

Longevity 7, September 8th, 2011

Longevity 7, September 8th, 2011 Introduction Model Polynomial expansion P-Splines Linear age-dependent Conclusions

A time-dependent age-factor extension to the Lee-Carter model

Ralph Stevens

Netspar, CPS ASB, UNSW, Australia

Netspar

Longevity 7, September 8th, 2011

Introduction

Outline of presentation Introduction

Lee-Carter

Solution

Model

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

A time-dependent age-factor extension to the Lee-Carter model

Introduction

Outline of presentation

Introduction

- Time dependency
- Linear model
- P-Splines
- Model
- Conclusions

Longevity 7, September 8th, 2011

Introduction
Outline of presentation
Introduction

Lee-Carter

Solution

Model

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

Netspar

Lee Carter (1992) model:

$$\log (m_{x,t}) = a_x + b_x k_t + \epsilon_{x,t}$$
$$k_t = k_{t-1} + c + e_t$$

• a_x : general level of mortality;

- b_x : relative age reduction in mortality rates;
- k_t : general level reduction in mortality rates;

Longevity	7,		
September	8th.	2011	

Introduction		
Outline of presentation		
Introduction		
Lee-Carter		
Solution		
Model		
Polynomial expansion		
P-Splines		
Linear age-dependent		
Conclusions		

Netspar

- Assumption: b_x is time-independent.
 - Empirical evidence this assumption is violated:
 - -/ E.g. Booth et al. (2002), solution: use short time horizon;
 - Scientists tend to underestimate life expectancy increases;
 - Anecdotal evidence that focus of medicine towards older ages over time.
- Why do we use it?
- Makes life easy.

Longevity 7, September 8th, 2011

Introduction Outline of presentation Introduction Lee-Carter Solution Model Polynomial expansion P-Splines Linear age-dependent Conclusions

Solution

Netspar

Longevity 7, September 8th, 2011

IntroductionOutline of presentationIntroductionLee-CarterSolutionModelPolynomial expansionP-SplinesLinear age-dependentConclusions

- Find a way to estimate $b_{x,t}$ and k_t using parametric form.
- Find a way to forecast both $b_{x,t}$ and k_t (i.e., using the parametric form).
- Application (often used):
 - English & Wales mortality data;
 - Males;
 - Ages $0, 1, \ldots, 100^+$.
- Lee-Carter model without cohort effect.

Longevity 7, September 8th, 2011

Introduction

Model

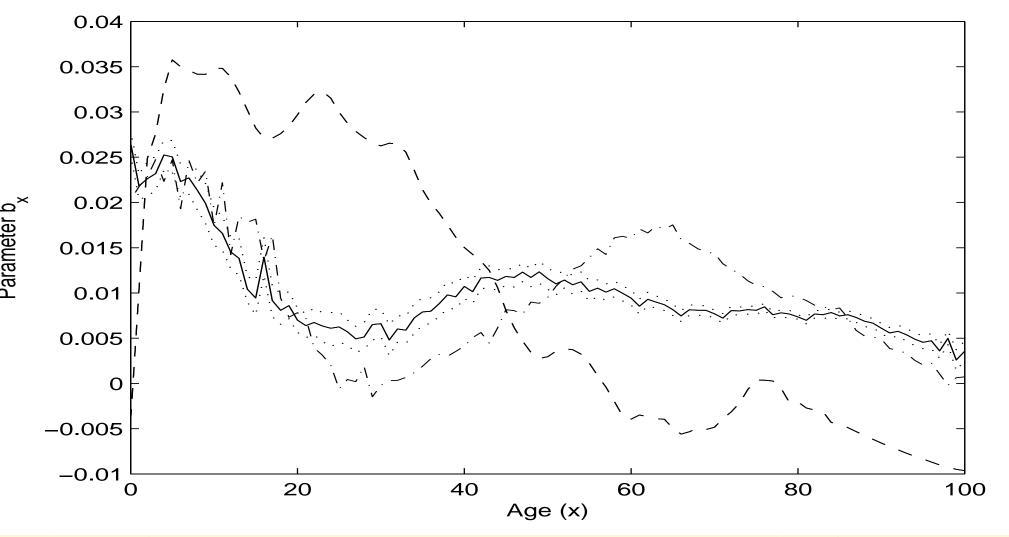
Empirical evidence Estimated age parameter Time dependent age parameter Time dependent age parameter

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

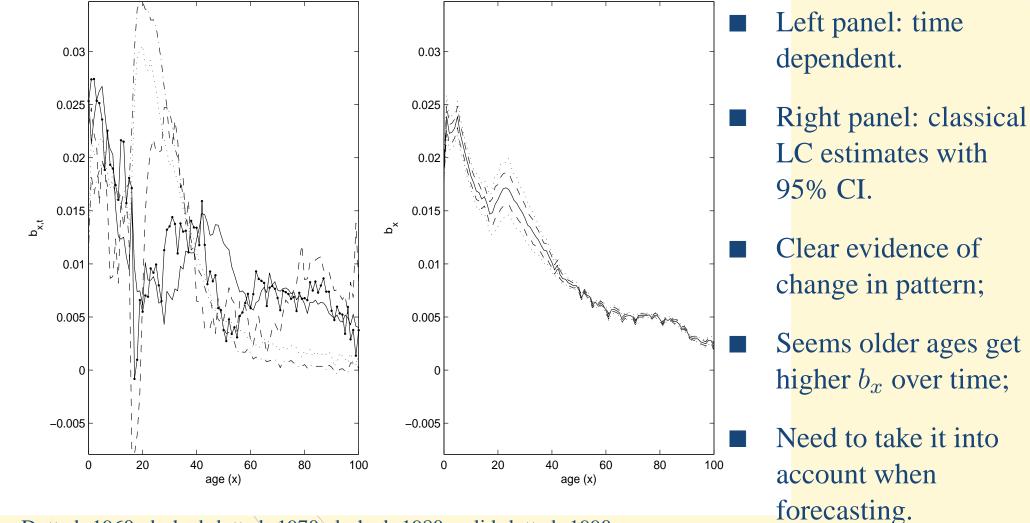


A time-dependent age-factor extension to the Lee-Carter model

Model

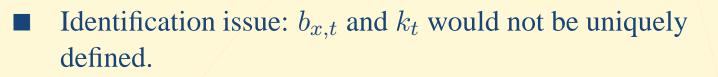
Empirical evidence

Solid curve: best estimate, dotted curve: 95% confidence bounds; Dashed curve: 1932-1950; Dashed-dotted: 1987-2006.


A time-dependent age-factor extension to the Lee-Carter model

Netspar

Estimated age parameter



Dotted: 1960, dashed-dotted: 1970, dashed: 1980; solid-dotted: 1990; solid: 1996.

- Solution: parametric form $b_{x,t}$.
- Question: which parametric form?
- Insights: Estimate $b_{x,t}$ using b_x from a rolling window of 20 years;
 - Similar to linear moving average smoothing method.
 - Results shown in previous slide.

Netspar

Longevity 7, September 8th, 2011

Introduction

Model

Empirical evidence Estimated age

parameter

Time dependent age parameter

Time dependent age parameter

Polynomial expansion/

P-Splines

Linear age-dependent

Conclusions

A time-dependent age-factor extension to the Lee-Carter model

Time dependent age parameter

Now we have our estimated values of $b_{x,t}$.

- How to make forecasts?
 - k_t using ARIMA model;
 - $b_{x,t}$ using a parametric form;
 - We investigated three methods:
 - Polynomial expansion;
 - P-Splines;
 - Linear age-dependent method.

Longevity 7, September 8th, 2011

Introduction

Model

Empirical evidence

Estimated age

parameter Time dependent age

parameter

Time dependent age parameter

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

AUSTRALIAN SCHOOL OF BUSINESS™ THE UNIVERSITY OF NEW SOUTH WALES

A time-dependent age-factor extension to the Lee-Carter model

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

First idea

Results

P-Splines

Linear age-dependent

Conclusions

Polynomial expansion

A time-dependent age-factor extension to the Lee-Carter model

Netspar

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

First idea

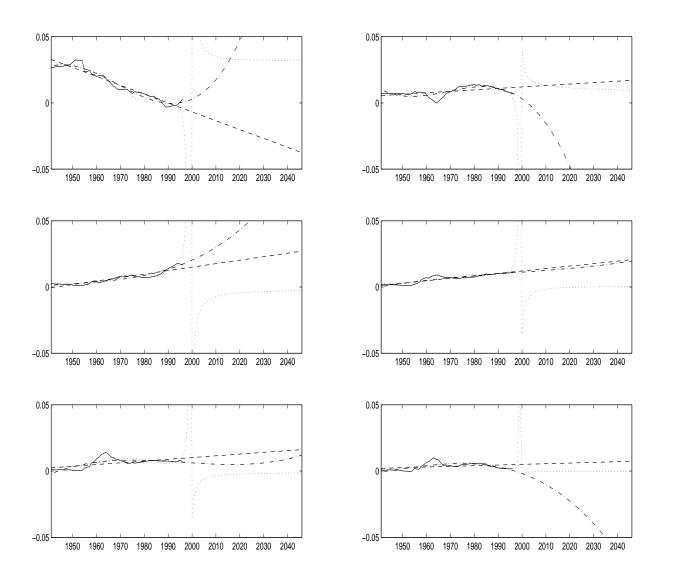
Results

P-Splines

Linear age-dependent

Conclusions

Easy way: use polynomial in time.


Hence:

$$b_{x,t} = c_{0,x} + c_{1,x}t + \dots$$

- If higher order: $\sum_{x} b_{x,t} \neq 1$, thus dived all $b_{x,t}$ by $\sum_{x} b_{x,t}$.
- Problems: realistic forecasts?
- Linear: effect slowing reduces over time?
- Polynomial: large positive/negative values?

Netspar

Longevity 7,
September 8th, 2011
Introduction
Model
Polynomial expansion
First idea
Results
Results
P-Splines
Linear age-dependent
Conclusions /

A time-dependent age-factor extension to the Lee-Carter model

Netspar

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

P-Splines

Idea

Results

Linear age-dependent

Conclusions

A time-dependent age-factor extension to the Lee-Carter model

P-Splines

Idea

Netspar

- More flexible way of smoothing: P-Splines.
- Used in mortality modeling.
- Mixed results: sometimes good estimates, depends strongly on penalty.
- Using penalty, one can obtain forecasts + uncertainty.
- Would it work for $b_{x,t}$?

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

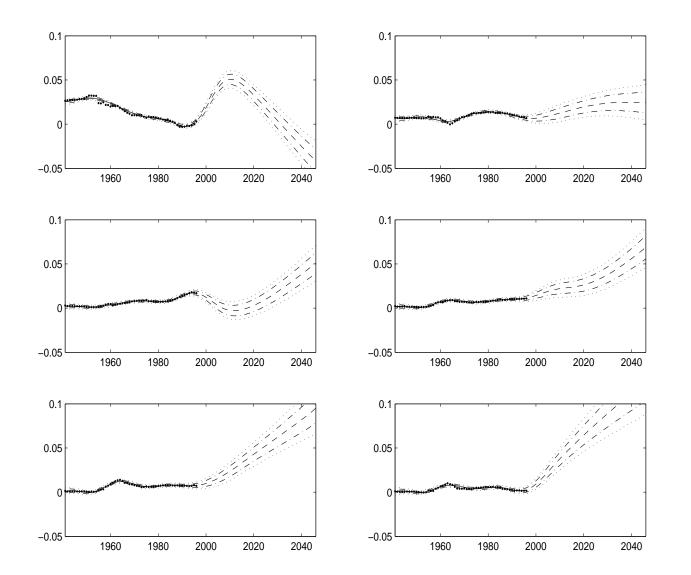
P-Splines

Idea

Results

Linear age-dependent

Conclusions



Results

Netspar

Longevity 7,

September 8th, 2011
September 8th, 2011
Introduction
Model
Polynomial expansion
P-Splines
Idea
Results
Linear age-dependent
Conclusions

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

P-Splines

Linear age-dependent

Idea

Model 1

Results 1

Model 2

Results 2

Conclusions

AUSTRALIAN SCHOOL OF BUSINESS[™] THE UNIVERSITY OF NEW SOUTH WALES

A time-dependent age-factor extension to the Lee-Carter model

Linear age-dependent

Idea

Netspar

- "Simple" models do not seem to work.
- Why?
- The structure of the decline in mortality probabilities changes over time.
- Stronger reduction tends towards higher ages.
 - Example:
 - Focus on young mortality (infectious diseases);
 - Focus on middle age mortality (cancer);
 - Focus on advanced age mortality.

Longevity 7,
September 8th, 2011
Introduction
Model
Polynomial expansion
P-Splines
Linear age-dependent
Idea
Model 1
Results 1
Model 2
Results 2
Conclusions

Model 1

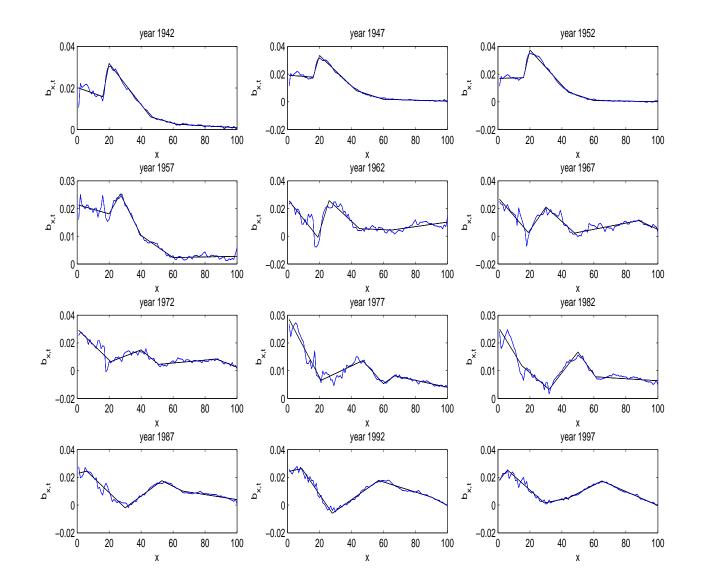
etspar

Longevity 7,

- Model for each year the parameter $b_{x,t}$ in a linear way.
- Have 5 different age groups;
- Within each age group change is linear;
- Age groups changes over time;
- Parameter estimates using OLS & iterative method;
- Iterative method: find the optimal age groups.

- Disadvantage: not applicable to forecast.
- Advantage: We can investigate the pattern in $b_{x,t}$.

September 8th, 2011 Introduction Model Polynomial expansion **P-Splines** Linear age-dependent Idea Model 1 **Results** 1 Model 2 **Results 2** Conclusions



THE UNIVERSITY OF NEW SOUTH WALES

Netspar

Longevity 7,

September 8th, 2011 Introduction Model Polynomial expansion P-Splines Linear age-dependent Idea Model 1 Results 1 Model 2 Results 2 Conclusions

AUSTRALIAN SCHOOL OF BUSINESS™ THE UNIVERSITY OF NEW SOUTH WALES

A time-dependent age-factor extension to the Lee-Carter model

Model 2

Netspar

Longevity 7,

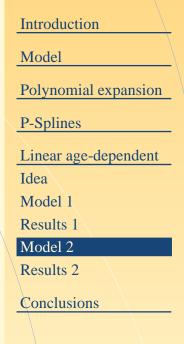
September 8th, 2011

Estimate the parameters in a parametric way:

$$\beta_{x,t} = \gamma_{0,t} + \gamma_{1,t}x + \gamma_{2,t}(x - X_{1,t})_{+} + \dots + \gamma_{5,t}(x - X_{4,t})_{+}$$

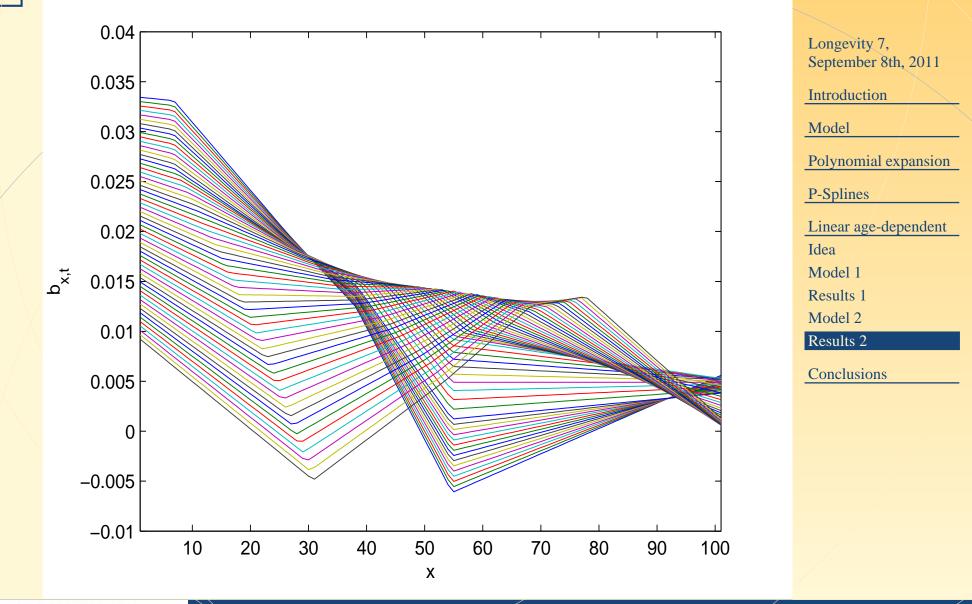
$$X_{i,t} = a_i + b_i(t - c_i)_{+}, \text{ for } i = 1, \dots, 4;$$

$$\gamma_{i,t} = d_i + e_i, \text{ for } i = 0, \dots, 5.$$


Parameter estimates using GMM;

- Many moment conditions;
- Few parameters;

Model overidentified \Rightarrow two step GMM, using Newton-Ralphson method.



A time-dependent age-factor extension to the Lee-Carter model

Netspar

AUSTRALIAN SCHOOL OF BUSINESS[™] The University of New South Wales

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

Conclusions

Conclusions

A time-dependent age-factor extension to the Lee-Carter model

Netspar

- Age-time interactions in the Lee-Carter model are present;
- We should take it into account ⇒ otherwise underestimate reduction in mortality at advanced ages;
- Age-time interactions hard to estimate;
- Age-time interactions hard to model;
- We came up with a possible model;
- Explanation in higher reduction at more advanced ages is logical;
- Use standard Lee-Carter model with care!

Longevity 7, September 8th, 2011

Introduction

Model

Polynomial expansion

P-Splines

Linear age-dependent

Conclusions

Conclusions

