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Background

Demographic transition

* The global population aged over 80 is forecasted to triple from 2020 to 426 million in
2050 (UN, 2021)

« Rising demand for LTC insurance (Crimmins and Beltran-Sanchez, 2011)

Need to introduce models that can reliably project the lifespans and estimate the

disability and mortality trajectories of the oldest-old
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Background

Oldest-old mortality estimation issues

« Data limitation and inaccuracy restrict the analysis of oldest-old mortality

Unparalleled opportunity for studies of oldest-old mortality in China
« Developing countries are encountering more rapid population ageing

* Massive population: over 24 million people over 80 in 2020
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Aims

Research aims

« Comprehensively evaluating China’s oldest-old mortality trajectories from 1998 to 2018.

* Propose a modelling framework that can incorporate several covariates into the mortality

trajectories for the oldest-old based on left truncated right censored individual level data
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Oldest-old Mortality Behaviors

Mortality deceleration or exponentially increasing
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Modelling mortality differentials

Extending Parametric model

* Include covariates into Gompertz mortality law by extending parameters. (Richards, 2008)

p
A; = QApgseline T Z - ajzj
]=

where z; is the response for covariates j

Non-parametric model

* Survival tree (Ciampi et al., 1995; Davis and Anderson, 1989)
« Combined Actuarial Neural Network (CANN) (Wang et al., 2022)
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Chinese Longitudinal Health Longevity Survey

The CLHLS has one of the largest samples of the oldest-old in the world.

« Baseline survey in 1998, 7 followe-up surveys in 2000, 2002, 2005, 2008, 2011, 2014, and
2018.

* Interview all possible centenarians (aged over 100) in the surveyed provinces.
 Survival data is left-truncated and right-censored (LTRC).

» Total number of observations aged from 80 to 115 in 7 survey waves is 59,171.

Data size

Population 8,157 9,638 10,458 9,431 10,847 6,266 4,371
Deaths 3,344 3,326 5,358 4,824 5,283 2,527 2,018
Death (%) 41% 35% 51% 51% 49% 40% 46%
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CLHLS data analysis

Questionaries

31 variables in the CLHLS are selected. They can be grouped into six categories.

Location

Province

Residency

Research aims
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Methodology

Overview

Select baseline parametric model

!

Combine baseline model with bagged LTRC survival tree
(extend work by Richards 2008)

!

Parametric Bagged Survival Tree (PBST)

* The baseline model parameters are adjusted by

the terminal nodes from the survival tree

!

Using Integrated Brier Score with 10-folds cross validation to check model’s
prediction error
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Baseline model selection

Six parametric mortality models are tested

. aexp(fx)
Gompertz aexp(Bx) Kannisto 1+ aexp(Bx)
Gompertz- aexp(Bx)
Makeham aexp(fx) +1  Bearc 1+ aexp(fx) A
aexp(fx) aexp(fx)
Perks T+ yexp(pry 7 e T+ yexp(B)

Based on individual level data, parametric model with least Akaike Information Criterion (AIC)

is selected as the baseline model
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Combine baseline model with bagging LTRC survival tree

Parametric Survival Tree (PST)

« Adjusting the baseline model parameters by the terminal nodes from the survival trees

« Assign new predictor NODE to indicate the terminal node the observation belongs

k1 k2 kS k6

* New covariate "node” create to indicate which terminal node the observation belongs

« Parameter adjustment: X = Apgseline T A2ky + azks + -+ agkg
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Combine baseline model with bagging LTRC survival tree

Parametric Bagged Survival Tree (PBST)

Using bagging to reduce high variety in the survival tree

« Randomly select subset of observations to build Parametric Survival Tree (PST)

PST PST PST

« We ensemble the PST to form PBST by taking the average of the survival estimations from

each PST
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Age-only model fitting (1998 - 2018 CLHLS wave)

Force of Mortality

All training set observations in individual level (n=50,000) are fitted to the six candidate

models. Result supports mortality deceleration at the oldest-old age.

CLHLS 1998-2018 Force of Mortality
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Test set prediction performance

1998-2000 (Beard) 2,157 0.186 0.133
2000-2002 (Kannisto) 2,138 0.182 0.177
2002-2005 (Thatcher) 2,458 0.201 0.154
2005-2008 (Gompertz - Makeham) 1,931 0.180 0.163
2008-2011 (Beard) 2,847 0.188 0.129
2011-2014 (Beard) 1,266 0.159 0.145
2014-2018 (Beard) 1,371 0.140 0.107
1998-2018 (Beard) 9,168 0.171 0.158

Parametric bagging survival tree (PBST) has the greatest reduction of out-of-sample prediction

error, suggesting the best prediction performance.
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Further research

* Longitudinal data attrition bias
« Build logistic model using “lost to follow-up or not” as the binary response
« Using covariates to predict the observation’s probability to attrit from surveys

* Impose weights to the likelihood to adjust attrition bias

* Replace bagging ensemble method with random survival forest or other statistical
learning methods to reduce variance
« Extend the static parametric model to stochastic parametric model (E.g., the Lee-

Carter model, or the CBD model)
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Contribution

Formulating framework to analyze the mortality trajectories for China’s oldest-old using
individual level data

Most waves show mortality deceleration in the oldest-old mortality trajectories

« Combining ensemble survival trees with oldest-old parametric models

« Allow us to incorporate unlimited numbers of factors into modelling of oldest-old

force of mortalities and survival probabilities

Replacing the Kaplan Meier survival estimate output in survival tree with smooth

parametric model
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Thank You

Contact: Joey Yung
hyjoeyyung@gmail.com
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