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Background

Demographic transition
• The global population aged over 80 is forecasted to triple from 2020 to 426 million in 

2050 (UN, 2021) 

• Rising demand for LTC insurance (Crimmins and Beltran-Sanchez, 2011)

Need to introduce models that can reliably project the lifespans and estimate the 

disability and mortality trajectories of the oldest-old
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Background

Oldest-old mortality estimation issues

• Data limitation and inaccuracy restrict the analysis of oldest-old mortality

Unparalleled opportunity for studies of oldest-old mortality in China

• Developing countries are encountering more rapid population ageing

• Massive population: over 24 million people over 80 in 2020

Research aims
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Aims

Research aims

• Comprehensively evaluating China’s oldest-old mortality trajectories from 1998 to 2018. 

• Propose a modelling framework that can incorporate several covariates into the mortality 

trajectories for the oldest-old based on left truncated right censored individual level data
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Oldest-old Mortality Behaviors

Mortality deceleration or exponentially increasing

Mortality deceleration
(Greenwood and Irwin, 1939 )
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Modelling mortality differentials

Extending Parametric model

• Include covariates into Gompertz mortality law by extending parameters. (Richards, 2008)

• Survival tree (Ciampi et al., 1995; Davis and Anderson, 1989)

• Combined Actuarial Neural Network (CANN) (Wang et al., 2022)

Non-parametric model

𝛼𝛼𝑖𝑖 = 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 + �
𝑗𝑗=1

𝑝𝑝
𝛼𝛼𝑗𝑗𝑧𝑧𝑗𝑗

where 𝑧𝑧𝑗𝑗 is the response for covariates 𝑗𝑗
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Chinese Longitudinal Health Longevity Survey

The CLHLS has one of the largest samples of the oldest-old in the world. 

• Baseline survey in 1998, 7 followe-up surveys in 2000, 2002, 2005, 2008, 2011, 2014, and

2018.

• Interview all possible centenarians (aged over 100) in the surveyed provinces.

• Survival data is left-truncated and right-censored (LTRC).

• Total number of observations aged from 80 to 115 in 7 survey waves is 59,171.

Data size

Wave

Time
1998-2000 2000-2002 2002-2005 2005-2008 2008-2011 2011-2014 2014-2018

Population 8,157 9,638 10,458 9,431 10,847 6,266 4,371

Deaths 3,344 3,326 5,358 4,824 5,283 2,527 2,018

Death (%) 41% 35% 51% 51% 49% 40% 46%
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CLHLS data analysis

Questionaries

31 variables in the CLHLS are selected. They can be grouped into six categories.

Location Psychological
health

Lifestyle Demographical
variable

Capability
test

Physical
health

• Province

• Residency

……

• ADL status

• Interviewer

rated health

……

• Anxiety

• Loneliness

• Optimism

……

• Smoke

• Drink

……

• Occupation

• Education

• Gender

……

• General

ability test

……
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Methodology

Overview

Select baseline parametric model

Combine baseline model with bagged LTRC survival tree

(extend work by Richards 2008)

Parametric Bagged Survival Tree (PBST)

• The baseline model parameters are adjusted by

the terminal nodes from the survival tree

Using Integrated Brier Score with 10-folds cross validation to check model’s
prediction error
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Baseline model selection

Six parametric mortality models are tested

Mortality law
Force of mortality
𝜇𝜇𝑥𝑥

Mortality law
Force of mortality
𝜇𝜇𝑥𝑥

Gompertz 𝛼𝛼exp(𝛽𝛽𝛽𝛽) Kannisto
𝛼𝛼exp(𝛽𝛽𝛽𝛽)

1 + 𝛼𝛼exp(𝛽𝛽𝛽𝛽)

Gompertz-
Makeham

𝛼𝛼 exp 𝛽𝛽𝛽𝛽 + 𝜆𝜆 Beard
𝛼𝛼exp(𝛽𝛽𝛽𝛽)

1 + 𝛼𝛼exp(𝛽𝛽𝛽𝛽) + 𝜆𝜆

Perks
𝛼𝛼exp(𝛽𝛽𝛽𝛽)

1 + 𝛾𝛾exp(𝛽𝛽𝛽𝛽) + 𝜆𝜆 Thatcher
𝛼𝛼exp(𝛽𝛽𝛽𝛽)

1 + 𝛾𝛾exp(𝛽𝛽𝛽𝛽)

Based on individual level data, parametric model with least Akaike Information Criterion (AIC)

is selected as the baseline model 
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• Adjusting the baseline model parameters by the terminal nodes from the survival trees

• Assign new predictor NODE to indicate the terminal node the observation belongs

Combine baseline model with bagging LTRC survival tree

Parametric Survival Tree (PST)

𝛼𝛼 = 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 + 𝛼𝛼2𝑘𝑘2 + 𝛼𝛼3𝑘𝑘3 + ⋯+ 𝛼𝛼6𝑘𝑘6

• New covariate ”node” create to indicate which terminal node the observation belongs

• Parameter adjustment:
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Using bagging to reduce high variety in the survival tree

• Randomly select subset of observations to build Parametric Survival Tree (PST)

Combine baseline model with bagging LTRC survival tree

Parametric Bagged Survival Tree (PBST)

PST

• We ensemble the PST to form PBST by taking the average of the survival estimations from

each PST

PST PST
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Age-only model fitting (1998 – 2018 CLHLS wave)

Mortality law AIC
No. 

Parameter
AIC relative 
to maximum

IBS
(10-fold CV)

Gompertz 52,008 2 0 0.194

Gompertz-

Makeham

51,945 3 -63 0.191

Kannisto 51,946 2 -62 0.191

Perks 51,958 4 -50 0.198

Beard 51,943 3 -65 0.189

Thatcher 51,947 3 -61 0.195

All training set observations in individual level (n=50,000) are fitted to the six candidate

models. Result supports mortality deceleration at the oldest-old age.
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Test set prediction performance

IBS on test set

Waves (Baseline model)

Test set size Null baseline model PBST

1998-2000 (Beard) 2,157 0.186 0.133

2000-2002 (Kannisto) 2,138 0.182 0.177

2002-2005 (Thatcher) 2,458 0.201 0.154

2005-2008 (Gompertz - Makeham) 1,931 0.180 0.163

2008-2011 (Beard) 2,847 0.188 0.129

2011-2014 (Beard) 1,266 0.159 0.145

2014-2018 (Beard) 1,371 0.140 0.107

1998-2018 (Beard) 9,168 0.171 0.158

Parametric bagging survival tree (PBST) has the greatest reduction of out-of-sample prediction

error, suggesting the best prediction performance.
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Further research

• Longitudinal data attrition bias

• Build logistic model using ”lost to follow-up or not” as the binary response

• Using covariates to predict the observation’s probability to attrit from surveys

• Impose weights to the likelihood to adjust attrition bias

• Replace bagging ensemble method with random survival forest or other statistical

learning methods to reduce variance

• Extend the static parametric model to stochastic parametric model (E.g., the Lee-

Carter model, or the CBD model)
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Contribution

• Formulating framework to analyze the mortality trajectories for China’s oldest-old using

individual level data

• Most waves show mortality deceleration in the oldest-old mortality trajectories

• Combining ensemble survival trees with oldest-old parametric models

• Allow us to incorporate unlimited numbers of factors into modelling of oldest-old

force of mortalities and survival probabilities

• Replacing the Kaplan Meier survival estimate output in survival tree with smooth

parametric model



Thank You

Contact: Joey Yung

hyjoeyyung@gmail.com
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