

Modelling mortality trajectories for China's oldest-old

Presenter: Joey Yung

Authors: Joey Yung | Dr Katja Hanewald | Dr Andrés Villegas

Seventeenth International Longevity Risk and Capital Markets

Solutions Conference

3

4

5

6

Literature review

- Data
 - Methodology
 - **Empirical results**
 - Limitations and contributions

Background

Demographic transition

 The global population aged over 80 is forecasted to triple from 2020 to 426 million in 2050 (UN, 2021)

• Rising demand for LTC insurance (Crimmins and Beltran-Sanchez, 2011)

Need to introduce models that can reliably project the lifespans and estimate the

disability and mortality trajectories of the oldest-old

Background

Oldest-old mortality estimation issues

• Data limitation and inaccuracy restrict the analysis of oldest-old mortality

Unparalleled opportunity for studies of oldest-old mortality in China

- Developing countries are encountering more rapid population ageing
- Massive population: over 24 million people over 80 in 2020

		Research aims	
			×17×
Research aims	Literature review	Methodology Data and model setting Empirical results	KOK

Research aims

- Comprehensively evaluating China's oldest-old mortality trajectories from 1998 to 2018.
- Propose a modelling framework that can incorporate several covariates into the mortality trajectories for the oldest-old based on left truncated right censored individual level data

Oldest-old Mortality Behaviors

Extending Parametric model

• Include covariates into Gompertz mortality law by extending parameters. (Richards, 2008)

$$\alpha_i = \alpha_{baseline} + \sum_{j=1}^p \alpha_j z_j$$

where z_j is the response for covariates j

Non-parametric model

- Survival tree (Ciampi et al., 1995; Davis and Anderson, 1989)
- Combined Actuarial Neural Network (CANN) (Wang et al., 2022)

Chinese Longitudinal Health Longevity Survey

The CLHLS has one of the largest samples of the oldest-old in the world.

- Baseline survey in 1998, 7 followe-up surveys in 2000, 2002, 2005, 2008, 2011, 2014, and 2018.
- Interview all possible centenarians (aged over 100) in the surveyed provinces.
- Survival data is left-truncated and right-censored (LTRC).
- Total number of observations aged from 80 to 115 in 7 survey waves is 59,171.

Data size

Way Time	ve 1998-2000	2000-2002	2002-2005	2005-2008	2008-2011	2011-2014	2014-2018
Population	8,157	9,638	10,458	9,431	10,847	6,266	4,371
Deaths	3,344	3,326	5,358	4,824	5,283	2,527	2,018
Death (%)	41%	35%	51%	51%	49%	40%	46%
h aims	Literature review	Data		Methodology	Empirical res	sults	Conclusion

9

Methodology

Six parametric mortality models are tested

Mortality law	Force of mortality μ_x	Mortality law	Force of mortality μ_x
Gompertz	$\alpha \exp(\beta x)$	Kannisto	$\frac{\alpha \exp(\beta x)}{1 + \alpha \exp(\beta x)}$
Gompertz- Makeham	$\alpha \exp(\beta x) + \lambda$	Beard	$\frac{\alpha \exp(\beta x)}{1 + \alpha \exp(\beta x)} + \lambda$
Perks	$\frac{\alpha \exp(\beta x)}{1 + \gamma \exp(\beta x)} + \lambda$	Thatcher	$\frac{\alpha \exp(\beta x)}{1 + \gamma \exp(\beta x)}$

Based on individual level data, parametric model with least Akaike Information Criterion (AIC)

is selected as the baseline model

Research aims

Combine baseline model with bagging LTRC survival tree

Parametric Survival Tree (PST)

- Adjusting the baseline model parameters by the terminal nodes from the survival trees
- Assign new predictor NODE to indicate the terminal node the observation belongs

- New covariate "node" create to indicate which terminal node the observation belongs
- Parameter adjustment: $\alpha = \alpha_{baseline} + \alpha_2 k_2 + \alpha_3 k_3 + \dots + \alpha_6 k_6$

Research aims

Data

Combine baseline model with bagging LTRC survival tree

 We ensemble the PST to form PBST by taking the average of the survival estimations from each PST

Research aims

Age-only model fitting (1998 - 2018 CLHLS wave)

All training set observations in individual level (n=50,000) are fitted to the six candidate models. Result supports mortality deceleration at the oldest-old age.

Nortality lawAICNo.
ParameterOOOOGompertz52,0082Gompertz-51,9453MakehamOO

Gompertz-	51,945	3	-63	0.191
Makeham				
Kannisto	51,946	2	-62	0.191
Perks	51,958	4	-50	0.198
Beard	51,943	3	-65	0.189
Thatcher	51,947	3	-61	0.195

AIC relative

to maximum

Conclusion

0

CLHLS 1998-2018 Force of Mortality

14

IBS

(10-fold CV)

0.194

Test set prediction performance

IBS on test set	Test set size	Null baseline model	PBST
Waves (Baseline model)	<u>_</u>		
1998-2000 (Beard)	2,157	0.186	0.133
2000-2002 (Kannisto)	2,138	0.182	0.177
2002-2005 (Thatcher)	2,458	0.201	0.154
2005-2008 (Gompertz - Makeham)	1,931	0.180	0.163
2008-2011 (Beard)	2,847	0.188	0.129
2011-2014 (Beard)	1,266	0.159	0.145
2014-2018 (Beard)	1,371	0.140	0.107
1998-2018 (Beard)	9,168	0.171	0.158

Parametric bagging survival tree (PBST) has the greatest reduction of out-of-sample prediction error, suggesting the best prediction performance.

Research aims

15

Further research

- Longitudinal data attrition bias
 - Build logistic model using "lost to follow-up or not" as the binary response
 - Using covariates to predict the observation's probability to attrit from surveys
 - Impose weights to the likelihood to adjust attrition bias
- Replace bagging ensemble method with random survival forest or other statistical learning methods to reduce variance
- Extend the static parametric model to stochastic parametric model (E.g., the Lee-Carter model, or the CBD model)

Contribution

- Formulating framework to analyze the mortality trajectories for China's oldest-old using individual level data
 - Most waves show mortality deceleration in the oldest-old mortality trajectories
- Combining ensemble survival trees with oldest-old parametric models
 - Allow us to incorporate unlimited numbers of factors into modelling of oldest-old force of mortalities and survival probabilities
 - Replacing the Kaplan Meier survival estimate output in survival tree with smooth parametric model

Thank You

Contact: Joey Yung

hyjoeyyung@gmail.com

Beard, R. E. 1971. Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. Biological Aspects of Demography, 57-68.

Ciampi, A., A. Negassa, and Z. Lou. 1995. Tree-Structured Prediction for Censored Survival Data and the Cox Model. Journal of Clinical Epidemiology 48, 675-689.

Crimmins, E. M. and H. Beltran-Sanchez. 2011. Mortality and morbidity trends: Is there compression of morbidity? Journals of Gerontology: Series B, vol. 66B, no. 1, pp. 75-86.

Coale, A. J. and E. E. Kisker. 1990. Defects in data on old-age mortality in the United States: new procedures for calculating mortality schedules and life tables at the highest ages, Asian and Pacific Population Forum, 4(1): 1-31

Davis, R. B., and J. R. Anderson. 1989. Exponential Survival Trees. Statistics in Medicine 8, 947-961.

Appendix

Fu, W. and J. S. Simonoff. 2017. Survival trees for left-truncated and right-censored data, with application to time-varying covariate data, Biostatistics, 18(2): 352–369.

Gavrilov, L. A. and N. S. Gavrilova. 1991. A Quantitative Approach. The Biology of Life Span, New York: Harwood Academic.

Gompertz, B. 1825. The nature of the function expressive of the law of human mortality, Philosophical Transactions of the Royal Society, 115, 513-585.

Kannisto, V., 1992. Presentation at a workshop on old age mortality at Odense University.

Makeham, W. M. 1859. On the law of mortality and the construction of annuity tables, Journal of the Institute, 8(6): 301-310

Perks, W. 1932. On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries (1886-1994) 63.1: 12-57.

Richards, S. J. 2008. Applying survival models to pensioner mortality data. British Actuarial Journal: 257-326.

Thatcher, A. R. 1999. The long-term pattern of adult mortality and the highest attained age. Journal of the Royal Statistical Society: Series A (Statistics in Society) 162.1: 5-43.

Thatcher, A. R., V. Kannisto, J. W. Vaupel. 1998. The force of mortality at ages 80 to 120.

Appendix

United Nations. 2017. World Population Ageing 2017-Highlights. New York: Department of Economic and Social Affairs, United Nations. Retrieved from: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Hig hlights.pdf

Vaupel, J. W., J. R. Carey, K. Christensen, et al. 1998. Biodemographic trajectories of longevity. Science, 280(5365): 855-860.

Wang, Q., K. Hanewald, and X. Wang. 2020. Multi-State Health Transition Modeling Using Neural Networks. ARC Centre of Excellence in Population Ageing Research (CEPAR) Working Paper No. 2020/25.