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Lee-Carter Model

Lee-Carter Model

Lee and Carter (1992) model the mortality rate as a function of
age group x and time t (in years).

mx ,t = exp(ax + bxkt + ǫx ,t)

x: age group

t: time

ax : the general shape of the mortality curve for age group x

kt : the mortality rate time (year) index

bx : each age group’s response to the mortality rate index

ǫx ,t : error term
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Lee-Carter Model

Example of Lee-Carter Time Trend kt
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Data: Male of England and Wales from 1841 to 2006
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Lee-Carter Model

Modified Lee-Carter Model

Mitchell et al (2011) modify Lee-Carter model by taking difference
of the log mortality rate for the first step.

mx ,t = mx ,t−1 exp(ax + bxkt + ǫx ,t)

→log(mx ,t)− log(mx ,t−1) = ax + bxkt + ǫx ,t .

This modified model performs better than

Lee-Carter model with or without cohort effects

Logit parametric models

Several other modification of Lee-Carter models

The paper uses data from 11 countries, including U.S.A, U.K.,
Canada, and several other countries. This modified model
performs better than other models whatever the data are used.
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Lee-Carter Model

Example of Modified Lee-Carter Time Trend kt
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Data: Male of England and Wales from 1841 to 2006
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Normal Inverse Gaussian Lévy Process

Normal Inverse Gaussian Distribution

To forecast future mortality rate, Michell et al (2011) suggest
fitting kt in the modified Lee-Carter model with a Normal Inverse
Gaussian (NIG) process. The NIG distribution has a density

fNIG (y ;α, β, µ, δ) =
α

π
exp(δ

√

α2 − β2+β(y−µ))

K1

(

αδ

√

1 +
(

y−µ
δ

)2
)

√

1 +
(

y−µ
δ

)2
,

4 parameters, (α, β, µ, δ), to control shape and location of the
distribution.

It provides a better fit when the distribution has high kurtosis
and fat tails.
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Normal Inverse Gaussian Lévy Process

Fitted Mortality Rate for Age 65 to 69
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Data: Male of England and Wales from 1841 to 2006
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Normal Inverse Gaussian Lévy Process

Model kt with a NIG Process

mx ,t= mx ,t−1 exp(ax + bxkt + ǫx ,t)

The modified Lee-Carter Model
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Normal Inverse Gaussian Lévy Process

Model kt with a NIG Process

mx ,t= mx ,t−1 exp(ax + bxkt + ǫx ,t)

By iteration, we have

= mx ,0 exp

(

ax t + bx

t
∑

i=1

ki +

t
∑

i=1

ǫx ,i

)
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Normal Inverse Gaussian Lévy Process

Model kt with a NIG Process

mx ,t= mx ,t−1 exp(ax + bxkt + ǫx ,t)

= mx ,0 exp

(

ax t + bx

t
∑

i=1

ki +

t
∑

i=1

ǫx ,i

)

Let ki and ǫx ,i be i.i.d. random variables, then we have

= mx ,0 exp(ax t + bx

t
∑

i=1

k1 +

t
∑

i=1

ǫ1)

where k1 a NIG random variable.
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Normal Inverse Gaussian Lévy Process

Fit k1 with NIG Distribution
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Data: Male of England and Wales from 1841 to 2006
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Normal Inverse Gaussian Lévy Process

Lévy Process

A (Yt)t≥0 is a Lévy process if

Independent increments: For 0 ≤ t1 < t2 ≤ t3 < t4,
(Yt2 − Yt1) and (Yt4 − Yt3) are independent.
Stationary increments: (Yt+h − Yt) does not depend on t.
Right continuous: For all ǫ > 0,
limh→0 P(|Yt+h − Yt | > ǫ) = 0.

In financial modeling, the stock price process is usually
assumed to be

St = S0 exp(rf t + Yt)

St : stock price at time t

rf : risk free rate.
Yt : Lévy process
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Normal Inverse Gaussian Lévy Process

Mortality Rate with a Stochastic Component

Let the time-varying part be a NIG Lévy process. We have

mx ,t = mx ,0 exp(ax t + Nx ,t),

where

Nx ,t ∼ NIG (α/bx , β/bx , bxµt, bxδt)

∼ NIG (α′, β′, µ′t, δ′t).
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Esscher Transform

Esscher Transform

If a stock process follows a exponential Lévy process, the Esscher
transform can be used to find a martingale measure for pricing
purpose.
The Esscher transform P

θ is defined as

dPθ

dP
=

eθY

E (eθY )
,

provided that E (eθY ), the moment generation function, exists.

The ratio of two measures.

With Esscher transform, the martingale measure can be
calculated easily through the moment generation function.
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Esscher Transform

In financial modeling, the stock price process is assumed to be an
exponential Lévy process

St = S0 exp(rf t + Yt).

Let MY (θ) be the moment generation function and κ(θ) is
the exponential components of MY (θ).

With the Esscher transform, the θ value needed to obtain the
martingale measure can be found by solving

κ(θ + 1)− κ(θ) = rf .

See Schoutens (2003).
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Esscher Transform

In our mortality process model, κ(θ) is known and we solve
κ(θ + 1)− κ(θ) = ax .

Example: By using mortality rate data of 65 to 69 years old
male in England and Wales from 1841 to 2006, the estimation
results are

(α′, β′, µ′, δ′, a[65,69], θ)

=(7.2093,−0.5786,−0.0003, 0.0039,−6.3177,−0.0070).

.
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Application: Pricing a Q-forward

Application: Pricing a Q-forward

A q-forward exchanges fixed mortality for realized mortality at
maturity of the contract.

The LLMA (Life & Longevity Markets Association)’s structure
can be used for pricing. The related documents are available
at
http://www.llma.org/publications.html
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Application: Pricing a Q-forward

LLMA Pricing Structure

Party A is an investment bank. Party B is a pension fund who
wants to hedge longevity risk. At maturity, the bank (party A)
receives

notional amount× (mrealized −mfixed),

and the pension fund (party B) receives

notional amount× (mfixed −mrealized).

To price the product at time 0 before the realized rate is known,
the bank will construct a modified mortality rate with an
adjustment for risk premium and an adjustment in mortality rate
for expected mortality rate movement. Therefore, at maturity, the
bank receives

notional amount× (mmodified −mfixed).
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Application: Pricing a Q-forward

LLMA Pricing Structure

Given discount rate r and contract duration t years, the present
value of settlement is

notional amount× (mmodified −mfixed)/(1 + r)t .

The modified rate is

mmodified = m0 × (1− (mpredicted + ξ))t ,

where ξ is an adjustment for risk premium. The predicted rate can
be obtained by mortality modeling. LLMA suggests an average
predicted rate across t years in an age group or desired ages,
denoted as m̂. Therefore, the adjustment value ξ is the smallest
value to solve

mfixed ≤ m0(1− (m̂ + ξ))t .
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Application: Pricing a Q-forward

Example: JPMorgan Q-forward

The notional amount is 50 million GBP.

10-year contract (from 12/31/2006 to 12/31/2016).

The reference group is males in England & Wales who will be
65 to 69 years old in 2016.

Fixed rate is 1.2%, given by contract.

Discount rate is 4.37 % (T-bill rate).

Goal: Solve for the adjustment for risk premium ξ in the previous
equation.
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Application: Pricing a Q-forward

Data: death rate for the age group 65-69, 1841-2006

The predicted mortality rate is calculated from the modified
Lee-Carter model with NIG Lévy process and Esscher
transform.

Results:

The average predicted mortality rate for age group 65 to 69 is
m̂ = 1.70%.
The adjustment for risk premium value is ξ=2.08%.

The present value of settlement is 938,601.38 GBP.
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Application: Pricing a Q-forward
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