Developing Equity Release Markets: Risk Analysis for Reverse Mortgage and Home Reversion

Daniel Alai, Hua Chen, Daniel Cho, Katja Hanewald, Michael Sherris

Introduction

Home equity release products

Allow retirees to convert a previously illiquid asset into cash payments which can be used for home improvements, regular income, debt repayment, aged care and medical treatments etc.

Reverse mortgage

Boehm and Ehrhardt (1994), Chinloy and Megbolugbe (1994), Szymanoski (1994), Rodda et al. (2004), Ma and Deng (2006), Wang et al. (2007), Chen et al. (2010), Sherris and Sun (2010)

Home reversion

Little research has been done on the risk analysis of other equity release products, such as home reversion contracts.

Introduction

ollity of produ	ct			
UK	Australia	Description		
		 Most common form of reverse mortgage Interest accrues on the principal amount (fixed or variable) but does not need to be repaid until termination 		
		 Borrower pays interest on the loan monthly At termination, home is sold to repay principal 		
		Disbursements to borrower are in the form of an annuity		
		 At termination, the original borrowed sum is repaid, together with an agreed portion of the increased value of the home 		
		 Homeowners sell a part, or all, of the home in exchange for a lump-sum payment and the right to remain in the house until they pass away or move to a new home 		
		 Products with a fixed interest rate Protects borrower from interest-rate risk 		
	Not aval	Not available		

source: FSA Factsheet – UK Equity Release Market, FSA, Equity Release Schemes In the UK; Datamonitor; Equity Release Schemes In Australia, Datamonitor, Oliver Wyman analysis

> US

- Reverse mortgage products dominate.
- HECM accounts for 95% of the market (Ma and Deng, 2006).

> UK

- Reverse mortgages, home reversion and other equity release products have been available for between 10 and 30 years
- Reverse mortgage: 75%; home aversion: 25% (ASIC 2005).

Developing the Equity Release Markets

RM and HR

Reverse Mortgage

- The provider lends the customer cash and obtains a mortgage charge over the customer's property (or a share of the property).
- The contract is terminated upon the death or permanent moveout of the customer, at which time the property is sold and the proceeds are used to repay the outstanding loan.
- Typically, a no negative equity guarantee (NNEG) is included in the contact.

Home Reversion

- The provider purchases the ownership right over the customer's property (or a share of the property).
- The home is sold at discount, and the contract includes a lease for life agreement.

Major Risks in RM and HR

- Risks of RM
 - Termination Risk
 - Longevity risk, mobility risk, refinancing risk
 - Loan Interest Rate risk
 - House Price Depreciation Risk
- Risks of HR
 - Termination Risk
 - Longevity risk, mobility risk, refinancing risk
 - Rental yield appreciation risk
 - House Price Depreciation Risk

Markov Termination Model

- > Assume a single, female policyholder.
- Contract termination is determined by two proportionality constants on female population mortality.

 $\mu_x^c = (\theta + \rho)\mu_x$

where θ is the at-home mortality proportionality constant ρ is non-mortality driven proportionality constant

Assume a Gompertz structure for the population force of mortality $\mu_x = \lambda \exp(\gamma x)$

$\succ \lambda$ and γ

- Use data from the Human Mortality Database: ages 50-105 and calendar years 1950-2009 from Australian females.
- Fit both an ordinary linear regression (LR) on the log-transformed mortality rates as well as a Poisson regression (PR) on death counts with an appropriate exposure offset.
- The results are very similar; we use PR results

$$\hat{\lambda}^{(LR)} = 0.000217; \hat{\lambda}^{(PR)} = 0.000171; \hat{\gamma}^{(LR)} = 0.0993; \hat{\gamma}^{(PR)} = 0.1017$$

$\succ \theta$ and ρ

Values are taken from Ji et al. (2012)

Age		$ heta^f$
≤70	0.10	0.95
80	0.20	0.90
90	0.33	0.85
≥ 100	0.46	0.80

Termination Probabilities

Female, age 50 at inception: Rho+Theta= 1

Time

Developing the Equity Release Markets

VAR Economic Model

Raw data: quarterly data from June 1993 to June 2011

- zero-coupon interest rates (3-month and 10-year)
- standard variable mortgage rate (MR)
- Sydney house price index (HI)
- Sydney rental index (RI).
- Sydney GDP

the mortgage rate and the 3-month zero coupon rates are highly correlated

VAR (1)

$$z_{t+1} = c + B z_t + \Sigma \zeta_{t+1}$$

where Σ is a lower triangular matrix,

 $\zeta_{\scriptscriptstyle t+1} \sim N(0,I)$

Z includes the following variables:

- 3-month zero coupon rate (mortgage rate can be expressed as the 3-month zero coupon rate plus a fixed margin)
- Term structure spread = 10-year ZC rate 3-month ZC rate
- > dln(HI)
- > dln(RI)
- dln(GDP)

Stochastic Discount Factors

- We define the stochastic discount factor as (Cochrane and Piazzesi 2005) $m_{t+1} = \exp \left(\delta_0 + \delta_1 z_t + \frac{1}{2}\lambda_t'\lambda_t + \lambda_t'\zeta_{t+1}\right)$
- > $\delta_0 + \delta_1 z_t$ is the short rate in the VAR model where $\delta_0 = 0$ and $\delta'_1 = (1,0,0,0,0)$
- $\frac{1}{2}\lambda'_{t}\lambda_{t} + \lambda'_{t}\zeta_{t+1} \text{ relates shocks in the state variables to the pricing kernel where } \lambda_{t} = \lambda_{0} + \Lambda_{1}z_{t} \text{ is a time-varying vector of market price of risk}$
- > The price of an asset at time $t: P_t = E_t[m_{t+1}X_{t+1}]$

> Recursively,
$$P_0 = E\left[\prod_{s=0}^t m_s(X_t)\right]$$

Stochastic Discount Factors

Estimation Procedure

- > VAR parameters (c, B, and Σ) are estimated by maximum likelihood
- ► Risk parameters (λ_0 and Λ_1) can be estimated by minimizing the sum of the squared differences between the fitted yields of the term structure model and historical zero coupon yields.

$$\min_{\{\lambda_0,\Lambda_1\}} \sum_{t=1}^T \sum_{n=1}^N (\hat{y}_t^{(n)} - y_t^{(n)})^2$$

where $\hat{y}_t^{(n)} = -\frac{A_n}{n} - \frac{B'_n}{n} z_t$

and A_n and B_n can be solved recursively

$$A_{n} = -\delta_{0} + A_{n-1} + B'_{n-1} (c - \Sigma \lambda_{0}) + \frac{1}{2} B'_{n-1} \Sigma \Sigma' B_{n-1}$$
$$B_{n} = -\delta_{1} + (B - \Sigma \Lambda_{1})' B_{n-1}$$

Non-Negative Equity Guarantee in RM

 \succ For a fixed termination time *t*

 $NN_t = \max(L_t - H_t, 0)$

For random termination time

$$NN = \sum_{t=0}^{\omega - x - 1} E\left[\left(\prod_{s=0}^{t} m_s\right)_t p_x q_{x+t} \max(L_t - H_t, 0)\right]$$

Cash flow analysis

$$RM = \sum_{t=0}^{\omega - x - 1} p_x q_{x+t} e^{-r_t t} \left[\min(L_t, H_t) - L_0 e^{ct} \right]$$

Lease for Life in HR

 \succ For a fixed termination time T

$$LL_0 = \sum_{t=0}^T E\left[\left(\prod_{s=0}^t m_s\right)H_t g_t\right]$$

For random termination time

$$LL = \sum_{t=0}^{\omega - x - 1} E\left[\left(\prod_{s=0}^{t} m_{s}\right)_{t} p_{x} H_{t} g_{t}\right]$$

Cash flow analysis

$$HR = \sum_{t=0}^{\omega - x - 1} p_x q_{x+t} e^{-r_t t} \left[H_t - (H_0 - LL) e^{ct} \right]$$

Age	НО	LTV/Acq	Reverse Mortgage			Home Reversion	
			NN	Premium	EPV(RM)	LL	EPV(HR)
65	480,000	64%	19,947	0.5465%	86,352	5,015	20,444
65	540,000	64%	22,440	0.5465%	97,146	5,642	23,000
65	600,000	64%	24,933	0.5465%	107,940	6,269	25,556
75	480,000	70%	18,086	0.6792%	61,996	7,837	25,422
75	540,000	70%	20,346	0.6792%	69,746	8,817	28,600
75	600,000	70%	22,607	0.6792%	77,495	9,797	31,778
85	480,000	76%	16,637	1.042%	40,568	11,024	23,861
85	540,000	76%	18,717	1.042%	45,639	12,402	26,844
85	600,000	76%	20,797	1.042%	50,710	13,780	29,827

LTV

Equity release LTVs Across products and countries

Payoff Comparison

Quantile Function

Risk Measures

			Reverse Mortgage					
	VaR 95%	VaR 99%	VaR 99.5%	CVaR 95%	CVaR 99%	CVaR 99.5%		
A65H48L64	-49.12	-113.30	-126.23	-88.11	-134.51	-149.18		
A65H54L64	-55.26	-127.46	-142.01	-99.12	-151.32	-167.83		
A65H60L64	-61.40	-141.62	-157.79	-110.14	-168.13	-186.48		
A75H48L70	-43.07	-112.87	-128.19	-85.36	-137.80	-159.35		
A75H54L70	-48.45	-126.98	-144.21	-96.03	-155.03	-179.26		
A75H60L70	-53.83	-141.09	-160.24	-106.69	-172.26	-199.18		
A85H48L76	-29.68	-89.94	-118.16	-64.63	-120.82	-141.05		
A85H54L76	-33.39	-101.19	-132.93	-72.71	-135.92	-158.68		
A85H60L76	-37.10	-112.43	-147.70	-80.79	-151.02	-176.32		
Home Reversion								
	VaR 95%	VaR 99%	VaR 99.5%	CVaR 95%	CVaR 99%	CVaR 99.5%		
A65H48L64	-137.02	-178.09	-186.37	-161.97	-191.66	-201.05		
A65H54L64	-154.14	-200.35	-209.66	-182.21	-215.62	-226.18		
A65H60L64	-171.27	-222.61	-232.96	-202.46	-239.58	-251.32		
A75H48L70	-123.11	-171.97	-182.70	-152.71	-189.43	-204.50		
A75H54L70	-138.50	-193.47	-205.53	-171.80	-213.10	-230.07		
A75H60L70	-153.89	-214.96	-228.37	-190.89	-236.78	-255.63		
A85H48L76	-97.19	-140.96	-155.19	-122.44	-161.31	-176.83		
A85H54L76	-109.33	-158.58	-174.58	-137.75	-181.47	-198.93		
A85H60L76	-121.48	-176.20	-193.98	-153.05	-201.63	-221.03		

Developing the Equity Release Markets

Conclusions

Comparison between RM and HR

- RM: accumulation of debt over the life of the contract
- HR: debt-free.
- RM: senior homeowners bear various risks, including longevity risk, interest rate risk and property value risk
- > HR: these risks are remitted to the provider with the transfer of the title.
- RM: providers want house price to rise, while homeowners do not care
- HR: The interests of investors and consumers are aligned: both want the value of the home to rise
- Consumers may prefer home reversion product, but providers bear higher risk and need more stringent capital requirement.