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Abstract

This paper proposes a new test for simultaneous intraday jumps (co-jumps) in a panel of high

frequency financial data. We utilize intraday first-high-low-last values of asset prices to construct

estimates for the cross-variation of returns in a large panel of high frequency financial data, and

then employ these estimates to provide a test statistic that can detect co-jumps. Simulations

show that a bias corrected version of the test can be used in the presence of microstructure noise.

When applied to a panel of high frequency data from the Chinese mainland stock market, our

test identifies co-jumps that can be associated with announcements relating to monetary policy

and stock market regulations.
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1 Introduction

The documentation and study of jumps (discontinuities) in asset prices is important for many

financial decisions, and this has led to a burgeoning literature that tests for jumps and characterizes

their properties. The jump test developed by Barndorff-Nielsen and Shephard (2006), henceforth

the BN-S test, plays a leading role in this literature, but since this test is designed for a single asset

while financial considerations usually involve many assets, there is a need for tests that can detect

simultaneous jumps in many assets (co-jump tests) as well. Progress on this front includes the

development of tests for co-jumps in a pair of asset returns (Barndorff-Nielsen and Shephard (2003),

Gobbi and Mancini (2007) and Jacod and Todorov (2009)), as well as a co-jump test developed by

Bollerslev, Law and Tauchen (2008) that is applicable to a large panel of high-frequency returns.

The intuition behind this last test (henceforth called the BLT test) is that idiosyncratic noise in

individual returns can hide the presence of a synchronous component, so that a test based on the

cross products of returns in a panel can avoid this problem while still being sensitive to systematic

movements across all stocks.

The BLT (2008) co-jump test relies on a measure of covariation in the panel that is constructed

using the average pair-wise cross product of returns. However, a return-based estimator does not ne-

cessarily provide the best estimator of this covariation. Its simplicity facilitates very straightforward

construction of the test statistic, but the literature on covariance estimation emphasizes efficiency-

bias considerations in high frequency settings, and efficient estimation is particularly desirable when

constructing tests for use in multivariate contexts. There are now many ways of measuring covari-

ation in high frequency settings, and they vary with respect to their computational difficulty, bias

and efficiency. Of particular interest here is the work in Bannouh, van Dijk and Martens (2009) that

promotes the use of range based estimators of covariance. Their Monte Carlo illustrates that when

there are no market frictions, realized co-range estimators can have variances that are up to five

times smaller than returns based realized co-variance estimators, and that simple additive bias cor-

rections can be very effective when microstructure noise is present and trading is not synchronous.
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Thus the use of intraday ranges instead of intraday returns can offer large efficiency gains without

substantially increasing the computational burden. The large efficiency gains arise from the fact

that the range can be very informative, since it is constructed by looking at the entire price process

in the sampled time interval.

This paper proposes a new test for co-jumps in panels of high frequency data that follows the

intuition behind the BLT test, but uses intraday first-high-low-last (FHLL) price values to capture

cross-variation. FHLL price values were first used by Garman and Klass (1980) in the context of

estimating daily volatility. These authors suggested using the minimum variance linear combination

of the daily ranges and daily returns to estimate daily volatility, so that the information in returns is

augmented by the additional information contained in the range. They showed that the asymptotic

variance of this new estimator is 7.4 times smaller than the squared daily return and 1.5 times

smaller than the squared daily range for daily volatility estimation. Our use of first-high-low-last

(FHLL) price values in the intraday context offers the same efficiency gains, but like range based

estimators, it involves the need for bias correction because of the effects of microstructure biases in

high frequency settings. We use the additive correction proposed by Bannouh et al (2009) for this

purpose, because it is simple, easy to implement, and it appears to account for the net effect of the

many biases that occur in the high frequency context.

Our proposed test statistic is easy to calculate because it neither relies on estimating the entire

covariance structure of returns in the panel, nor on any explicit calculations of bivariate products

of prices/returns (that might not necessarily be observed at exactly the same time for different

assets). In fact, our test statistic can be calculated using existing univariate methodology, because

the average pair-wise cross product term in an n-asset context can also be written in terms of the

variance of the equally weighted portfolio and each of the n individual asset variances (see Brandt

and Diebold (2006), and BLT (2008)). Like the BLT statistic, our test statistic can not only identify

jump days, but it can also explicitly pinpoint co-jump times. Given the relative efficiency gains of

FHLL estimators, we expect that co-jump tests based on FHLL prices will be more powerful than
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the BLT (2008) returns based co-jump test.

Our test is based on a multivariate extension of an FHLL estimator for the covariance between

two returns, and since an FHLL covariance estimator is novel in itself, we conduct Monte Carlo

simulations to assess and compare it (and an associated bias-corrected version) with corresponding

range and return based covariance estimators. We simulate frictionless environments, situations

in which bid-ask bounce influences price, and situations in which trades are infrequent and not

synchronous, and we vary the intraday sampling frequencies as well. As expected the (uncorrected)

FHLL estimator is more biased than its range and return based counterparts. Once bias corrections

are employed, the RMSE of the FHLL estimators are lower than the (bias corrected) range and

returns estimators, and often substantially so. Having established the superior properties of bias

corrected FHLL estimation, we then use it to construct our co-jump test for the panel. We study

the test in situations in which microstructure noise is absent (and then present), and demonstrate

via simulation that the bias corrections successfully mitigate size distortion when microstructure

noise is present. We then demonstrate that the FHLL based cojump test has higher power than

analogously constructed co-jump tests based on realized range and realized variance. Finally, we

study an empirical example based on a high-frequency panel of forty stocks on the Chinese mainland

stock market. We use this data because previous research (Liao (2011)) has found that the jumps

in individual stocks of this emerging market are more frequent than those in developed financial

markets. We find evidence of several co-jumps per month, and note that about half of these can be

linked to announcements about changes in monetary policy or stock market regulations.

The rest of the paper is organized as follows. Section 2 introduces our FHLL price based

covariance estimator and analyzes its properties. Section 3 uses this new estimator to develop our

FHLL price based co-jump test. Section 4 conducts a Monte Carlo simulation to study the finite

sample performance of our new co-jump test, and compares its power properties with those of the

existing return-based co-jump test. Section 5 presents our main empirical findings for a panel of

stocks from the Chinese mainland stock market. Section 6 concludes.
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2 First-High-Low-Last Price Based Estimators

We let ps denote the log price of an asset, and assume that it evolves as a standard continuous time

diffusion process

dps = μ(s)ds+ σ(s)dWs,

where μ(s) and σ(s) denote the drift and volatility respectively, and Ws is a standard Brownian

motion.

We assume that high-frequency data are available for each day t which runs from time t− 1 to

t, and that we have prices relating to M intraday periods denoted by {tj} for j = 1, . . . ,M , where

tj ∈ [t − 1, t]. In addition, we have m + 1 equally spaced price observations recorded within each

intraday time interval [tj−1,tj ] (i.e. at t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj).1 The four

extreme price values within each intraday time interval [tj−1,tj ] are:

ptj−1: the first (log) price observed during the time interval [tj−1,tj ];

ptj : the last (log) price observed during the time interval [tj−1,tj ];

htj−1: the highest (log) price observed during the time interval [tj−1,tj ], which is

max{t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj};

ltj−1: the lowest (log) price observed during the time interval [tj−1,tj ], which is

min{t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj}.

2.1 First-High-Low-Last Price Based Variance Estimator

The most popular approach to estimate the integrated variance
R t
t−1 σ

2(s)ds of the above standard

continuous time diffusion process is to use “Realized Volatility”, which is constructed using the sum

of squared interval returns via

RVt =
MX
j=1

r2tj =
MX
j=1

(ptj − ptj−1)
2, (1)

1M is the number of the intraday periods over a trading day, and each of these M intraday periods is divided into
m subintervals.
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where the return rtj of each time subinterval is calculated as the difference between the last price

and the first price of that interval. Andersen et al (2001) and Barndorff-Nielsen and Shephard (2004)

have proved that realized variance is a consistent estimator for the integrated variation over [t−1, t]

in the absence of microstructure noise, and that the asymptotic variance of realized volatility is

2
R t
t−1 σ

4(s)ds.

The range of an asset’s price is defined to be the difference between the highest price and the

lowest price during a fixed time interval. The use of the high-low price range in volatility estimation

dates back to Parkinson (1980). Recently Christensen and Podolskij (2007) and Martens and van

Dijk (2007) have re-considered the use of price range in a high frequency data context to estimate

the integrated variation in a standard continuous time diffusion model of (the logarithm of) an

asset’s price as

RRVM,m
t =

1

γ2,m

MX
j=1

s2ptj
=

1

γ2,m

MX
j=1

(htj−1 − ltj−1)
2, (2)

where γ2,m = E[s2w,m] and sw,m is the range of a standard Brownian motion over [0, 1], when we

observe m increments of the underlying continuous time process in each sampling interval tj . The

parameter γ2,m is monotonically increasing in m with γ2,1 = 1, and γ2,m → 4 ln 2 as m→∞.

Intuitively, the range reveals more information than the return over the same time interval

because the highs and lows of asset prices are formed from the entire price evolution path. Parkinson

(1980) provided mathematical derivations to show that the daily squared price range is about five

times more efficient than the daily squared return for estimating daily volatility. Simulations in

Martens and van Dijk (2007) demonstrated that in a frictionless market without microstructure

noise, realized range has a lower mean-squared error than realized volatility. This was corroborated

by the asymptotic properties derived by Christensen and Podolskij (2007). They deduced the
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following central limit theorem for realized range, finding that

√
M(RRVM,m

t −
Z t

t−1
σ2(s)ds) −→MN(0,

γ4,m − γ22,m
γ22,m

Z t

t−1
σ4(s)ds),

whereMN(., .) denotes a mixed Gaussian distribution, γr,m = E[srw,m] and lim
m→∞

γ4,m−γ22,m
γ22,m

≈ 0.4073.

They used this theorem to show that RRVM,m
t is an unbiased and more efficient estimator of

integrated variance than realized volatility. If m = 1, RRVM,m
t is actually equal to realized

volatility RVt and
γ4,m−γ22,m

γ22,m
= 2, but when m→∞ and the entire sample path of the price process

is available, RRVM,m
t becomes about five times more efficient than RVt. In practice, inference is

typically drawn from discrete data and true ranges are not actually observed. Thus, the efficiency of

the RRVM,m
t estimator relative to RVt depends on how many observations in each intraday period

are available for the construction of the high-low price range measures.

The above two estimators are generated by either the intraday first and last prices or the intraday

highest and lowest prices, and it is useful to combine these four types of prices together to further

improve estimation efficiency. Garman and Klass (1980) did this in a daily data context, by utilizing

daily open, high, low and close prices to derive a minimum variance unbiased estimator for daily

volatility given by

σ̂2t = 0.511(logHt − logLt)
2 − 0.383(logCt − logCt−1)

2

−0.019((logHt − logCt)logHt + (logLt − logCt)logLt),

where Ht, Lt, and Ct are respectively the highest, lowest and close prices during day t. They

recommended a simpler version of this estimator for practical use, which is

σ̂2t = 0.5(logHt − logLt)
2 − (2log(2)− 1)(logCt − logCt−1)

2,

and this latter estimator achieves similar efficiency but eliminates the small cross-product terms.
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Their calculations showed that the variance of this estimator is 0.27σ4, which is 7.4 times more

efficient for daily volatility estimation than the daily squared return (whose variance is 2σ4 ), and

1.5 times more efficient than daily squared range (whose variance is 0.41σ4). Simulations by Rogers

and Satchell (1991) showed that this estimator (and a modified version of it) performed quite well

in a setting that corresponded with typical daily data.

In this paper we replace intraday returns or intraday ranges in high frequency realized variance or

realized range estimators with the intraday versions of “Garman and Klass estimators” to construct

a first-high-low-last (FHLL) price based estimator for integrated variance given by

FHLLVt =
MX
j=1

(0.5(htj − ltj )
2 − (2log(2)− 1)(ptj − ptj−1)

2). (3)

This estimator is essentially a linear combination of RRVt and RVt with weights of (2ln2) and

(1− 2ln(2)) respectively.2 Assuming no microstructure noise and that the entire price path can be

observed (m → ∞), we can derive a central limit theorem for this FHLL variance estimator with

respect to M , which is

√
M(FHLLVt −

Z t

t−1
σ2(s)ds) −→MN(0, 0.27

Z t

t−1
σ4(s)ds).

This shows that the FHLL price based estimator is a consistent estimator for integrated variance,

but it is more efficient than either realized variance or realized range.

2.2 First-High-Low-Last Price Based Covariance Estimator

The fact that the FHLL estimator for integrated variance is more efficient than its realized volatility

and realized range counterparts suggests that using first, high, low and last values of asset prices

might be advantageous in other settings as well. We now apply this idea to covariance estimation.

Assuming that there are two assets i and l for simplicity, and a portfolio of them with weights

2Note that this is an affine combination (weight coefficients add up to 1), but it is not a convex combination because
the weight coefficient of RV is negative.
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wi and wl = 1−wi, Brandt and Diebold (2006) noted that the daily covariance between asset i and

asset l can be obtained from

Cov(ri,t, rl,t) =
1

2wiwl
(V ar[rp,t]− w2i V ar[ri,t]− w2l V ar[rl,t]),

where V ar[rp,t] is the daily variance of the portfolio returns, and V ar[ri,t] and V ar[rl,t] are the

daily variances of assets i and l respectively. Using the realized variance defined in (1) to estimate

the three daily variances on the right-hand side of the above equation, realized covariance (see

Barndorff-Nielsen and Shephard (2004) ) can be calculated using

RCVt =
MX
j=1

ri,tjrl,tj =
1

2wiwl
(RVp,t −w2iRVi,t − w2l RVl,t) (4)

where RVp,t is the realized variance of the portfolio, RVi,t and RVl,t are the realized variances of

asset i and asset l, and ri,tj and rl,tj are the intraday returns of asset i and asset l. Using the

realized range defined in (2) to estimate the three daily variances on the right-hand side of the

above equation, realized co-range (see Bannouh, van Dijk and Martens (2009)) can be obtained as

RCRt =
1

2wiwl
(RRVp,t − w2iRRVi,t − w2l RRVl,t), (5)

where RRVp,t is the realized range of the portfolio, and RRVi,t and RRVl,t are the realized ranges of

asset i and asset l. The Monte Carlo work in Bannouh et al (2009) demonstrates that the realized

range is robust to market microstructure noise arising from bid-ask bounce, infrequent trading and

asynchronous trading, yet it is also highly efficient, delivering up to fivefold efficiency gains relative

to realized covariance. Comparison of the theoretical properties of realized covariance and realized

co-range is a subject of on-going research.

The first-high-low-last (FHLL) price based covariance estimator can be generated in an analogous

fashion to (4) and (5), by using the FHLL variance estimator defined in (3) to estimate the three
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daily variances in the covariance equation to obtain

FHLLCV t =
1

2wiwl
(FHLLVp,t − w2i FHLLVi,t − w2l FHLLVl,t). (6)

Given the superiority of the FHLL variance estimator over the return-based and range-based com-

petitors, we expect this FHLL covariance estimator to be more efficient than the realized covariance

and realized co-range estimators.

2.3 Comparison of the Properties of Covariance Estimators

In this section, we use Monte Carlo simulations to investigate the performance of our FHLL cov-

ariance estimator given a variety of underlying asset price process specifications. Throughout, we

compare the FHLL estimator with the realized covariance estimator and the realized range estimator

in these controlled environments.

2.3.1 Constant Volatility without Microstructure Noise

We firstly study the properties of these estimators for a bivariate Brownian motion process with

constant volatility, using the Euler discretization scheme to simulate prices for two correlated assets

for 4-hour trading days.3 For each trading day t, the initial prices for both assets are set equal to

one and subsequent log prices for assets are simulated using

dp∗1,(t−1)+h/K = σ1dW1,(t−1)+h/K, h = 1, 2, ...,K

dp∗2,(t−1)+h/K = σ2(ρdW1,(t−1)+h/K +
p
1− ρ2dW2,(t−1)+h/K), h = 1, 2, ...,K

where p∗i,(t−1)+h/K is the log price of asset i at the hth point in the time interval [t− 1, t], K is the

number of time increments over the day, σi is the standard deviation of asset i, W1 and W2 are two

3We choose to simulate four hour trading days to reflect the trading hours in the Chinese mainland stock market,
from which our empirical data are collected.
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Brownian motion processes, and ρ represents the contemporaneous correlation of the two assets’

prices. We set σ1 = 0.2, σ2 = 0.4 and ρ = 0.5, resulting in a constant covariance between the two

asset returns which is equal to 0.04 for each day t, and we let h represent seconds so that we have

K = 14400 (4×60×60) data points for each day. Each of our experiments is based on 5000 simulated

days. For the time being our price observations are equidistant and occur synchronously for the two

assets.4 To show the potential merits of using intraday first-high-low-last price for measuring the

co-movement of two assets, we compute and compare the bias and root mean squared error (RMSE)

of various covariance estimators at different intraday sampling frequencies.

To do this, we divide the trading day t into 4−minute intervals, which is referred to as the

4 − minute frequency below. Since we have a four hour trading day, this divides each day into

M = 240/4 intraday sampling periods. For example, if we sample at a five minute frequency and

4 = 5, then we have M = 48 intraday sampling periods per day. In our experiment, we vary the

sampling frequency, using 1, 5, 10, 15, 30, 60, and 240 minute intervals, and results are reported in

Table 1 panel A. The underlying price process p∗i,(t−1)+h/K in our simulations is assumed to be a pure

Brownian motion with constant volatility, but since it is actually discrete (h can only take integer

values), we see an "infrequent trading" effect, which leads to a downward bias for all estimators

when the sampling intervals are relatively short. We explore the effects of infrequent trading in

more detail below. However, the RMSE of the FHLL covariance estimator is always lower than that

of realized co-range, and substantially lower than that of realized covariance at the same sampling

frequency. Meanwhile, the efficiency improves for all estimators as 4 decreases and M increases.

Figure 1 shows the kernel density graphs of the three covariance estimators at 5-minutes, 10-minutes

and 15-minutes sampling frequencies, which further demonstrate that our FHLL estimator is more

efficient than the other two, since the kernel density graph of FHLL estimator is narrower than those

of the other two estimators.

4True and observed prices are denoted by p∗i,. and pi,.respectively. In the next section we set the probability of
actually observing the price to be pobs = 1/τ, and use s to denote the bid-ask spread. For the time being, τ = 1 and
s = 0.
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2.3.2 Stochastic Volatility without Microstructure Noise

We now extend the underlying price processes to incorporate stochastic volatility, which is closer to

reality. The (log) prices evolve as

dp∗1,(t−1)+h/K = σ1,(t−1)+h/KdW1,(t−1)+h/K, h = 1, 2, ...,K

dlnσ21,(t−1)+h/K = θ1(ω1 − lnσ21,(t−1)+h/K)dt+ η1dW2,t−1+h/K , h = 1, 2, ...,K

dp∗2,(t−1)+h/K = σ2,(t−1)+h/KdW3,(t−1)+h/K, h = 1, 2, ...,K

dlnσ22,(t−1)+h/K = θ2(ω2 − lnσ22,(t−1)+h/K)dt+ η2dW4,(t−1)+h/K , h = 1, 2, ...,K

where volatility is a stochastic process that follows a mean reverting Orstein-Uhlenbeck process

with parameters θ1 and θ2 as the adjustment speeds, ω1 and ω2 as the means of the (log) volatil-

ities, and η1 and η2 as the volatilities of the (log) volatilities. W1 and W2 are standard Brownian

motions with a correlation of ρ1, W3 and W4 are standard Brownian motions with a correlation

of ρ2, so that ρ1 and ρ2 allow for leverage effects in each asset. The processes W1 and W3 are

correlated with a correlation coefficient of ρ3. The initial prices for the two assets are set to be

one, the initial values of the two assets’ volatilities are set to equal to the mean of the volatilit-

ies, and the rest of the simulations are based on the configuration (θ1, θ2, ω1, ω2, η1, η2,ρ1, ρ2, ρ3) =

(2, 2, 0.04
14400 ,

0.16
14400 ,

0.4
120 ,

0.8
120 , −0.6, −0.4, 0.5).5 The data generating process ensures that the daily

mean of the covariance between the two assets is 0.04, but it now varies every second. We sim-

ulate 5000 days of (log) prices (1 price per second, for K = 14400) as before, and then compute

and compare the bias and root mean squared error (RMSE)6 of our various estimators of daily

covariance.

5We set ω1, ω2 and ρ equal to the variances σ21 and σ22 of the two assets’ prices, and the correlation ρ between the
two assets’ prices that we used in last subsection. We set the rest of the parameters according to the simulation study
in Aït-Sahalia, Fan and Xiu (2010).

6Since the covariance is time-varying in this scenario, the bias reported in Table 1 is actually the mean of the
covariance estimation bias.
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Table 1 panel B reports the results. Relative to the results in the last subsection, the main differ-

ence is that all estimators are now slightly less efficient. From Section 2.1, the asymptotic variance

of all three variance estimators is given by α
R t
t−1 σ

4
sds, where α reflects the relative efficiencies of the

different estimators, and this holds true regardless of whether σs is constant or time varying. Thus,

the ranking of the variance (and hence covariance) estimators in terms of efficiency is unaltered

once we have time-variation in volatility. Relative to the constant volatility case, time-variation in

asset price volatility tends to increase σ4 and hence increase the asymptotic variances of all variance

(and covariance) estimators and decrease efficiency, but the FHLL covariance estimator is still more

efficient than the other two estimators, at any sampling frequency.

2.3.3 Stochastic Volatility with Microstructure Noise

We did not include microstructure noise in the previous experiments, but in this section we compare

the three estimators when they are contaminated by the effects of the bid-ask bounce, infrequent

trading and asynchronous trading. We compare our FHLL covariance estimator with the realized

co-range and realized covariance estimators, both with and without corrections for estimation bias

resulting from the presence of microstructure noise.

Following Bannouh et al (2009), we consider the effects of bid-ask bounce by assuming that bid

and ask prices occur with equal probability. Hence, the actually observed price pi,(t−1)+h/K is equal

to p∗i,(t−1)+h/K + s/2 (ask) or p∗i,(t−1)+h/K − s/2 (bid), where s is the bid-ask spread and p∗i,(t−1)+h/K

is the true price obtained from subsection 2.3.2. Infrequent trading is simulated by filtering the price

sample path p∗i,(t−1)+h/K simulated from subsection 2.3.2, so that the price of each asset is observed

on average only every τ seconds. Since price observations for the two assets occur independently,

we observe prices at different times.

We use the simulations in Table 1 Panel B as a benchmark and change the values of s and τ

in our simulations to consider three pairs in which s = 0.075 and τ = 1, s = 0 and τ = 15, and

s = 0.075 and τ = 15. The first two pairs of settings are used to examine the separate effects of
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bid-ask bounce and infrequent trading, while the last setting is used to investigate their joint effects

on all the covariance estimators.

It is well known that when continuous underlying price processes are observed only at discrete

time points, the intraday range suffers from a downward bias. This is because the observed max-

imum and minimum prices over a given intraday interval underestimate and overestimate the true

maximum and minimum, respectively. Meanwhile, the intraday range also tends to be upward biased

due to the presence of bid-ask bounce. For example, when the sampling frequency is relatively high

and the intraday time interval is relatively small, the observed high price in a given intraday interval

is an ask price and the observed low price is a bid price with probability close to one. The squared

intraday range therefore overestimates the true variance of that intraday interval by an amount equal

to the squared bid-ask spread s2. Although univariate intraday returns are not effected much by

infrequent trading and bid-ask spread, an important concern in a multivariate setting is the presence

of asynchronous trading. As different assets trade at different times, estimates of their covariance

are biased toward zero. This is the so-called “Epps effect”, which becomes worse with an increase

of sampling frequency.

We correct this bias by assuming that the observed log price pt is equal to the underlying log

price p∗t plus an additive noise term, and then employ an additive bias-correction method discussed

in Bannouh et al (2009). These authors define bias-corrected variance estimators as

V EM
C,t = V EM

t +
1

Q
(

QX
q=1

V E1t−q −
QX
q=1

V EM
t−q),

where V E1t is the daily squared return or daily squared range or daily “Garman and Klass estimator”,

and V EM
t is the realized variance, realized range or our FHLL variance estimator based on M

intraday sampling intervals. The number of trading days Q used to compute the correction is a

critical choice to make. The RMSE of all the estimators decline as Q increases and we set Q = 150,

beyond which the RMSEs for the corrected version of all the estimators more or less stabilize.
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We set s = 0 and τ = 15 to obtain Table 2 panel A, which shows the effects of infrequent

(and hence nonsynchronous) trading on all three covariance estimators. As expected, all three non-

corrected covariance estimators are downward biased, but realized covariance is downward biased

much less than the realized co-range and FHLL covariance estimators. The RMSE first decreases for

all the estimators when increasing the sampling frequency and decreasing the length of the sampling

interval, but it increases again for higher frequencies because the bias associated with microstructure

noise outweighs the increase in information from the higher sampling frequency. Without the bias

correction, our FHLL estimator has larger RMSE than the other two estimators at most sampling

frequencies. This is not surprising because the FHLL estimator is a linear combination of realized

covariance and realized co-range, which is contaminated more by the microstructure noise than

the other two estimators. However, the correction scheme eliminates the bias to a large extent and

reduces the RMSE of our FHLL estimator substantially. More importantly, the bias-corrected FHLL

estimator FHLLCVC,t has the smallest RMSE at all sampling frequencies.

Table 2 panel B demonstrates the influence of bid-ask bounce on the three covariance estimators

by setting s = 0.075 and τ = 1. We set τ = 1 in this panel, so that results can be compared with those

in Table 1 Panel B. Our FHLL covariance estimator and the realized co-range suffer from a strong

upward bias in this scenario, which becomes worse with increased sampling frequency, but realized

covariance is not affected much by the bid-ask spread. The bias correction reduces the RMSE of

the first-high-low-last price based covariance estimator considerably, such that FHLLCVC,t is more

accurate than RCVC,t and RCRC,t for most sampling frequencies.

When bid-ask spread and not synchronous trading are jointly present, as in the set-up of Table 2

panel C, we find that our FHLL covariance estimator and the realized co-range still have an upward

bias, but it is much smaller than that in the case of bid-ask spread only. This finding is consistent

with the discussion in Bannouh, van Dijk and Martens (2009), who suggest that the upward bias

due to the presence of bid-ask bounce has been partially offset by the downward bias due to non-

synchronous trading. As observed in the last two panels, the bias in all estimators has been largely
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removed by the correction adjustment. Meanwhile, the bias corrected FHLL estimator FHLLCVC,t

has the minimum RMSE at all sampling frequencies.

3 The Co-jump Test

In this section, we review the return-based co-jump test proposed by Bollerslev et al (2008), and

then use intraday ranges and FHLL prices to develop range and first-high-low-last (FHLL) price

based co-jump test statistics.

3.1 Co-jumps in Portfolio Theory and the Returns Based Co-jump Test

Bollerslev et al (2008) consider a collection of n stock price processes {pi,s}ni=1evolving in continuous

time. Each pi,s evolves as

dpi,s = μi(s)dt+ σi(s)dWi(s) + dLi(s),

where μi(s) and σi(s) refer to the drift and local volatility, Wi(s) is a standard Brownian motion,

and Li(s) is a pure jump process. The price process is only observed at discrete time points, so

they consider a situation in which there are M +1 equidistant price observations each day. The jth

within-day return of the ith log-price process on day t is then

ri,tj = pi,(t−1)+ j
M
− pi,(t−1)+ j−1

M
, i = 1, 2, ....n, j = 1, 2, ....M.

and the jth within-day return on day t of an equiweighted portfolio of n stocks is

rEQW,tj =
1

n

nX
i=1

ri,tj .

The daily realized variance for this equiweighted portfolio is given by

RVEQW,t =
MX
j=1

(
1

n

nX
i=1

ri,tj )
2 =

1

n2

nX
i=1

MX
j=1

r2i,tj +
1

n2

nX
i=1

nX
l=1,l 6=i

MX
j=1

ri,tjrl,tj , (7)
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and when this is decomposed into its continuous and jump components, Bollerslev et al (2008)

show that most of the jump contribution to RVEQW,t originates from the covariation term (i.e from

within 1
n2
Pn

i=1

Pn
l=1,l 6=i

PM
j=1 ri,tjrl,tj ) in (7)) when n is large, while the effects of idiosyncratic

jumps (i.e. that originate from the 1
n2
Pn

i=1

PM
j=1 r

2
i,tj

term) are essentially diversified away. It

follows that only co-jumps can cause the price of a portfolio to jump when n is large and it was

this observation that motivated Bollerslev et al (2008) to emphasize the cross-product measures

associated with a portfolio when they developed their new co-jump test. Their derivation was based

on an equiweighted portfolio, but their conclusion that most of the information about cojumps is

contained in the covariation between stock returns is valid, given any well-diversified portfolio.

The zmcp test statistic proposed by Bollerslev et al (2008) is given by

zmcp,tj =
mcptj −mcpt

smcp,t
, j = 1, 2, .....M, where (8)

mcptj =
2

n(n− 1)

n−1X
i=1

nX
l=i+1

ri,tjrl,tj , j = 1, 2, . . . ,M, (8a)

mcpt =
1

M

MX
j=1

mcptj =
1

M
[

n

n− 1RVew,t −
1

n(n− 1)

nX
i=1

RVi,t], (8b)

smcp,t =

vuut 1

M − 1

MX
j=1

(mcptj −mcpt)2, (8c)

and it can be used as a test for common jumps because the jump (but not the continuous) com-

ponent in the second term in mcpt =
n

n−1RVew,t −
1

n(n−1)
Pn

i=1RVi,t ≈ RVew,t − 1
n(n−1)

Pn
i=1RVi,t

is diversified away as n grows large.

It is easy to rearrange the expression for mcptj to obtain

mcptj =
n

n− 1

"
(
1

n

nX
i=1

ri,tj )
2 −

nX
i=1

(
1

n
)2r2i,tj

#
=

n

n− 1r
2
ew,tj −

1

n(n− 1)

nX
i=1

r2i,tj , (9)

and from this we can see that it is possible to calculate the test statistic directly from the squared

17



returns of the equally weighted portfolio and the individual stocks. We work with this alternative

expression for mcptj in the next subsection, but firstly outline some distributional characteristics of

the test statistic.

The zmcp,tj statistic is not well approximated by any of the standard distributions
7, but it is

relatively straightforward to bootstrap its empirical distribution under the null hypothesis of no

jumps, to find critical values that are relevant for a given application. Bollerslev et al (2008) did

this, and when they checked the sensitivity of their critical values to changes inM , n and the average

level of correlation between returns (ρ) they found strong sensitivity toM , but little sensitivity to n

and to ρ. This sensitivity to the sampling frequency (M) is interesting from our perspective, because

it indicates that the amount of price information that is contained in the zmcp,tj statistic can strongly

influence its performance. This leads us to consider the use of more informative measures of daily

price (range and first-high-low-last variance measures) when constructing the test statistic.

3.2 Range and FHLL Price Based Co-jump Tests

Theory shows that although the three estimators of daily volatility (RV, RRV and FHLLV) are

all consistent when no microstructure noise is present, RV is considerably less efficient than RRV,

and RRV is considerably less efficient than FHLLV. Our simulations in sections 2.3.1 and 2.3.2

reflect this, demonstrating that when RV, RRV and FHLLV are used as inputs in the construction

of covariance estimators, then all three estimators approach the true covariance and the efficiency

rankings of these estimators are the same as those for RV, RRV and FHLLV. Bias can affect each of

RV, RRV and FFLLV (and other estimators constructed from RV, RRV and FHLLV) once micro-

structure noise is present, but our simulations in section 2.3.3 show that the additive bias correction

technique works well when corrected versions of RV, RRV and FHLLV are used in the construction

of covariance estimators. Further, the efficiency rankings of the estimators that have been corrected

for microstructure noise are maintained.

7Simulations conducted by Bollerslev et al (2008) show that the distribution of the zmcp,tj statistic is centred to
the left of zero and has a very strong right skew.
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The greater efficiency of the (bias corrected) FHLLV estimator (relative to RRV and RV es-

timators) reflects the more extensive use of price information in the construction of the associated

volatility estimate, and we expect this to translate into an increase in power when we use this es-

timator for constructing a test statistic. We study this via simulation below, and show that this is

indeed the case.

A range-based co-jump test statistics can be obtained when we use the realized co-range and

intraday squared range instead of the cross-product of intraday returns and realized volatility in the

zmcp test statistic. We refer to this as the zmcr test statistic below. Our range-based co-jump test

statistic (zmcr) is defined by

zmcr,tj =
mcrtj −mcrt

smcr,t
, j = 1, 2, .....M, (10)

where

mcrtj =
n

n− 1ISRew,tj −
1

n(n− 1)

nX
i=1

ISRi,tj ,

and ISRew,tj and ISRi,tj are intraday squared ranges of the equally weighted portfolio and of each

individual stock. These measure the intraday variance of this portfolio and each individual stock on

day t, time j, and replace r2ew,tj and r2i,tj in equation (9). We studentize the mcrtj statistic using

mcrt =
MX
j=1

mcrtj =
1

M
[

n

n− 1RRVew,t −
1

n(n− 1)

nX
i=1

RRVi,t] and

smcr,t =

vuut 1

M − 1

MX
j=1

(mcrtj −mcrt)2,

where RRVew,t and RRVi,t measure the daily realized ranges of the equally weighted portfolio and

each individual stock, and they are obtained by summing all the intraday squared ranges over the

whole trading day. The measures of RRVew,t and RRVi,t will be influenced by the presence of

microstructure noise, but one can account for this by using the additive bias correction in Section
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2.3.3, as we demonstrate below.

Similarly, we also develop a first-high-low-last price based co-jump test, and do this by using the

intraday FHLL measures to replace r2ew,tj and r2i,tj in equation (9), and the daily FHLL variance

estimators to replace RVew,t and RVi,t in equation (8b). Our FHLL co-jump test statistic (zmcfhll)

is defined by

zmcfhll,tj =
mcfhlltj −mcfhllt

smcfhll,t
, j = 1, 2, .....M, (11)

where

mcfhlltj =
n

n− 1IFHLLew,tj −
1

n(n− 1)

nX
i=1

IFHLLi,tj )),

and IFHLLew,tj and IFHLLi,tj are intraday FHLL variance estimators of the equally weighted

portfolio and each individual stock. We studentize the mcfhlltj statistic using

mcfhllt =
MX
j=1

mcfhlltj =
1

M
[

n

n− 1FHLLVew,t −
1

n(n− 1)

nX
i=1

FHLLV i,t] and

smcfhll,t =

vuut 1

M − 1

MX
j=1

(mcfhlltj −mcfhllt)2,

where FHLLV ew,t and FHLLV i,t are the daily FHLL variance estimators of the equally weighted

portfolio and each individual stock, obtained by summing all the intraday FHLL variance estimators

over the whole trading day. Like the RRVew,t and RRVi,t estimators, the measures of FHLLV ew,t

and FHLLV i,t will be influenced by the presence of microstructure noise, but one can account for

this by using the additive bias correction discussed earlier.

Prior to using these new co-jump test statistics, we conduct a set of Monte Carlo simulations to

study their distributions under the null hypothesis of no co-jumps, and compare their finite sample

properties with the return-based zmcp test statistic.
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4 Monte Carlo Simulation

In this section, we conduct a Monte Carlo simulation to explore the behaviour of the three test

statistics under the null hypothesis of no jumps, and then in the presence of co-jumps.

4.1 The Null Distribution via Simulation

We simulate realizations of a logarithmic price diffusion process that has been calibrated to our data

set8 and then calculate the zmcp test statistics, the zmcr test statistics and the zmcfhll statistics

from these simulated values. We use sampling frequencies of 5, 10 and 15 minutes that correspond to

M = 48, 24, 16 intraday sampling periods per day. Given our discretization grid of thirty seconds,

the corresponding number (m) of intraday subintervals used to compute the intraday range and

intraday first-high-low-last price for these sampling frequencies is equal to m = 10, 20, and 30.

We also compute the intraday range and intraday first-high-low-last price by using only half of the

available price observations and one third of the available price observations within the 5, 10 and 15-

minute intervals, that is, m = 5, 10, 15 andm = 3, 6, 10 to study the sensitivity of these test statistics

to m.9 It is useful to note that when m = 1, then the range equals the absolute return, so that the

Bollerslev et al (2008) zmcp test statistic can be regarded as a special case of the range-based zmcr

test statistic. Our initial data generating process is not contaminated by microstructure noise, and

we initially calculate the three co-jump test statistics without incorporating any bias corrections.

Figure 2 presents the simulated probability densities of the zmcp, zmcr and zmcfhll test stat-

istics. All of these distributions are obviously non-Gaussian with a strong right skew, regardless of

the sampling frequency. The null distributions of the zmcfhll test statistics have slightly shorter

tails and lower peaks than the zmcr test statistics, and both of them have much shorter tails and

8Implementation involved 480 equally spaced steps per day for 90 days (corresponding to thirty second invervals
for four hour trading days over our three month sample period), empirically calibrated to the covariance between the
twenty stocks from the Shanghai exchange included in our sample.We replicated the process 1000 times, and thereby
worked with about 43.2 million simulated values under the null hypothesis of no jumps.

9Christensen and Podolskij (2007) note that the entire sample path of the asset price process is unavailable in
practice, so that inference is drawn from discrete data and the true price range is often unobserved. Therefore,
the range-based estimator has varying degrees of efficiency over the return-based estimator depending on how many
observations ( it is m in our paper) that are used to construct the high-low range.
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lower peaks than the zmcp test statistics. Meanwhile, the null distributions of the zmcfhll test

statistics have shorter tails and lower peaks as M decreases, or as m increases given the same M .

This also holds for the zmcr test statistics.10 Since large values of the test statistics discredit the

null hypothesis of no co-jumps, we are mostly interested in the right tails of these distributions.

Table 3 reports the critical values of all the test statistics at the 0.1%, 1% and 5% significance

levels. These results suggest that critical values are quite sensitive to the sampling frequency (M)

and the number of subintervals (m) involved in forming the intraday high-low prices. In particular,

the critical values always rise as the intraday sampling frequency (M) increases, and fall as the

number of subintervals (m) used for each calculation of the high-low price range or first-high-low-

last price decreases, with some exceptions at the 5% significance level.

The critical values in Table 3 relate to a situation in which no microstructure noise is present

and no corrections for microstructure bias have been made, but in practice we would want to

cater for possible noise effects. Therefore, we next study how microstructure noise affects the

distributions of the test statistics, by adding bid-ask bounce into the data generating process and/or

simulating situations in which there is infrequent trading,11 and then comparing the distributions of

bias corrected and uncorrected test statistics with those relating to the no noise and no corrections

baselines. The tails of the resulting distributions of test statistics for M = 48 and m = 10 are

illustrated in Figure 3, where each of the nine sub-diagrams in this figure contains three plots that

relate to tests when no noise is present and no bias corrections have been made, and then uncorrected

and corrected tests when a specified form of microstructure noise is present. Only two plots are

readily apparent on each sub-diagram, because the distributions of the bias corrected tests are almost

the same as those for uncorrected tests when no microstructure noise is present. This demonstrates

that the additive bias corrections are very effective. Although bid-ask bounce can induce upward

bias inmcpt (mcrt, mcfhllt) and hence induce leftwards shifts in the uncorrected distributions of the

10We don’t provide the results of sensitivity analysis to M and m for zmcr test statistics in Figure 2. They are
available upon request.
11See Section 2.3.3 for details on how we introduce noise. The values of the noise parameters that we study are

indicated on the illustrations of the right hand tails provided in Figure 3.
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mcptj mcrtj ,mcfhlltj tests, the corrections move the distributions back to the right, as illustrated

in the three left-hand sub-diagrams. Similarly, the three sub-diagrams running down the middle

show that although failure to correct when trading is infrequent induces a rightward movement in

the test distribution, simple bias corrections can rectify this. The three right-hand sub-diagrams

show that the bias corrections can be helpful, even when different sorts of noise partially offset each

other.

We repeated the experiments that underlie Figure 3 for different M and m and found analogous

results, which suggest that provided that the calculation of the test statistic incorporates an additive

bias correction, it will be appropriate to use critical values derived from simulations that relate to

a situation in which microstructure noise is not present. Thus, we use the critical values in Table 3

in our power simulations that follow, and in our empirical application in Section 5. Critical values

relating to other values of M and m are available from the authors upon request.

4.2 Power Comparisons

In this section, we compare the performance of the three test statistics in terms of their power

properties. For power comparisons, we add simulated jump components into the above pure dif-

fusion processes. For idiosyncratic jumps, we simulate 20 independent Gaussian Poisson processes

with intensity λi
12 and magnitude N(0, σ2i ),

13 and add them to their corresponding pure diffusion

processes. For the common jumps, we simulate one Gaussian compound Poisson process with in-

tensity λ and magnitude N(0, σ2J), and add it to the diffusion process after multiplying each of the

twenty components by an estimate of its βi relative to the portfolio. We calibrate the common jump

intensity λ and the common jump size σJ to empirical data (i.e. λ = 0.05% and σ = 0.005 in our

case), and then change the intensity λ from 0.05% to 1%, and the size of σJ from 0.005 to 0.1 in

order to check the sensitivity of the power of these test statistics to these parameters.

12Jump intensity λi is defined here as the percentage of price observations that contain a jump, where λi ∈
[0.005%, 0.01%] in our simulation.
13Here σ2i ∈ [0.0005, 0.001] in our simulation.
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Table 4 presents power calculations relating to the zmcp, zmcr and zmcfhll test statistics under

a nominal significance level of 0.1%, but based on different sampling frequencies (M). The number

of subintervals (m) used to calculate price range and first-high-low-last price correspond to the

maximum possible given M , and co-jump intensities and co-jump sizes are varied. As expected, the

zmcfhll tests are the most powerful, followed by the zmcr tests and then the zmcp tests, and all

tests have greater ability to find co-jumps as M , λ and σ2J increase.

Table 5 reports the power of the zmcr test statistics and the zmcfhll test statistics, as the

sampling frequency M is kept constant,14 but the number of subintervals (m) used to calculate the

price range or first-high-low-last price vary. The co-jump intensities and the co-jump sizes vary as

before and the nominal significance level is still 0.1%. As expected, the tests have greater ability to

find co-jumps as m, λ and σ2J increase. This finding is important, because it shows that the range

based statistics lead to increased power relative to the Bollerslev et al (2008) return-based zmcp

test statistic (for which m = 1). Furthermore, we find that at all sampling frequencies and all levels

of co-jump intensity and co-jump size, the first-high-low-last price based zmcfhll test statistics lead

to further power improvement compared with the range-based zmcr test statistics.

5 Empirical Application

5.1 Data

Our empirical analysis is based on intraday data relating to 40 very actively traded stocks in the

Chinese mainland stock market.15 Twenty of these stocks are traded on the Shanghai Stock Ex-

change (SSE) and the remaining twenty are traded on the Shenzhen Stock Exchange (SZSE). The

existing literature relating to jump detection in this market mostly focuses on the univariate situation

(see Xu and Zhang (2006), Wang, Yao, Fang and Li (2008) and Ma and Wang (2009)), although

14Our reported results relate to the 5-minute sampling frequency (M = 48) , but similar tendencies are observed at
other sampling frequencies.
15There are two official stock exchanges in the Chinese mainland market, i.e. the Shanghai Stock Exchange (SHSE)

and the Shenzhen Stock Exchange (SZSE). These were established in December 1990 and July 1991 respectively. All
stocks are A-share stocks.
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Liao et al (2010) build factor models of jumps to account for simultaneous jumps in more than

one stock, and Chen at al (2010) study the microstructure of cross listed A and B shares on the

Shanghai exchange. We apply the return-based co-jump test in Bollerslev et al (2008), our range-

based co-jump test and our first-high-low-last price based co-jump test to the twenty stocks from

the Shanghai Stock Exchange, the twenty stocks from the Shenzhen Stock Exchange and all forty

stocks to analyze the co-jump patterns in each stock exchange and co-jumps across the two stock

exchanges. The raw transaction prices (together with trading times and volumes) were obtained

from the China Stock Market & Accounting Research (CSMAR) database provided by the ShenZhen

GuoTaiAn Information and Technology Firm (GTA). Our sample covers the period from July 2nd,

2007 to September 28th, 2007 (three months).

We focus on the active trading period and leave issues associated with overnight jumps for

further research. Due to the fact that it is difficult to construct the price sample path of a portfolio

from the tick-by-tick data of each individual stock in the case of nonsynchronous trading, we firstly

use 30 seconds as the sampling frequency to obtain equally spaced high frequency data for each

individual stock, then average the 30-second prices of individual stocks to obtain a price sample

path for the equally weighted portfolio.16 Therefore, the baseline data used in the following analysis

is equally spaced high frequency data (observed at thirty second intervals) rather than irregularly

spaced tick-by-tick data. We exclude weekends, public holidays and periods when there are firm

specific suspensions from our sample, and we avoid market opening effects by only using data from

09:35-11:30 and 13:05-15:00.

Paralleling many previous studies, we attempt to strike a reasonable balance between efficiency

and accuracy by using five-minutes as the sampling frequency to construct intraday returns, in-

traday range, daily realized volatility, daily realized range and daily FHLL estimators of volatility.

16Bannouh et al (2009) accounted for nonsynchronous trading by updating their portfolio price each time that they
observed a new price for one of the constituent assets. They have only three assets in their portfolio. Their procedure
becomes relatively complicated when the number of the constituent assets is large, so in our case, we simply sample the
raw tick-by-tick data once every 30 seconds to effectively mimic a synchronous trading scenario in which the portfolio
price is updated every 30 seconds. This does not lead to a large loss of information because our prices rarely change
much in 30 seconds.
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Moreover, when calculating our intraday zmcp, zmcr, and zmcfhll statistics, we employ the addit-

ive bias-correction method as discussed in section 2.3.3 to correct for microstructure noise bias in

daily realized volatility, daily realized range and daily FHLL variance estimators. Our sample spans

65 trading days, and each trading day has 462 intraday (30-seconds) price observations. Hence,

there are M = 46 zmcp, zmcr, and zmcfhll test statistics for each trading day, and the number of

intraday prices that are used to calculate the range for each five minute interval is m+ 1 = 11.

5.2 Co-jumps in the Chinese Mainland Stock Market

We simulate the null distributions of the co-jump test statistics for the forty stocks prior to perform-

ing the tests. This involves the simulation of 1000 realizations of a 40×1 diffusion process with zero

drift and a covariance matrix determined by an unconditional estimate of the covariance matrix of

the 30-seconds within-day returns for the relevant 40 stocks. The length of each realization is set

equal to the sample size (462 per day for 65 days). We use these simulations to obtain observations

on each of the zmcp , zmcr and zmcfhll test statistics. This scheme generated over 30 million

simulated values for each of the three test statistics under the null of no jumps, and we used these

to obtain critical values at the 0.1%, 1% and 5% significance levels.

Figure 4 plots the three series of test statistics calculated from the panel of 40 stocks, together

with horizontal lines that indicate the 0.1%, 1% and 5% critical values determined from the simulated

null distributions. It is clear that the empirically observed test statistics exceed their relevant critical

values on several occasions, providing evidence of co-jumps. A comparison of the three graphs in the

figure shows that the zmcfhll tests finds more co-jumps than the zmcr and zmcp tests regardless

of the level of significance of the test.

Table 6 report the outcomes of the co-jump tests the 0.1% significance level. These outcomes

include co-jump arrival dates and times. In contrast to previous research that has found frequent

jumps in some of the individual stocks (see Liao (2011)), we find relatively few co-jumps in the

panels. The return-based test finds six co-jumps on the panel of forty stocks, the range based test
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finds the same co-jumps as well as an additional three co-jumps (9 in total), and the FHLL test

finds all of these co-jumps as well as another six co-jumps (15 in total). Many of the detected

co-jumps in this market occurred near the morning opening time or the afternoon closing time of

trading sessions. Moreover, the timing of some of co-jumps coincided with the release of news on

stock market regulations or monetary policy. These specific events are detailed below Table 6.

We repeated the co-jump tests for our panels of 20 stocks sold on the Shanghai exchange and

the 20 stocks sold on the Shenzhen exchange (recalibrating the critical values appropriately in each

case). We do not report results here because of space considerations, but note that the results for

these separate panels essentially mirrored those for the panel of all 40 stocks. In particular, most of

the co-jump times found in the composite panel were also found in each of the two separate panels,

and vice-versa.

6 Conclusion

This paper explores the use of first-high-low-last (FHLL) prices in a multivariate high frequency

setting. We introduce a first-high-low-last price based covariance estimator and study its properties,

and find that after a very simple bias correction, this estimator has lower root mean squared error

than counterparts based on realized range and realized variance. We also use FHLL price data

instead of returns data in the Bollerslev et al (2008) co-jump test, and find an increase in power.

We see a similar but smaller increase in power in an analogous range based co-jump test that we

propose and study in conjunction with our FHLL based co-jump test. When we apply our FHLL

co-jump test to a panel of high frequency data relating to Chinese mainland stock market, we find

co-jumps in the stocks from the two stock market exchanges, and we are able to associate many of

these co-jumps with announcements about changes in monetary policy or stock market regulations.

Our FHLL estimator of covariance is quite easy to calculate, since it relies only on univariate

methodology (i.e. FHLL measures of the variances of two individual stocks and a portfolio containing

those stocks). While the computational burden of estimation might not be a primary consideration
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when working with just two assets, it becomes an important practical consideration once one works

with a large set of assets. Our finding that the use of FHLL measures of variance in covariance

estimation can be beneficial relative to the use of return (and range) based measures of variance is

likely to encourage researchers to explore the potential of using other univariate measures of variance

in covariance estimation further. Similarly, our use of range and FHLL variance estimators in the

construction of tests analogous to the Bollerslev et al (2008) co-jump test paves the way for using

other variance estimators in such tests. Here, we have focussed on the potential benefits of including

information about price ranges (in addition to returns) in both covariance estimation and in a test

for co-jumps in a large panel, but further benefits are likely as additional observed information

about the price process and noise structure is incorporated into variance estimation, and variance

estimates are used for other purposes.

The literature on covariance estimation is growing very rapidly, and it now includes very detailed

examinations of the bias effects of microstructure noise and asynchronous trading on covariance

estimation, as well as ways of accounting for this. Griffin and Oomen (2011) study several covariance

estimators and conclude that the choice between them can depend on the properties of the price

process. We have not studied these properties here, but point out that the additive bias correction

that we used in this setting of forty stocks was simple and effective, and avoided potential difficulties

associated with treating different stocks in the portfolio differently. It would be interesting to

experiment with other forms of bias correction in this context, but we leave this for later research.

Thus far we have linked some of the co-jumps that we found to announcements in monetary

policy and stock market regulations. We anticipate that it might also be possible to link some

of the other co-jumps to political announcements or financial events that occurred overseas. We

leave further investigation of possible reasons for co-jumps in China for later work. Meanwhile,

the empirical evidence of co-jumps in financial markets suggests that common factor models of

jumps have empirical relevance. This lays open the possibility that models of co-jumps might have

forecasting potential. We are currently working on this topic and have found encouraging results.
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