presentation are those of
the author alone and do not necessarily reflect the views and policies
of Bank of America Merrill Lynch

99


