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1. What are Mortality Indexes?

• Most extrapolative stochastic mortality models are constructed in a
similar manner. Specifically, when they are fitted to historical data,
one or more time-varying indexes (kt) are identified.

• By extrapolating these indexes to the future, we can obtain a
forecast of future death probabilities and consequently other
demographic quantities such as life expectancies. They are
important for quantifying longevity in pension risks and for
constructing benchmarks for longevity-linked capital markets.
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The Lee-Carter Model

In the Lee-Carter model, kt is a univariate time-series:

ln(mx ,t) = ax + bxkt + εx ,t

where mx ,t is the central death rate at age x and in year t.

• ax – an age-specific parameter; the set of {ax} reflects the general
shape of the mortality schedule.

• kt – a time-varying parameter; the time-trend of kt signifies the
general speed of mortality improvement.

• bx – an age-specific parameter which characterizes the sensitivity
of to kt at age x .

• εx ,t – the error-term, which has no long-term trend.
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The kt in the Lee-Carter Model
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The Cairns-Blake-Dowd (CBD) Model

• Cairns et al. (2006) propose a two-factor stochastic mortality
model

ln

(
qx ,t

1− qx ,t

)
= k

(1)
t + k

(2)
t (x − x̄), (1)

where qx ,t is the realized single-year death probability at age x and
time t, x̄ is the average age over the age range we consider, and

k
(1)
t and k

(2)
t are period mortality indexes.
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The Cairns-Blake-Dowd (CBD) Model

• After fitting equation (1) to historic death probabilities, the period

indexes k
(1)
t and k

(2)
t are modeled by a bivariate random walk with

drift, that is,

kt+1 = kt + µ+ CZ (t + 1) (2)

where kt = (k
(1)
t , k

(2)
t )′, µ = (µ1, µ2)′ is a constant 2× 1 vector, C

is a constant 2× 2 upper triangular matrix, and Z (t) is a
2-dimensional standard normal random vector.
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The Cairns-Blake-Dowd (CBD) Model

• Trajectory of mortality predicted rates for a particular birth cohort
(age x in year u) can be obtained by

ln

(
q̂x+s,u+s

1− q̂x+s,u+s

)
= k

(1)
u (s) + k

(2)
u (s)(x + s − x̄),

where k
(1)
u (s) and k

(2)
u (s) are the minimum sqaure error (MMSE)

forecasts of k
(1)
u+s and k

(2)
u+s , respectively.
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The GCBD Model

• To model cohort effects, we may consider the following
generalization of the CBD model:

ln

(
qx ,t

1− qx ,t

)
= k

(1)
t + k

(2)
t (x − x̄) + k

(3)
t ((x − x̄)2 − σ̂2x) + γ

(4)
t−x ,

(3)

where k
(1)
t , k

(2)
t , and k

(3)
t are time period risk factors, γ

(4)
t−x is a

cohort risk factor, and σ̂2x is the mean of (x − x̄)2 over the age
range we consider.
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The GCBD Model

• Having fitted equation (3) to historic data, the period mortality
indexes are modeled by a trivariate random walk with drift:

kt+1 = kt + µ+ CZ (t + 1), (4)

where kt = (k
(1)
t , k

(2)
t , k

(3)
t )′, µ = (µ1, µ2, µ3)′ is a constant 3× 1

vector, C is a constant 3× 3 upper triangular matrix, and Z (t) is a
3-dimensional standard normal random vector.
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The GCBD Model

• Trajectory of mortality predicted rates for a particular birth cohort
(age x in year u) can be obtained by

ln

(
q̂x+s,u+s

1− q̂x+s,u+s

)
= k

(1)
u (s) + k

(2)
u (s)(x + s − x̄)

+k
(3)
u (s)((x + s − x̄)2 − σ̂2x) + γ

(4)
u−x , (5)

where k
(i)
u (s) = k

(i)
u + sµi , i = 1, 2, 3, is the MMSE forecast of

k
(i)
u+s .
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Summary of the Introduction

• The general principle of extrapolative mortality modeling: extract
one or more signals (mortality indexes) from historical data; project
the index(es) forward to obtain a mortality forecast.

• In the Lee-Carter model (M1), kt is a univariate time-series; and it
is often modelled by a univariate random walk.

• In the CBD model (M5), kt is a bivariate vector time-series; and it
is often modelled by a bivariate vector random walk.

• In the GCBD model (M7), kt is a trivariate vector time-series; and
it is often modelled by a trivariate vector random walk.
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Does Human kt follow a Random Walk?
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2. Properties of Mortality Indexes

• All mortality indexes represent some information about the
mortality of a population at a certain time point, but not all
mortality indexes can be used as an indicator of longevity risk. By
an indicator, we mean a value that can be, for example, announced
by national governments every year.

• For example, consider the Lee-Carter model:

ln(mx ,t) = ax + bxkt + εx ,t

The time-varying parameter may be interpreted as the general level
of mortality at a particular time t. However, this index is not
appropriate as an indictor of risk.
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Properties of the Lee-Carter Mortality Indexes

• See the following diagram:
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Properties of the Lee-Carter Mortality Indexes

• The previous index (kt) values from the Lee-Carter model would
change if new data are considered.

• Technically speaking, this is because:

◦ When one more year of data is included, the maximum likelihood
estimates of all model parameters, that is, ax , bx and kt for all x and
t will be updated.

◦ Parameter constraints are involved in the estimation process. In
particular, the constraint

∑
t kt re-scale the series of kt as new data

are included.
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Properties of the CBD Mortality Indexes

• For the original CBD Model (M5), the inclusion of new data will
NOT affect previous index values.

• We shall call this property as “new-data invariant”.

• Reasons for this special property:
◦ It can be shown that adding one year of data will have no effect on

the parameters that are already estimated.

◦ For Model M5, no constraint is needed to stipulate uniqueness.

• None of the stochastic mortality models (M1 to M8) discussed in
Cairns et. al. (2009), except the original CBD model (M5),
process this property.
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Properties of the CBD Mortality Indexes

• An illustration of the data-invariant property of MLE estimates of
mortality indexes from the CBD model using English and Welsh
Data:
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Interpretations of the CBD Mortality Indexes

• k
(1)
t presents the level of the logit-transformed mortality curve. A

reduction in k
(1)
t , that is, a parallel downward shift of the

logit-transformed mortality curve, represents an overall mortality
improvement.

• k
(2)
t presents the steepness of the logit-transformed mortality curve.

An increase in k
(2)
t , that is an increase in the steepness of the

logit-transformed mortality curve, means that mortality (in logit
scale) at younger ages improves more rapidly than at older ages.
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Implication of the CBD Mortality Indexes

• For annuity providers and pension sponsors, their payouts are
positively related to the improvement of mortality at older ages.
Their financial obligations are larger when, of course, the overall

mortality improvement is higher than expected (i.e., k
(1)
t is lower

than expected).

• For a fixed overall mortality improvement, the problem to annuity
providers and pension sponsors would be worse when the
improvement at older ages is higher than that at younger ages

(i.e., when k
(2)
t is lower than expected).
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Implication of the CBD Mortality Indexes

• For life insurers selling term-life insurance products, their payouts
are negatively related to the improvement of mortality at younger
ages. Their payouts are larger when the overall mortality

improvement is lower than expected (i.e., k
(1)
t is higher than

expected).

• For a fixed overall mortality improvement, the problem to life
insurers is worse when mortality improvement at younger ages is

less than that at higher ages (i.e., k
(2)
t is lower than expected).
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3. Multiple Time-Series Modelling

• In the last section, we argue that, among various mortality indexes,
those encompassed in the Cairns-Blake-Dowd (CBD) model (also
known as Model M5) are most suitably used as indictors of
longevity risk.

• Random Walk models are often employed for extrapolating future
mortality indexes.

• A vector random walk model implies, after the first differencing,
the vector time-series does not exhibit any serial- and
cross-correlations.

• However, serial- and cross-correlations are often observed in
mortality indexes obtained from real data.
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Multiple Time-Series Modelling

• Sims (1980) proposes characterizing possible cross-correlations
among time-series by Vector Autoregressive (VAR) models. In this
section we shall employ the multiple time-series modelling
approach for VARMA processes due to Tiao & Box (1981).

• The orthodox modelling strategy (iterative stages of model
identification, estimation and diagnostic checking) proposed by
Box & Jenkins (1976) for univariate time-series can be extended
and applied to this type of M5 bivariate mortailty index time-series.
We shall restrict the discussion to points necessary for describing
the applications in this paper. Further details can be found in Tiao
& Box (1981).
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Data

• Historic mortality data for English and Welsh (male) populations
from year 1950 to 2009.

• The required data, death counts and exposures-to-risk, are
obtained from the Human Mortality Database (2012).

• The maximum likelihood estimates (MLE) of Z(t) = (k
(1)
t , k

(2)
t )′,

for t = 1950, . . . , 2009, with age 40− 90, from the CBD model are
obtained.

• Note that the methods we propose do not require a specifc choice
of population gender and a sample period. They are chosen just
purely for illustration purposes.
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Time-Series Plots of the CBD Mortality Indexes
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Model Identification of Z(t) = (k
(1)
t , k

(2)
t )′

lag (l)
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)(
+ −
− +

) (
+ −
− +

) (
+ −
− +

) (
+ −
− +

) (
+ −
− +

)
(b) Sample partial autoregression matrices (SPAM)(

+ −
· +

) (
+ ·
+ ·

) (
+ ·
+ ·

) (
· ·

+ ·

) (
· ·

+ ·

)
M(l) 332.13 12.41 10.01 8.03 7.62
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Model Identification of ∆Z(t)

lag (l)
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)(
− −
− −

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)
(b) Sample partial autoregression matrices (SPAM)(

· ·
· −

) (
· ·
· ·

) (
+ ·
· ·

) (
· ·
· ·

) (
+ −
+ ·

)
M(l) 12.68 3.35 8.76 4.60 15.28
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Model Estimation of VARIMA (5,1,0) for Z(t)

(a) Full Model
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Model Estimation of VARIMA (5,1,0) for Z(t)

(b) Final Model
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Diagnostic Checking of Fitted Residuals

lag (l)
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)(
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)
(b) Sample partial autoregression matrices (SPAM)(

· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· +

) (
· ·
· ·

)
M(l) 1.98 1.23 1.95 7.15 1.81
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Diagnostic Checking of Fitted Squared Residuals

lag (l)
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)(
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· +
· ·

) (
· ·
· ·

)
(b) Sample partial autoregression matrices (SPAM)(

· ·
+ ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)
M(l) 5.56 0.98 4.40 5.40 2.84
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4. An Indicator of Longevity Risk

• National governments and the WHO announce life expectancies of
different populations every year. To financial institutions, life
expectancy is not an adequate measure of risk, because all it does
not give people any idea about how mortality rates at different
ages vary over time.

• On the other hand, indicators of longevity risk cannot be too
complicated. An indicator that is composed by a huge array of
numbers is difficult to interpret and will lose the purpose as a
“summary” of a mortality pattern.

• In this paper we propose using the M5 mortality indexes

(k
(1)
t , k

(2)
t ) as a longevity risk indicator which would fill in this gap.
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An Indicator of Longevity Risk

• It is a “simple” summary of a mortality pattern.

• The indicator contains only two numbers, k
(1)
t and k

(2)
t , each of

which is readily interpretable and they together tell how mortality
rates at different ages change with time.

• It has the new-data invariant property. This property is important;
because, as a proper indictator, we cannot allow new data to alter
the index values of previous years. The logic is just the same as
that we cannot alter the S&P 500 Index values on previous days.
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A Graphical Risk Metric

• In the last section, we model the M5 mortality indexes (k
(1)
t , k

(2)
t )

jointly. Here, we examine a joint view of them.

• Consider a Cartesian coordinate plane with k
(1)
t as the horizonal

axis and k
(2)
t as the vertical axis, at a future time point t = T : 

𝜅𝑇
(1) 

𝜅𝑇
(2) 

�̂�𝑇
(1) 

�̂�𝑇
(2) 

More 
improvement at 

younger ages 

More 
improvement at 

older ages 

Improvement 
occur faster than 

expected  

Improvement 
occur slower than 

expected  

More risk to 
pension plan 

sponsors  

More risk to 
life insurers  
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K1 and K2 Risks

• Future mortality rates are governed by k
(1)
T and k

(2)
T , which are

both random.

• We coin the uncertainty along the horizonal and vertical
dimensions as “K1 risk” and “K2 risk”, respectively.

• The dotted lines show the best estimate (the MMSE forecast) of

k
(1)
T and k

(2)
T , respectively. These two lines divide the cartesian

plane into four regions. We are the most interested in the two
lower regions.
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K1 and K2 Risks

• The lower left-hand region represents the situation when both k
(1)
T

and k
(2)
T turn out to be lower than expected. To pension plan

sponsors and annuity providers, this situation is the most
undesirable, because the overall mortality improves more than
expected and at the same time improvement at older ages is
heavier.

• A mathematical argument: Under the CBD model, the

logit-transformed death probability is given by k
(1)
T + (x − x̄)k

(2)
T .

At older ages, i.e., when x > x̄ (we use an age range of 40 to 90,
which gives x̄ = 65), the resulting death probability is the lowest

when both k
(1)
T and k

(2)
T are low.
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K1 and K2 Risks

• The lower right-hand region represents the k
(1)
T is higher than

expected but k
(2)
T is lower than expected. To life insurers selling

term life insurances to younger people, this situation is the most
undesirable, because mortality in general improves less than
expected and improvement concentrates on older but not younger
ages. The mathematical argument is similar to that for the
previous case.

• This simple diagram partly explains why natural hedging often
cannot work perfectly in practice. As an annuity provider, you can
offset some “K1 risk” by acquiring a life insurance book. However,
the life insurance book cannot offset (but indeed brings more)
exposure to “K2 risk”.
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Joint Prediction Regions

• Conventionally, isolated (point-wise) prediction intervals (IPI) are
used to quantify the uncertainty in future mortality indices.

• A pointwise interval only reflects uncertainty in ONE variable at
ONE single time point.

• Joint Prediction Regions (JPR) is a joint simultaneous prediction
region with coverage probability 0 < 1− α ≤ 1 for the l-ahead
prediction of a vector time-series {ZT+l ,m (m = 1, · · · , s)}.

Pr(ZT(l) ∈ JPR) = 1− α.
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Joint Prediction Regions

• Given that the association between k
(1)
T and k

(2)
T is of important to

different financial institutions, there is a need to consider the joint

prediction region for k
(1)
T and k

(2)
T , rather than just the marginal

prediction intervals for the two indexes.

• The joint prediction region can serve as a graphical metric of
longevity risk. First of all, the area of a joint prediction region
indicates the aggregate level of uncertainty (i.e., risk). Second of
all, the shape of a joint prediction region indicates the longevity
risk profile of a financial institution.

• Consider the following two examples:
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Joint Prediction Regions

EXAMPLE 1 EXAMPLE 2
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Joint Prediction Regions

• The marginal prediction intervals, (a, b) and (c , d), are the same
for both examples.

• The areas of the above two joint prediction regions are similar,
representing similar levels of aggregate uncertainty.

• However, to a specific financial institution, these two risk metrics
are highly different. For a pension plan provider, Example 1
represents way more risk than Example 2; the opposite is true for a
seller of term life insurance products.
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Constructing Joint Prediction Regions

• There are different methods for constructing joint prediction
regions.

• We propose a numerical method, which can be implemented as
follows:

◦ Calculate the k̂
(1)
T and k̂

(2)
T , the MMSE forecasts of the CBD mortality

indexes.

◦ Calculate the s
(1)
T and s

(2)
T , the standard error of the MMSE forecasts

of the CBD mortality indexes.

◦ From the estimated VARIMA model, simulate, say N, pairs of k
(1)
T

and k
(2)
T .
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Constructing Joint Prediction Regions

• ◦ For each simulated pair of k
(1)
T and k

(2)
T , calculate its weighted

distance to the MMSE forecast with the following formula:√√√√(k
(1)
T − k̂

(1)
T

s
(1)
T

)2

+

(
k
(2)
T − k̂

(2)
T

s
(2)
T

)2

.

◦ Sort the N simulated pairs of k
(1)
T and k

(2)
T by their distances to the

MMSE forecast.

◦ Pick the d(1− α)Ne pairs with the shortest distances. Draw a convex

hull to enclose these d(1− α)Ne pairs of simulated pairs of k
(1)
T and

k
(2)
T . Geometrically speaking, the convex hull is the smallest convex

set that contains the selected d(1− α)Ne points.

◦ The convex hull drawn is a 100(1− α)% joint prediction region for

k
(1)
T and k

(2)
T .
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5. Illustrative Examples

• Example 1: 99% JPR Results for English & Welch Males at
Year = 2022, 2032, 2042;N = 3000, using VARIMA(5,1,0) model:
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Example 1: Discussion

1. The area of the JPR represents the overall level of uncertainty.
The JPR gets bigger over time, indicating uncertainty increases as
we predict farther into the future.

2. The dotted line shows the best estimate of k
(1)
T and k

(2)
T ,

respectively. The vertical line (k
(1)
T ) shifts leftwards, indicating that

the overall level of mortality is reducing. On the other hand, the

horizontal line (k
(2)
T ) shifts upwards slowly, indicating that that

mortality at younger ages (below x̄ = 65) is improving (slightly)
faster than at older ages. Overall, the centroid of the JPR moves
to the upper-left-hand corner over time.

3. The tilt of the JPR is minimal. The lower quadrants are similar in
size. We conclude that for this particular population, pension
providers and life insurers are subject to similar levels of risk.
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Example 2: Canadian Males

• Example 2: 99% JPR Results for Canadian Males at
Year = 2022, 2032, 2042;N = 3000, using VARIMA(1,1,0) model:
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Example 2: Discussion

1. The scales of axes in both EW and Canadian JPR graphs are the
same, so that these two diagrams are comparable.

2. The JPRs for Canada are narrower and taller than those for EW.
This means that Canadian males are subject to less K1 risk than
EW males, but more K2 risk than EW males. In laymens terms,
what this means is that for Canadians, there is less uncertainty
associated with overall mortality improvements, but more
uncertainty associated how mortality improvements are different
among different age groups.
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Example 2: Discussion (cont’d)

3. The JPRs for Canada are more tilted. Specifically, we observe that
the region and the dots roughly form a diagonal, running from the
upper-left-hand to the lower-right-hand corner.

4. Let us focus on the lower portion of the region. The lower left
quadrant is much smaller than the lower right quadrant. A pattern
like this means that in Canada, life insurers selling term life
insurance are subject to relatively more amount of risk than
pension plan providers.
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Thank You!
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