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Introduction and motivation
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Life expectancy

Increasing life expectancy for a 65-year old person in Germany

Source: LifeMetrics - German Longevity Index
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Life expectancy
Observations vs. assumptions

• Differences in observed life expectancies across countries

• Large deviations between mortality assumptions in different countries

• Deviations between mortality assumptions and observations within
selected countries
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Source: Cass Business School (2005)
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Motivation

• The positive trend of increasing life expectancy causes several problems
for pension plans

• Most of the pension plan sponsors have been focused on interest rate and
inflation risk so far

• Increasing attention to longevity risk -
according to [Loeys et al. 2007] the longevity exposure for DB plans was
about 300 bn USD in the USA in 2006

• No consistent methodology for quantification of longevity risk and
calculation of the best estimate for the pension plan liabilities

• No consistent framework for the analysis of longevity risk for a pension plan
along with interest and inflation risks
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Stochastic model for mortality rates
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Mortality model
Notation and definitions

• Random lifetime of a person aged x at t = 0 is modeled as a stopping time
τ (x) of a counting process Nt(x + t) with corresponding mortality intensity
µt(x + t)

• Introduce two filtrations G and IF, generated by

Gt = σ(µs(x + s) : s ≤ t), Ft = σ(1τ(x)≤s : s ≤ t)

• Definition 1. Survival probability is defined as a probability that a person
at the age of x + t at time t survives at least up to time T:

pt(x + t, T |Gt) := P(τ (x) > T |Gt ∨ Ft),
pt(x + t) := pt(x + t, t + 1|Gt) - is called one-year survival probability

• For the survival probability measured at time t of a person at the age of
x + t at time t it holds that

pt(x + t, T |Gt) = E

[
e
−

T∫
t

µs(x+s)ds
|Gt ∨ Ft

]
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Mortality model
Mortality improvement ratio

• Compare the mortality intensity at time 0 with mortality intensity at time t

• Introduce mortality improvement ratio as

ξt(x + t) =
µt(x + t)

µ0(x + t)

Mortality improvement ratio of a cohort aged 30 in 1978, ξt(30 + t)
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Mortality model

• Following [Dahl et al. 2006] we model ξt as an extended CIR process

dξt = δ(e−γt − ξt)dt + σ
√
ξtdWt

• Initial mortality intensity is described via Gompertz model

µ0(x + t) = bcx+t

and is calibrated to the current life table

• Future mortality intensity can be calculated as

µt(x + t) = µ0(x + t) · ξt

• Survival probabilites can be expressed as

pt(x + t, T |Gt) = eA(t,T )−B(t,T )µt(x+t),

where A(t, T ) and B(t, T ) satisfy two ordinary differential equations
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Quantification of longevity risk
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Goals

• Quantification of longevity risk in different DB pension plans for different
time horizons

• Comparison of longevity risk with inflation and interest-rate risks
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General approach

• Calculate the best estimate of the liabilities, LBE(ti), at time ti

• Simulate the underlying risk factors and calculate the actual value of the
liabilities, Lactual(ti), at time ti

• Determine the overall longevity risk as (absolute or relative)

Q99%(Lactual(ti))− LBE(ti),
Q99%(Lactual(ti))− LBE(ti)

LBE(ti)

• Determine the deviation longevity risk as (absolute or relative)

Q99%(Lactual(ti))−Q50%(Lactual(ti)),
Q99%(Lactual(ti))−Q50%(Lactual(ti))

Q50%(Lactual(ti))
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Calculation of the best estimate of the liabilities

• We calculate the best estimate of the liabilities at time ti for a person aged
x at time 0 (i.e. aged x + ti at time ti) and who retires at time T as:

LBE(ti) =

120−x−ti∑
t=ti+1

B(t, T |I0) · d(0, ti, t) · p0(x, ti|G0) · pti(x + ti, t|G0)

• B(t, T |I0) is the value of the benefit at time t based on the information
available at 0

• d(0, ti, t) is the forward discount factor, determined at time 0 for the period
between ti and t
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Calculation of the actual liabilities

• In each scenario we calculate the actual liabilities at time ti for a person
aged x at time 0 (i.e. aged x + ti at time ti) and who retires at time T as:

Lactual(ti) =

120−x−ti∑
t=ti+1

B(t, T |Iti) · d(ti, t) · p0(x, ti|Gti) · pti(x + ti, t|Gti)

• B(t, T |Iti) is the value of benefit at time t based on the information
available at ti

• d(ti, t) is the discount factor, determined at time ti for the period between ti
and t

• To analyze e.g. the interest risk only, we use

Linterest(ti) =

120−x−ti∑
t=ti+1

B(t, T |I0) · d(ti, t) · p0(x, ti|G0) · pti(x + ti, t|G0)
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Calculation of the actual liabilities

1. Simulation of risk factors

• Inflation and interest rates via Economic Scenario Generator
[Zagst et al. 2007]

• Mortality rates via Dahl and Lee-Carter models

2. Estimation of liabilities with different time horizons (t = 5, t = 15) for the
following cases:

• Stochastic interest rates, constant inflation and mortality rates

• Stochastic inflation, constant interest and mortality rates

• Stochastic mortality, constant inflation and interest rates

• Simultaneous simulation of all risk factors
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Results
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Pension plans

• General assumptions

– Age of retirement - 65

– Number of persons - 10000

– Plan type - closed final pay (i.e. depends on the last salary and the
years of service)

– No consideration of widows and disabled persons

• Age structure
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Best estimate of the liabilities

Which life table should be used to calculate the best estimate of the liabilities?

• Current life table (no improvements)

• Generation life table (low improvements based on the historical
development of the mortality rates)

• Generation life table (high improvements based on the historical
development of the mortality rates)

• Model based life table (Dahl vs. Lee-Carter)

Best estimates of the liabilities for the mixed plan at t = 5 in bn euro:

Current life table Life table(low impr.) Life table(high impr.) Lee-Carter model Dahl model

Best estimate 1.03 1.11 1.18 1.13 1.27

Current and generation life tables are taken from Federal Statistical Office of Germany.
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Results for t = 5 in the plan with retirees only

Best estimate of the liabilitiesa: 0.31 bn euro
Actual liabilities in bn euro:

Interest Longevity All risk factors
Median 0.33 0.40 0.38

99% quantile 0.36 0.41 0.43
Absolute overall risk 0.05 0.10 0.12
Relative overall risk 18% 32% 38%

Absolute deviation risk 0.04 0.01 0.05
Relative deviation risk 11% 3% 13%

Absolute risk for different risk factors at time t = 5:

a Here and in the following the generation life table with low improvement is used.
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Results for t = 5 in the mixed plan

Best estimate of the liabilities: 1.11 bn euro
Actual liabilities in bn euro:

Interest Inflation Longevity All risk factors
Median 1.11 1.19 1.27 1.33

99% quantile 1.47 1.61 1.28 1.88
Absolute overall risk 0.36 0.50 0.16 0.77
Relative overall risk 32% 45% 15% 69%

Absolute deviation risk 0.36 0.42 0.01 0.54
Relative deviation risk 33% 36% 1% 41%

Absolute risk for different risk factors at time t = 5:
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Results for t = 15 in the mixed plan

Best estimate of the liabilities: 1.52 bn euro
Actual liabilities in bn euro:

Interest Inflation Longevity All risk factors
Median 1.40 1.66 1.76 1.73

99% quantile 1.89 2.37 1.78 2.78
Absolute overall risk 0.37 0.85 0.25 1.26
Relative overall risk 24% 56% 17% 83%

Absolute deviation risk 0.50 0.71 0.02 1.05
Relative deviation risk 36% 43% 1% 61%

Absolute risk for different risk factors at time t = 15:
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Summary and conclusion

• Analysed two mortality models and their impact on pension liabilities

• Calibrated both mortality models to historical data

• Presented a methodology to analyse main risks for pension liabilities

• Exemplarily applied the presented methodology for different pension plans

• Longevity risk is a long term risk

• Longevity risk is higher in the pension plans with a higher average age

• Strong dependence of the results on best estimate calculation approach

• Hedging strategies?
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Thank you for your attention.
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Liabilities distribution in Lee-Carter and Dahl model

Distribution of the liabilities for the mixed plan at time t = 30.
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Survival probabilities in the Dahl model

Survival probabilites can be expressed as

pt(x + t, T |Gt) = eA(t,T )−B(t,T )µt(x+t),

where A(t, T ) and B(t, T ) satisfy the following ordinary differential equations

∂B(t, T )

∂t
= (δ − ln(c))B(t, T ) +

1

2
σ2bcx+tB(t, T )2 − 1

∂A(t, T )

∂t
= δe−γtbcx+tB(t, T )

with boundary conditions A(T, T ) = 0 and B(T, T ) = 0.
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