Longevity Risk in the Pension Context

Waterloo, September 8, 2012

Mikhail Krayzler

Chair of Mathematical Finance Technische Universität München

Joint work with Helmut Artinger, Bernhard Brunner and Rudi Zagst.

8th International Longevity Risk and Capital Markets Solutions Conference

Agenda

- 1. Introduction and motivation
- 2. Stochastic model for mortality rates
- 3. Quantification of longevity risk
- 4. Results

Introduction and motivation

Life expectancy

Increasing life expectancy for a 65-year old person in Germany

Source: LifeMetrics - German Longevity Index

Life expectancy Observations vs. assumptions

- Differences in observed life expectancies across countries
- Large deviations between mortality assumptions in different countries
- Deviations between mortality assumptions and observations within selected countries

Observed Assumed

Source: Cass Business School (2005)

Motivation

- The positive trend of increasing life expectancy causes several problems for pension plans
- Most of the pension plan sponsors have been focused on interest rate and inflation risk so far
- Increasing attention to longevity risk according to [Loeys et al. 2007] the longevity exposure for DB plans was about 300 bn USD in the USA in 2006
- No consistent methodology for quantification of longevity risk and calculation of the best estimate for the pension plan liabilities
- No consistent framework for the analysis of longevity risk for a pension plan along with interest and inflation risks

Stochastic model for mortality rates

Mortality model Notation and definitions

- Random lifetime of a person aged x at t = 0 is modeled as a stopping time $\tau(x)$ of a counting process $N_t(x + t)$ with corresponding mortality intensity $\mu_t(x + t)$
- Introduce two filtrations $\mathbb G$ and ${\rm I\!F},$ generated by

 $\mathcal{G}_t = \sigma(\mu_s(x+s) : s \le t), \quad \mathcal{F}_t = \sigma(\mathbb{1}_{\tau(x) \le s} : s \le t)$

• **Definition 1.** *Survival probability* is defined as a probability that a person at the age of x + t at time t survives at least up to time T:

 $p_t(x+t, T|\mathcal{G}_t) := \mathbb{P}(\tau(x) > T|\mathcal{G}_t \lor \mathcal{F}_t),$

 $p_t(x+t) := p_t(x+t, t+1|\mathcal{G}_t)$ - is called one-year survival probability

• For the survival probability measured at time t of a person at the age of x + t at time t it holds that

$$p_t(x+t,T|\mathcal{G}_t) = \mathbb{E}\left[e^{-\int_t^T \mu_s(x+s)ds} |\mathcal{G}_t \vee \mathcal{F}_t\right]$$

Mortality model Mortality improvement ratio

- Compare the mortality intensity at time 0 with mortality intensity at time t
- Introduce mortality improvement ratio as

$$\xi_t(x+t) = \frac{\mu_t(x+t)}{\mu_0(x+t)}$$

Mortality improvement ratio of a cohort aged 30 in 1978, $\xi_t(30 + t)$

Mortality model

• Following [Dahl et al. 2006] we model ξ_t as an extended CIR process

$$d\xi_t = \delta(e^{-\gamma t} - \xi_t)dt + \sigma\sqrt{\xi_t}dW_t$$

• Initial mortality intensity is described via Gompertz model

$$\mu_0(x+t) = bc^{x+t}$$

and is calibrated to the current life table

• Future mortality intensity can be calculated as

$$\mu_t(x+t) = \mu_0(x+t) \cdot \xi_t$$

• Survival probabilites can be expressed as

$$p_t(x+t, T|\mathcal{G}_t) = e^{A(t,T) - B(t,T)\mu_t(x+t)},$$

where A(t,T) and B(t,T) satisfy two ordinary differential equations

Quantification of longevity risk

Goals

- Quantification of longevity risk in different DB pension plans for different time horizons
- Comparison of longevity risk with inflation and interest-rate risks

General approach

- Calculate the best estimate of the liabilities, $L^{BE}(t_i)$, at time t_i
- Simulate the underlying risk factors and calculate the actual value of the liabilities, $L^{actual}(t_i)$, at time t_i
- Determine the **overall longevity risk** as (absolute or relative)

$$Q_{99\%}(L^{actual}(t_i)) - L^{BE}(t_i), \quad \frac{Q_{99\%}(L^{actual}(t_i)) - L^{BE}(t_i)}{L^{BE}(t_i)}$$

• Determine the **deviation longevity risk** as (absolute or relative)

$$Q_{99\%}(L^{actual}(t_i)) - Q_{50\%}(L^{actual}(t_i)), \quad \frac{Q_{99\%}(L^{actual}(t_i)) - Q_{50\%}(L^{actual}(t_i))}{Q_{50\%}(L^{actual}(t_i))}$$

Calculation of the best estimate of the liabilities

• We calculate the best estimate of the liabilities at time t_i for a person aged x at time 0 (i.e. aged $x + t_i$ at time t_i) and who retires at time T as:

$$L^{BE}(t_i) = \sum_{t=t_i+1}^{120-x-t_i} B(t, T | \mathcal{I}_0) \cdot d(0, t_i, t) \cdot p_0(x, t_i | \mathcal{G}_0) \cdot p_{t_i}(x + t_i, t | \mathcal{G}_0)$$

- $B(t,T|\mathcal{I}_0)$ is the value of the benefit at time t based on the information available at 0
- $d(0, t_i, t)$ is the forward discount factor, determined at time 0 for the period between t_i and t

Calculation of the actual liabilities

• In each scenario we calculate the actual liabilities at time t_i for a person aged x at time 0 (i.e. aged $x + t_i$ at time t_i) and who retires at time T as:

$$L^{actual}(t_i) = \sum_{t=t_i+1}^{120-x-t_i} B(t, T | \mathcal{I}_{t_i}) \cdot d(t_i, t) \cdot p_0(x, t_i | \mathcal{G}_{t_i}) \cdot p_{t_i}(x+t_i, t | \mathcal{G}_{t_i})$$

- $B(t, T | \mathcal{I}_{t_i})$ is the value of benefit at time t based on the information available at t_i
- $d(t_i, t)$ is the discount factor, determined at time t_i for the period between t_i and t
- To analyze e.g. the interest risk only, we use

$$L^{interest}(t_i) = \sum_{t=t_i+1}^{120-x-t_i} B(t, T | \mathcal{I}_0) \cdot d(t_i, t) \cdot p_0(x, t_i | \mathcal{G}_0) \cdot p_{t_i}(x+t_i, t | \mathcal{G}_0)$$

Calculation of the actual liabilities

- 1. Simulation of risk factors
 - Inflation and interest rates via Economic Scenario Generator [Zagst et al. 2007]
 - Mortality rates via Dahl and Lee-Carter models
- 2. Estimation of liabilities with different time horizons (t = 5, t = 15) for the following cases:
 - Stochastic interest rates, constant inflation and mortality rates
 - Stochastic inflation, constant interest and mortality rates
 - Stochastic mortality, constant inflation and interest rates
 - Simultaneous simulation of all risk factors

Results

Pension plans

- General assumptions
 - Age of retirement 65
 - Number of persons 10000
 - Plan type closed final pay (i.e. depends on the last salary and the years of service)
 - No consideration of widows and disabled persons
- Age structure

Best estimate of the liabilities

Which life table should be used to calculate the best estimate of the liabilities?

- Current life table (no improvements)
- Generation life table (low improvements based on the historical development of the mortality rates)
- Generation life table (high improvements based on the historical development of the mortality rates)
- Model based life table (Dahl vs. Lee-Carter)

Best estimates of the liabilities for the mixed plan at t = 5 in bn euro:

	Current life table	Life table(low impr.)	Life table(high impr.)	Lee-Carter model	Dahl model
Best estimate	1.03	1.11	1.18	1.13	1.27

Current and generation life tables are taken from Federal Statistical Office of Germany.

Results for t = 5 in the plan with retirees only

Best estimate of the liabilities^{*a*}: 0.31 bn euro Actual liabilities in bn euro:

	Interest	Longevity	All risk factors
Median	0.33	0.40	0.38
99% quantile	0.36	0.41	0.43
Absolute overall risk	0.05	0.10	0.12
Relative overall risk	18%	32%	38%
Absolute deviation risk	0.04	0.01	0.05
Relative deviation risk	11%	3%	13%

Absolute risk for different risk factors at time t = 5:

^a Here and in the following the generation life table with low improvement is used.

Results for t = 5 in the mixed plan

Best estimate of the liabilities: 1.11 bn euro Actual liabilities in bn euro:

	Interest	Inflation	Longevity	All risk factors
Median	1.11	1.19	1.27	1.33
99% quantile	1.47	1.61	1.28	1.88
Absolute overall risk	0.36	0.50	0.16	0.77
Relative overall risk	32%	45%	15%	69%
Absolute deviation risk	0.36	0.42	0.01	0.54
Relative deviation risk	33%	36%	1%	41%

Absolute risk for different risk factors at time t = 5:

Results for t = 15 in the mixed plan

Best estimate of the liabilities: 1.52 bn euro Actual liabilities in bn euro:

	Interest	Inflation	Longevity	All risk factors
Median	1.40	1.66	1.76	1.73
99% quantile	1.89	2.37	1.78	2.78
Absolute overall risk	0.37	0.85	0.25	1.26
Relative overall risk	24%	56%	17%	83%
Absolute deviation risk	0.50	0.71	0.02	1.05
Relative deviation risk	36%	43%	1%	61%

Absolute risk for different risk factors at time t = 15:

Summary and conclusion

- Analysed two mortality models and their impact on pension liabilities
- Calibrated both mortality models to historical data
- Presented a methodology to analyse main risks for pension liabilities
- Exemplarily applied the presented methodology for different pension plans

- Longevity risk is a long term risk
- Longevity risk is higher in the pension plans with a higher average age
- Strong dependence of the results on best estimate calculation approach
- Hedging strategies?

Thank you for your attention.

Bibliography

- [Bowers et al. 1997] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1997): Actuarial Mathematics, Society of Actuaries, Schaumburg (Illinois).
- [Coughlan et al. 2007] Coughlan, G., Epstein, D., Ong, A., Sinha, A. (2007): A toolkit for measuring and managing longevity and mortality risks, JP Morgan, Working paper.
- [Dahl et al. 2006] Dahl, M., T. Moeller (2006): Valuation and hedging of life insurance liabilities with systematic mortality risk, Insurance: Mathematics and Economics, 39, 193-217.
- [Lee et al. 1992] Lee, R.D., Carter, L.R. (1992): Modeling and Forecasting U.S. Mortality, Journal of the American Statistical Association, 87, 659-671.
- [Loeys et al. 2007] Loeys, J., Panigirtzoglou, N. and Ribeiro, R.M. (2007): Longevity: a market in the making, JP Morgan, Working paper 2007.
- [Zagst et al. 2007] Zagst, R., Meyer, T. and Hagedorn, H. (2007): Integrated modelling of stock and bond markets, International Journal of Finance, 19(1), 4252-4277.

Appendix

Liabilities distribution in Lee-Carter and Dahl model

Distribution of the liabilities for the mixed plan at time t = 30.

Survival probabilities in the Dahl model

Survival probabilites can be expressed as

$$p_t(x+t, T|\mathcal{G}_t) = e^{A(t,T) - B(t,T)\mu_t(x+t)},$$

where A(t,T) and B(t,T) satisfy the following ordinary differential equations

$$\begin{split} \frac{\partial B(t,T)}{\partial t} &= (\delta - \ln(c))B(t,T) + \frac{1}{2}\sigma^2 bc^{x+t}B(t,T)^2 - 1\\ \frac{\partial A(t,T)}{\partial t} &= \delta e^{-\gamma t}bc^{x+t}B(t,T) \end{split}$$

with boundary conditions A(T,T) = 0 and B(T,T) = 0.

