Individual post-retirement longevity risk management under systematic mortality risk

Katja Hanewald, John Piggott, and Michael Sherris

Australian School of Business, AIPAR, and CEPAR University of New South Wales, Sydney, Australia

Longevity Seven Goethe University Frankfurt, 8-9 September 2011

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

Motivation

- Increasingly complex post-retirement financing decision
- Recent product innovations:
 - ► Deferred annuities (Post, 2010; Stevens, 2010; Horneff *et al.*, 2010a)
 - Variable annuities (Doyle and Piggott, 2003; Milevsky and Kyrychenko, 2008; Horneff *et al.*, 2010b)
 - Inflation-indexed annuities (Brown *et al.*, 2002; Mitchell, 2002; Doyle and Piggott, 2003)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- ► Group self-annuitization plans (Valdez *et al.*, 2006; Stamos, 2008; Qiao and Sherris, 2011)
- Varying product costs and guarantees
- Significant systematic component of longevity risk reducing effectiveness of traditional mortality pooling

Summary

- We assess post-retirement strategies for an individual facing idiosyncratic and systematic longevity risk and inflation risk
- Concepts of optimal insurance (Borch, 1960; Arrow, 1971, 1973; Raviv, 1979) are applied to construct portfolios with differing levels of systematic and idiosyncratic longevity risk
 - 1. Theoretical framework based on state-contingent consumption and complete markets: Optimal longevity risk management strategy
 - 2. Multi-period simulation based on stochastic economic variables and stochastic mortality with systematic and idiosyncratic risk: Assess a broader range of retirement strategies

Key Results

- Systematic longevity risk matters
- Optimal insurance concepts are useful
- No loadings, no bequest: annuitization strategies including GSA plans are optimal
- With loadings on life annuities: mutual, non-guaranteed GSA products replace annuitization, even inflation-linked annuities
- With bequest: coinsurance portfolio strategies with self-annuitization and GSA's

Optimal longevity insurance: two-period model

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

Optimal longevity insurance: two-period model

A two-period expected utility model

- Idiosyncratic and systematic longevity risk
- Four products: risk-free investment, a life annuity, a longevity bond, and a GSA fund

State	Risk-free bond	Annuity	Longevity bond	GSA
(<i>h</i> , <i>a</i>)	1	1	1	0
(I, a)	1	1	0	1
(h, d)	1	0	1	0
(I, d)	1	0	0	0

 Product prices derived using a state-contingent claims approach, product risk premiums

(日) (四) (日) (日) (日)

Optimal longevity insurance: two-period model

Results of the two-period model

- Complete market, no bequest motive:
 - ▶ Full annuitization is the dominant strategy as in Yaari (1965)
- Complete market, bequest motive:
 - Life annuity demand reduced; risk-free bond provides bequest
 - Systematic longevity risk hedged with GSA and longevity bond
- Loading on the price of the life annuity:
 - Life annuity demand reduced, substituted with longevity bond and GSA
- Life annuity provider faces insolvency risk:
 - Similar to complete market case with bequest; small increase in annuity demand

(日) (四) (日) (日)

The optimal portfolio depends on the price for transferring systematic and idiosyncratic longevity risk Individual post-retirement longevity risk management under systematic mortality risk Longevity insurance: multi-period scenario and portfolio analysis

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

Individual post-retirement longevity risk management under systematic mortality risk Longevity insurance: multi-period scenario and portfolio analysis

Multi-period numerical analysis

- Multi-period simulation model used to assess a range of alternative strategies based on optimal insurance concepts (coinsurance, deductible)
- Allow for inflation and real consumption with discounted expected utility with and without bequest
- Extended products and portfolios: fixed life annuities, deferred annuities, inflation-indexed annuities, group self- annuitization (GSA), and self-annuitization
- Simulate stochastic economic variables and stochastic mortality with systematic and idiosyncratic risk

Individual post-retirement longevity risk management under systematic mortality risk Longevity insurance: multi-period scenario and portfolio analysis

Stochastic building blocks

- Mortality model: based on Wills and Sherris (2010)
- Market model: cointegrating vector error correction model with regime switching (RS-VECM) (Ngai and Sherris, 2011)

Figure: Survival curve and annuity values, 65-year-old male with confidence intervals.

(日) (四) (三)

Individual post-retirement longevity risk management under systematic mortality risk ${\hfill}{\hfill}$ Results

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

Summary and conclusions

10/17

Individual post-retirement longevity risk management under systematic mortality risk ${\hfill}{\hfill}$ Results

Certainty equivalent cash flow: portfolios

Age = 65, β = 0.98, δ = 2, wealth = \$75,000, no bequest, no loadings

Individual post-retirement longevity risk management under systematic mortality risk $\hfill\square\mathsf{Results}$

Results: no bequest, no loadings

- Results for the base case (age = 65, β = 0.98, δ = 2, wealth = \$75,000, no bequest, no loadings):
 - 1. 100% inflation-indexed annuity
 - 2. 100% life annuity
 - 3. 100% GSA
- Full annuitization, inflation-indexed annuities preferred, GSA because of systematic longevity risk
- Similar results for different wealth levels and different ages

Individual post-retirement longevity risk management under systematic mortality risk $\hfill\square\mathsf{Results}$

Certainty equivalent cash flow: loadings

• Age = 65, β = 0.98, δ = 2, wealth = \$75,000, no bequest

Results: guarantee product loadings, no bequest

- \blacktriangleright Age = 65, β = 0.98, δ = 2, wealth = \$75,000, no bequest
- 10% loading:
 - 1. 100% inflation-indexed annuity
 - 2. 100% GSA
 - 3. 100% life annuity
- 25% loading:
 - 1. 100% GSA
 - 2. 100% inflation-indexed annuity
 - 3. 35% life annuity, 35% GSA, 30% self-annuitization
- Increased role for mutual GSA and co-insurance

Individual post-retirement longevity risk management under systematic mortality risk ${\hfill}{\hfill}$ Results

Results: bequest motive

- Age = 65, β = 0.98, δ = 2, no loadings
- With bequest motive:
 - 1. 35% life annuity, 35% GSA, 30% self-annuitization
 - 2. 50% life annuity, 50% self-annuitization
 - 3. 25% deferred annuity, 75% self-annuitization
- Increased role for self-annuitization through phased withdrawal products

Summary and conclusions

Topic Coverage

Background

Optimal longevity insurance: two-period model

Longevity insurance: multi-period scenario and portfolio analysis

Results

-Summary and conclusions

Conclusions

- For individuals with no bequest motive, and assuming no product loadings, annuitization strategies with small holdings of GSA plans are optimal under systematic longevity risk.
- With loadings on guaranteed life annuity products, GSA plans which are mutual and non-guaranteed, are included in an optimal strategy for individuals to manage their post-retirement longevity risk, replacing even annuitization products with inflation guarantees.
- For individuals with a bequest motive, portfolio strategies including self-annuitization and GSA's dominate full annuitization.

Summary and conclusions

Thank you very much!

Contact: katja.hanewald@unsw.edu.au

16/17

Summary and conclusions

References

- Arrow, K. J. (1971). Essays in the Theory of Risk Bearing. Chicago: Markham Publishing Co.
- Arrow, K. J. (1973). Optimal Insurance and Generalized Deductibles. R-1 108-OEO, Santa Monica: RAND Corporation.
- Borch, K. (1960). The safety loading of reinsurance premiums. Skandinavisk Aktuarietidskrift, pages 162–184.
- Brown, J. R., Mitchell, O. S., and Poterba, J. M. (2002). Mortality Risk, Inflation Risk, and Annuity Products. in: Innovations for Financing Retirement, Bodie, Z., Hammond, B., and Mitchell, O. S. (eds.), Philadelphia: University of Pennsylvania Press, pp. 175-197.
- Doyle, S. and Piggott, J. (2003). Integrating payouts: Annuity design and public pension benefits in mandatory defined contribution plans. In O. S. Mitchell and K. Smetters, editors, *The Pension Challenge: Risk Transfers and Retirement Income Security*, pages 89–101. Oxford: Oxford University Press.
- Horneff, W., Maurer, R., and Rogalla, R. (2010a). Dynamic portfolio choice with deferred annuities. Journal of Banking and Finance, 34(11), 2652 – 2664.
- Horneff, W. J., Maurer, R. H., Mitchell, O. S., and Stamos, M. Z. (2010b). Variable payout annuities and dynamic portfolio choice in retirement. *Journal of Pension Economics and Finance*, 9(02), 163–183.
- Milevsky, M. A. and Kyrychenko, V. (2008). Portfolio choice with puts: Evidence from variable annuities. *Financial Analysts Journal*, 64(3), 80 – 95.
- Mitchell, O. S. (2002). Developments in decumulation: The role of annuity products in financing retirement. In A. Auerbach and H. Herrman, editors, Ageing, Financial Markets and Monetary Policy, pages 97 – 125. Berlin: Springer-Verlag.
- Ngai, A. and Sherris, M. (2011). Longevity risk management for life and variable annuities: Effectiveness of static hedging using longevity bonds and derivatives. *Insurance: Mathematics and Economics*, 49(1), 100–114.
- Post, T. (2010). Individual welfare gains from deferred life-annuities under stochastic mortality. Netspar discussion paper no. 03/2010-044, Netspar.
- Qiao, C. and Sherris, M. (2011). Managing Systematic Mortality Risk with Group Self Poot Annuitisation Schemes. SSRN eLibrary.
- 17/17 Raviv, A. (1979). The design of an optimal insurance policy. The American Economic Review, 69(1),