Reinsurance of longevity: risk transfer and capital management solutions

Daria Ossipova Kachakhidze
Centre R&D Longevity-Mortality

Beijing, September 6, 2013
Plan

<table>
<thead>
<tr>
<th></th>
<th>Longevity risk. Where reinsurance can help?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ways to cover longevity risk: depending on your needs...</td>
</tr>
<tr>
<td>3</td>
<td>Reinsurance solutions: some examples and where the price come from.</td>
</tr>
</tbody>
</table>
Longevity risk: insured living longer than expected by pension/annuity provider

Female life expectancy at age 65

Switzerland:
Age at death distribution
Mortality evolution: changing drivers

Historical demographic regimes (Europe: up to mid-XVIII century)
- Prevalence of infectious diseases
- Significant fluctuations due to epidemics, famines (bubonic plague - mid. XIV century)
 - High mortality

Receding of infectious pandemics
(Europe: mid-XVIII century – beg. 1960's)
- The epidemics become rare
- Infectious diseases back off
- Mortality declines, fluctuations decrease

Cardio-vascular revolution
(Europe: from 1970s)
- Reduction infectious diseases contribute little to the increase of life expectancy
- Cardio-vascular diseases become the main driver of mortality decrease
- Society diseases make less deaths

A new stage? (mid 80-s +)
- Mortality reductions at increasingly older ages
- Treatment and prevention of cerebrovascular diseases
- Greater attention paid to the health of the elderly

Global Life
Longevity risk components

Random fluctuations

RF1: intrinsic - volatility due to the oscillations around the trend:
Year to year variation in mortality around a mean that is due to irregular trends in epidemics, weather etc.

RF2: sampling risk - volatility due to portfolio’s size and heterogeneity:
A small portfolio does not allow for a good mutualisation. Moreover, if annuity amounts are very heterogeneous, survival of a few particular annuitants can significantly change future cash flows.

Death rates for the general population (ONS - red) and for pensioners (CMI - blue) on the log scale, females:

![Graphs showing death rates for general population and pensioners from age 60 to 90]
Longevity risk components

T: Trend
The mortality improvement is not a diversifiable risk: it affects the whole portfolio and thus cannot be managed using the law of large numbers.

L: Current mortality level estimation
Estimation error based on observed mortality experience: the error is larger for small populations (or for poorly represented age groups).

Increase in pension value due to the level or trend misestimation and additional investment return on the reserves needed to compensate for it
(example based on the French table TGH05/TGF05 with flat interest rate of 3%):

<table>
<thead>
<tr>
<th></th>
<th>females</th>
<th>males</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doubled improvements</td>
<td>Mortality level at 80% of the expected (SCR shock)</td>
</tr>
<tr>
<td></td>
<td>pension value</td>
<td>interest rate</td>
</tr>
<tr>
<td>65</td>
<td>+5.7%</td>
<td>+43bp</td>
</tr>
<tr>
<td>75</td>
<td>+5.2%</td>
<td>+55bp</td>
</tr>
<tr>
<td>85</td>
<td>+3.6%</td>
<td>+60bp</td>
</tr>
</tbody>
</table>
Longevity risk components

- RF random fluctuations
 - RF1 intrinsic
 - RF2 sampling risk
Longevity risk components:

- RF random fluctuations
 - RF1 intrinsic
 - RF2 sampling risk

- T trend
 - selected model
 - selected calibration period

Intrinsic fluctuations
Sampling fluctuations
Real trend
Error in trend estimation
Longevity risk components

- RF random fluctuations
 - RF1 intrinsic
 - RF2 sampling risk
- T trend
 - selected model
 - selected calibration period
- L current level estimation
Longevity risk: forecast uncertainty

- Impact of each risk component

Short term forecast
- RF - random fluctuations
- L - current level estimation

Long term forecast
- T – trend risk
- RF2 - sampling risk (for small portfolios)
How to decrease uncertainty?

- L - level estimation
- RF2 - sampling fluctuations
- RF1 - yearly variations in national mortality
- T - trend risk

- Lower margins due to “decreased uncertainty”
 (large volumes; geographical distribution)
- Expertise in longevity risk estimation and follow-up
- Tailor-made solutions based on Insurer’s requests

Size

- geographical distribution + mutualisation across ages
 - not diversifiable (could be partially offset by mortality products & geographical distribution)

- reinsurance
Plan

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longevity risk. Where reinsurance can help?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ways to cover longevity risk: depending on your needs...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reinsurance solutions: some examples and where the price come from.</td>
<td></td>
</tr>
</tbody>
</table>
Ways to cover longevity risk

- Indemnity
- Quota-share
- Reinsurer
- Excess cover
- Exit option
- Longevity swap
- Index-based
- Term contract
- Until expiry
- Financial market
What impacts the choice of cover?

- Reserving level (Best Estimate or regulatory table? Assets?)
- Portfolio characteristics (size? in payment? part of deferred? …)
- Administration system
- Internal model / Solvency regime
- Diversification
Two categories of longevity hedge:

Indemnity

- reflects actual longevity experience of the insured portfolio –

Based on actual payments made to annuitants!
Choosing your type of hedge

Index based

- cost effective as less due-diligence required
- no charge on the administration system: no exchange of seriatim data, death certificates, etc.
- straightforward calculation of parties’ liabilities
- capital release
- exit option and recalibration sometimes possible
- more potential counterparties

- basis risk stays with the insurer: not a PERFECT hedge
- maturity: fixed (ex. 10 or 20 years)
- reliance on index availability

Indemnity

- PERFECT hedge as reflects actual longevity experience of the insured portfolio
- maturity: until the last member dies; but could be fixed
- capital release
- traditional counterparties and treaty wordings
- risk completely out of the balance sheet

- higher due diligence and monitoring cost
- generally no exit option
- less transparent for the investors
Longevity index & basis risk

- Population basis risk

Underlying portfolio population ≠ National population

Differences in:
- Age and gender distribution
- Socio-economic profile
- Geographical distribution
- Size

Differences in:
- Current level of mortality
- Improvements of mortality
- Random fluctuations

Carefully constructing and rebalancing the hedge
Choosing a type of cover

Longevity swap
- Only biometric risk is transferred
- Annual predetermined cash flows are swapped for actual annuity payments
- Could be indemnity or index based
- Credit risk limited to longevity deviation

Quota - share
- Both longevity and asset risks are transferred (eventually split between different risk takers)
- Indemnity cover
- Higher credit risk

Excess cover
- Only biometric risk is transferred
- Extreme deviations are covered
- Solution mainly for capital relief
Choosing a counterparty/type of contract

Financial market
- Potentially liquid!
- More counterparties
- Collateral requirement more stringent
- Short maturity
- Execution risk

Reinsurer
- Traditional counterparty
- Maturity
- Collateral cost
- Less liquid

Why not both?
Plan

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longevity risk. Where reinsurance can help?</td>
</tr>
<tr>
<td>2</td>
<td>Ways to cover longevity risk: depending on your needs...</td>
</tr>
<tr>
<td>3</td>
<td>Reinsurance solutions: some examples and where the price come from.</td>
</tr>
</tbody>
</table>
Example 1: Classical longevity swap

Reinsurer

Actual annuities

Fixed (predetermined) cash flow

Insurer

Realised cash flows

Fixed cash flow
Reinsurance pricing

Reinsurance price = Best Estimate liabilities = Cost of capital + Expenses

Uncertainty linked to longevity risk components & operational risk

L- mortality level + T - mortality trend

Global Life
RF – random fluctuation components : influence of portfolio heterogeneity

Pension amount

<table>
<thead>
<tr>
<th>Gender</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>3 180</td>
<td>4 348</td>
<td>5</td>
<td>91 188</td>
</tr>
<tr>
<td>Males</td>
<td>4 463</td>
<td>5 416</td>
<td>5</td>
<td>75 013</td>
</tr>
</tbody>
</table>

Distribution of amounts

- 1% of the highest pensions account for 8% of the total volume
- 5% of the highest pensions account for 27% of the total volume
- 10% of the highest pensions account for 41% of the total volume
L - mortality level component: influence of portfolio heterogeneity

- Split the portfolio into homogeneous sub-groups:
 - Generally pension size is a good proxy to social class,
 - Keep the number of subgroups limited in order to maintain results significant,
 - Check against external datasets (ex. mortality by postcode).

- Example: 5 subgroups based on pension size. A/E ratio in lives and in amounts

<table>
<thead>
<tr>
<th>Pension size</th>
<th>A/E (lives)</th>
<th>A/E (amount)</th>
<th>Nb of deaths</th>
<th>Exposure (lives)</th>
<th>Exposure (amount)</th>
<th>% total (lives)</th>
<th>% total (amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3 749</td>
<td>114%</td>
<td>112%</td>
<td>1 812</td>
<td>56 189</td>
<td>85 mln</td>
<td>67%</td>
<td>26%</td>
</tr>
<tr>
<td>3 750 – 7 499</td>
<td>98%</td>
<td>98%</td>
<td>263</td>
<td>15 220</td>
<td>81 mln</td>
<td>18%</td>
<td>24%</td>
</tr>
<tr>
<td>7 500 +</td>
<td>88%</td>
<td>85%</td>
<td>158</td>
<td>11 891</td>
<td>165 mln</td>
<td>14%</td>
<td>50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pension size</th>
<th>A/E (lives)</th>
<th>A/E (amount)</th>
<th>Nb of deaths</th>
<th>Exposure (lives)</th>
<th>Exposure (amount)</th>
<th>% total (lives)</th>
<th>% total (amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2 999</td>
<td>101%</td>
<td>102%</td>
<td>665</td>
<td>26 978</td>
<td>31 mln</td>
<td>73%</td>
<td>31%</td>
</tr>
<tr>
<td>3 000 +</td>
<td>86%</td>
<td>72%</td>
<td>115</td>
<td>9 879</td>
<td>70 mln</td>
<td>27%</td>
<td>69%</td>
</tr>
</tbody>
</table>
Cost of capital

- Cost of capital is lower if good volume / high quality mortality experience provided by Client.

Example: Cost of capital linked to uncertainty in L-level estimation is 2.5 times higher for mortality experience based on 2000 deaths compared to that based on 300 deaths
Capital Solvency II: impact of reinsurance

(*) SCR estimated by standard formula
Insurer’s obligations

In order to propose the best price through limiting the operational risk for the reinsurer: strict requirements on the administration (especially if insurer keeps a very small retention)

- Certificates of existence and death certificates
- Financial penalties
- Right to audit
- List of data provided to SGL at outset and monthly
- Control of payments
- Termination rights due to persistent administrative breaches
-
Example 2: Index based solution for capital optimisation
Example 2: Index based solution for capital optimisation

- Scenario: Longevity is higher than expected and breaks the attachment point; Reinsurer makes a payment to the cedent.

- Possibility: Exit option after 5 years to recalibrate the index and optimise the economy of capital.
Example 3: Index-based solution for optimising capital through diversification

- Two counterparties, one overweight on longevity, another on pandemic risk: exchange of exposures

- Attachment points sufficiently far away to optimise capital release on both sides and minimise premium exchange: a win-win situation.
Scor Global Life added value

- Solutions tailored to your specific requirements
- Mortality analysis and forecasting
- Advise on claims payment monitoring
- High level expertise thanks to our R&D Centre on Longevity & Mortality Insurance
Thank you for your attention!