Hedging using longevity-linked securities: Costs, benefits and systemic risks

Ramona Meyricke and Michael Sherris University of New South Wales School of Risk and Actuarial Studies and CEPAR

8 September, 2012

Introduction and RQs ●00	Framework 000000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Motivation					

- Annuity providers may incur significant losses if mortality improves by more than expected
- This is driving the development of new markets of assets with cash-flows linked to the longevity of an underlying population
- In 1970s Black-Scholes option pricing model enabled the growth of new markets in derivative assets
- Over time the market price of options adjusted to reflect volatility of underlying assets and systemic constraints
- E.g. Since 1987, market implied volatility for options of low strike prices are higher than high strike prices
- Similarly market price of longevity derivatives should reflect
 - Volatility of underlying mortality rates
 - Systemic constraints e.g. Solvency Capital Requirements

Introduction and RQs 000	Framework 000000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Research Iss	ues				

- SCR affect companies' willingness to pay for securitization
- Similarly, capital relief under SCR will affect insurers' willingness to pay for longevity bonds
- Profit-maximizing insurer will only buy a longevity bond for hedging if this is cost-effective
- It is unclear which hedging strategies are cost-effective under Solvency II framework
- It is unclear how cost-effective hedging strategies differ from risk-reducing hedging strategies

Introduction and RQs	Framework 000000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Research qu	estions				

- How will a profit-maximizing insurer use LBs?
 - Trade off between the cost of the LB and benefit from holding the LB, which is cost of capital saving
 - Assume decision is made based on PV of all future costs vs. benefits at t = 0
- How does the profit-maximizing hedging strategy influence financial and systemic risks?
 - Expected shortfall of reserves to meet annuity payments
 - Insurer's probability of default

Introduction and RQs 000	Framework ●00000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
The annuitv	book				

- At time t = 0 the insurer receives a single premium P = BEL
- Each year the insurer must pay out tp₆₅
- Insurer must also maintain SCR under Solvency II

Introduction and RQs 000	Framework 0●0000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Solvency Ca	pital Res	erve			

- Insurer holds technical provisions and SCR
- Technical provision = BE Liabilities + Risk Margin i.e. amount insurer needs to immediately transfer its obligations
- SCR is the capital required to ensure 99.5% VaR over 1 year

Model set-up:

- Each year the insurer tops up the technical provisions and holds the SCR
- So the annual cost of maintaining the technical provision is = (Cost of Capital)*(Loss + SCR)
- SCR is ΔNAV from permanent reduction to BE mortality of 20% for all ages

Introduction and RQs 000	Framework 00●000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
SCR with he	edging				

Buying a T year longevity bond changes cash flow

	No hedge	Buy a T year longevity bond
Payments	$_t p_x$	$E(_t p_x)$ in years 1 to T $_t p_x$ year T+1 on
Loss	$_t p_x - E(_t p_x)$	0 in years 1 to T $_t p_x - E(_t p_x)$ from T+1 on
Capital required	$K(t) +_t p_x - E(_t p_x)$	0 in years 1 to T $K(t) +_t p_x - E(_t p_x)$ from T+1 on

 Benefit of hedging = cost of capital saving for the T years over which longevity risk is hedged

• E.g. $6\%(K(t) + p_x - E(p_x))$ in years 1 to T

Minimise cost of capital + cost of hedging (i.e. cost of LB)

Introduction and RQs	Framework 0000●0	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Pricing the L	.B				

- q-forward exchanges realized mortality rate at some future date, for a fixed mortality rate agreed at inception
- the fixed mortality rate agreed at inception will be forecast mortality rate adjusted for risk premium
- the risk premium and price of longevity derivatives is driven by volatility of the underlying mortality rates σ_x

Introduction and RQs 000	Framework 00000●	Data and assumptions 0000	Results 0000000	Conclusion O	Questions 00
Pricing the	LB				

q-forward can be priced using a Sharpe Ratio:

$$q_{x,t}^F = (1 - SR\sigma_x t)E(q_{x,t})$$

Coupon paying LB can be priced using approximation:

$$egin{aligned} S_{x,t} &= \prod_{i=0}^{t-1} (1-q_{x,i}^{F}) - (q_{x,i}-q_{x,i}^{F}) \ &pprox \prod_{i=0}^{t-1} (1-q_{x,i}^{F}) - \sum_{i=0}^{t-1} (q_{x,i}-q_{x,i}^{F}) \prod_{j=0, j
eq i}^{t-1} (1-q_{x,j}^{F}) \end{aligned}$$

So hedge
$$S_{x,t}$$
 by holding:
 $-v^{t-1}\prod_{j=0,j\neq 0}^{t-1}(1-q_{x,j}^F)$ units of the 1-yr q-forward
 $-v^{t-2}\prod_{j=0,j\neq 1}^{t-1}(1-q_{x,j}^F)$ units of the 2-yr q-forward
 \dots
 $\prod_{j=0,j\neq t-1}^{t-1}(1-q_{x,j}^F)$ units of the t-yr q-forward

Introduction and RQs 000	Framework 000000	Data and assumptions ●000	Results 0000000	Conclusion O	Questions 00
Data and as	sumption	IS			

- Australian male age 65 purchases life annuity for \$100,000
- Insurer BE basis is 2009 rates rolled forward using improvement factor based on last 25 years
- \blacksquare Annual payment of \approx \$8,900 not indexed from EOY 1
- Analysis does not allow for investment risk, basis risk, Solvency IIs counterparty risk requirements or loss of diversification benefits
- Other assumptions for pricing:
 - Insurer's annual cost of capital is 6% (+)
 - No profit loading, tax or frictional costs (+)
 - Sharpe ratio of 0.20 (+/-)
 - Assume 100% capital relief for hedged position (-)

Introduction and RQs 000	Framework 000000	Data and assumptions 0●00	Results 0000000	Conclusion O	Questions 00
Discounting					

Introduction and RQs 000	Framework 000000	Data and assumptions 00●0	Results 0000000	Conclusion O	Questions 00
Mortality as	sumption	S			

For forecasting insurer's experience:

- Lee-Carter model was fit to Australian mortality rates 1970 to 2009 and used to forecast mortality
- Assume actual experience follows LC forecast

For pricing the LB and hedge:

- σ_x calculated as standard deviation of smoothed (5 year rolling average) annual percentage change in $q_{x,t}$
- Also use LLMA (2012) smoothing method to smooth crude rates (cubic spline with 5 year age knots) then calculate σ_x

Introduction and RQs 000	Framework 000000	Data and assumptions	Results 0000000	Conclusion 0	Questions 00

Sensitivity tests

Scenario	1	2	3	4	5	6
Cost of capital	6.0%	8.5%	6.0%	6.0%	6.0%	6.0%
Sharpe ratio	0.2	0.2	0.15	0.25	0.2	0.2
Capital relief	100%	100%	100%	100%	50%	100%
Smoothing	5-yr avg	Spline				

- Sharpe ratios for LB used in past studies: 0.20 Ngai and Sherris (2010), 0.25 Loeys et al. (2007), ≈0.12 Bauer et al. (2009)
- For smoothing mortality rates, LLMA (2012) uses cubic splines with knots at every 5 years from 0-100+

Introduc 000	tion and	RQs	Framework 000000	Data and assumptions 0000	Results 00●0000	Conclusion O	Questions 00
	1.0						

Results: Low Sharpe Ratio

Introduction and RQs	Framework	Data and assumptions	Results	Conclusion	Questions
000	000000		000●000	0	00

Results: High Sharpe Ratio

Introduction and RQs	Framework	Data and assumptions	Results	Conclusion	Questions
000	000000	0000	0000€00	O	00

Results: 50% Capital relief

Introduction and RQs 000	Framework 000000	Data and assumptions 0000	Results 00000●0	Conclusion O	Questions 00
Results: Smo	oothing c	of q _x			

Introduction and RQs 000	Framework 000000	Data and assumptions 0000	Results 000000●	Conclusion 0	Questions 00
Summary of	results				

Scenario	1	2	3	4	5	6
Cost of capital	6.0%	8.5%	6.0%	6.0%	6.0%	6.0%
Sharpe ratio	0.2	0.2	0.15	0.25	0.2	0.2
Capital relief	100%	100%	100%	100%	50%	100%
Smoothing	5-yr avg	5-yr avg	5-yr avg	5-yr avg	5-yr avg	Spline
LB T	6	8	7	6	$\approx 5 \ \approx 5 \ \approx 5 \ \approx 5$	≈5
Avg T	13	17	16	10		≈5
UB T	21	28	27	17		≈5

Introduction and RQs	Framework	Data and assumptions	Results	Conclusion	Questions
000	000000		0000000	•	00

Contributions:

- Framework to quantify the trade-off between the cost of buying a longevity bond and the benefit from holding it in terms of reduced SCR
- LBs with term over 25 years are not cost-effective
- Market-based risk transfer mechanisms for oldest ages likely to be expensive
- Insurers should consider in-house risk management e.g. diversifying across cohorts

Limitations and further directions:

- Sharpe ratio is an approximation to the market price of LB, as market evolves other pricing models should be used
- Sensitivity analysis for volatility of q_x

Introduction and RQs	Framework 000000	Data and assumptions	Results 0000000	Conclusion O	Questions •0

Questions?

Introduction and RQs 000	Framework 000000	Data and assumptions 0000	Results 0000000	Conclusion O	Questions ○●
References					

- Bauer, D., Borger, M. and Ruβ, J. (2010). On the pricing of longevity-linked securities, Insurance: Mathematics and Economics, Volume 46, Issue 1, pp. 139-149
- Loeys, J., Panigirtzoglou, N. and Ribeiro, R. M. (2007).
 Longevity: A Market in the Making. JPMorgan Global Market Strategy
- Life & Longevity Markets Association (2012). Longevity Index Technical Document (version 1.0): Description of the construction of various country specific longevity indices produced by the LLMA, 19 March 2012
- Ngai, A. and Sherris, M. (2011). Longevity Risk Management for Life and Variable Annuities: Effectiveness of Static Hedging Using Longevity Bonds and Derivatives, Insurance: Mathematics and Economics, Volume 49, Issue 1, pp. 100-114