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Foreword 

Calculus can be considered as the mathematics of motion and change. It is a BIG topic with 
applications spanning the natural sciences and also some social sciences such as economics 
and finance. In this TN we can only review a few basic concepts that are most likely to be 
useful for some finance-oriented modules of Master courses. The discussion will be 
conducted with exclusive reference to real-valued univariate calculus (calculus of one 
variable) to benefit from its analytical simplicity and ease of visualization.  

§1 Functions and Limits 
The first use of the word function is credited to Leibniz (1646-1716). Until the mid-1800s the 
concept of function was that of a relatively straightforward mathematical formula expressing 
the relationship between the values of a dependent variable ( )y  and those of one or more 
independent variables (univariate and multivariate calculus). In the 19th century, the 
concepts of function and limit were generalized and made a lot more rigorous, thereby 
providing a solid foundation for the further development of calculus. 

A real-valued mathematical expression, such as the quadratic function in exhibit 1.1, has no 
defined numerical value until you assign a value to( )x . Thus, we say that ( )y  is a function of
( )x . Functions are also called transformations because they transform the value of( )x into 
a value of( )y .  

A very important element in the definition of a function is the requirement that for every 
given point on its domain (x-axis) there is one and only one function value. In other words, if 
you draw a straight line parallel to the y-axis it must cross only once the function’s graph. 
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Thus, if there is more than one value of ( )y  corresponding to one value of ( )x  we are dealing 
with two or more functions instead of one (see exhibit 1.2).  

 
Exhibit 1.1 - Graph of the quadratic function  

 
Exhibit 1.2 - Graph of unit circle (radius = 1). This is composed by two 
functions: one for the positive values of (y) and one for the negative. 

Limits 

The concept of limit is now all-pervasive in calculus and its applications. The rigorous 
definition of the limit of a function was worked out in the mid-1800s. There are several types 
of limits. However, we shall concentrate only on two, chosen for their relevance for our 
studies. 

FIRST, the limit of a function that tends to zero for( )x  0 , where the symbol () stand for 
“approaches”. This limit is the cornerstone for the definition and calculation of the derivative 
of a function and will be discussed in §2.  

lim ( )
x

f x



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0
 

SECOND, the limit of a function that tends to zero for( )x   .  

lim ( )
x

f x


 0   

The above limit is true if, given an arbitrarily small number (ε), there is a number (δ) such 
that: 
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( )x f x    0
  

In other words, there is always a value (δ) large enough to obtain the desired result. This is 
also known as the ( , )   approach. 

Zero Coupon Bond Example 

Consider the price ( )Z of a zero coupon bond due in ( )T  years, given a constant 
compounded yield rate( %)Y  6 . The time-to-maturity is also known as tenor in finance-
speak: 

1.1 Limit of the Price of a Zero Coupon Bond 

( ) $ .
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T T
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Exhibit 1.3 – Limit of the zero coupon bond price as a function of tenor.  

§2 – Derivatives 
The twin problems of calculating the tangent to a curve and the area delimited by a curve 
were solved in the late 1600s. It came as a surprise that the tangent and the area problems 
are interconnected. The tangent is calculated with the derivative and the area with the 
integral.  

The central idea of differential calculus is the notion of derivative. The derivative of a real-
valued function ( )y f x  in correspondence of a given value of ( )x is a number that 
measures the slope of the function at that point. Thus, a straight line through this point, with 
a slope equal to the derivative, will be a tangent to the function ( )y f x .  

More generally, the derivative of a function (often indicated as the primitive) is another 
function that gives the slope of ( )f x  for each value of ( )x  on the domain of the function. 
Derivatives can be denoted in many different ways. 

2.1 Notation for Derivatives 

( ) '( ) '
dy d

f x f x y
dx dx

     

Exhibit 2.1 visualizes the derivative and tangent of the price of a zero coupon bond as a 
function of yield (for K = $100, T = 30, and Y = 4%). The derivative of bond prices as a function 
of yield is widely used in fixed-income and is the foundation of duration and convexity 
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analysis. We have chosen a long-maturity zero coupon bond (30 years) to make convexity 
clearly visible. 

  
Exhibit 2.1 – Derivative and tangent to the price of a zero coupon bond as a 
function of spot yield (at Y = 4%) 

Derivative and Limit 

The formula for calculating a derivative relies on the concept of limit and is both rigorous and 
intuitively obvious.  

2.2 Derivative and Limit 
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There are two properties to keep in mind because they play a role in understanding a number 
of economic and financial applications: 
 Adding a constant (a) to a function will just shift the function upwards or downwards, 

while leaving its slope (derivative) unaltered 
 Multiplying the independent variable by a constant (b) multiplies its derivative by (b)   

We can show how this works by using the quadratic function: 

2.3 Derivative of a Quadratic Function 
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Differentiable Functions 

We should add that, to be differentiable for a given value of( )x , a function must be both 
continuous and “smooth” (well-behaved) at that point.  Two intuitive examples are provided 
by exhibits 2.2 and 2.3, which show that a differentiable function may well be non-
differentiable in one point.  

It is interesting to note that there are functions which are both everywhere continuous 
and nowhere differentiable. One of these function is the Brownian motion, which plays a 

$0

$20

$40

$60

$80

$100

0% 2% 4% 6% 8% 10% 12%

30$100 1.06−= ×Z



© G.S. Questa, 2016    TN 2 – Basic Calculus with Finance     [2016-09-03]    Page 5 of 16 

 

central role in the theory of option pricing in finance. However, this is an advanced topic in 
stochastic calculus that cannot be covered in these induction lectures. 

 
Exhibit 2.2 – This is a rectangular hyperbola. It is everywhere continuous and 
differentiable, apart from a discontinuity (singularity) for x = 0. 

 
Exhibit 2.3 – This function is everywhere continuous. However it is not 
differentiable for x = 0 where the slopes on the left and on the right are not 
the same. In fact the derivative jumps from -1 to +1. 

Higher Order Derivatives 

If we take the derivative of a derivative we get what is called the second order derivative, 
which is usually written as: 

''( )
d y

f y
dx


2

2
  

The second derivative plays a relevant role in a number of applications, such as:  
 Taylor series approximation 
 Measuring convexity 
 Determining maxima and minima of a function 

§3 – Taylor Series 
If we examine again exhibit 2.1 we can’t fail noticing that, over a small interval, the tangent 
is a good approximation to the original function. Therefore, in a small interval around a value 
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( )x0  the function can be expressed with the following equation which is a one-term Taylor 
series. (This underlies the duration metric in bond mathematics). 

3.1 First Order Taylor Expansion 
( ) ( ) '( )( )f x f x f x x x  0 0 0   

In bond mathematics we also use a two-term Taylor expansion, which uses the first and the 
second derivative of the function.  

3.2 Second Order Taylor Expansion 
''( )

( ) ( ) '( )( ) ( )
f x

f x f x f x x x x x     20
0 0 0 02

 

§4 – Maxima and Minima of Functions 
The problem of finding the maximum or the minimum value of a function is one of the most 
pervasive in the sciences and in economics. In many advanced problems, we must deal with 
multivariate functions and with inequality conditions. These advanced applications are 
solved numerically with sophisticated software (linear and non-linear optimization, 
simulation). We should note here that Excel solver (see TN 4) is not an industrial-strength 
application, but is a useful piece of software that allows us to familiarize with the structure 
of these optimization problems.  

Some simpler problems can be solved using derivatives. In this case we have the advantage 
of obtaining an analytical solution. An example of this approach is the determination of 
Ordinary Least Squares (OLS) regression line coefficients.  

If we examine exhibit 4.1 we realize intuitively that in correspondence of a maximum or a 
minimum of ( )y f x the tangent to the function must have slope zero, thus implying that 
the derivative must be zero. 

 
Exhibit 4.1 – Tangents to the maximum and the minimum of quadratic 
functions 

We must now determine if setting the first derivative to zero identified a maximum or a 
minimum. This can be done using the second derivative if the function. Let us consider the 
case of a maximum for the function y x 2( ) . The 1st derivative will be positive on the left 
of the maximum and negative of the right. It follows that the 2nd derivative will be negative 
(this is visualized in exhibit 4.2)   
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Exhibit 4.2 – the second order derivative indicates that this is a maximum 

§5 Power, Exponential, and Log Functions 
Power Function 

The power function (PF) can be written as follows, denoting the independent variable with 
( )x and the fixed exponent with ( ) :a    

ay x   
The quadratic and cubic functions that we discussed in TN 1 are clearly power functions. 
Numerical values can be calculated with the Excel POWER spreadsheet function or the 
( ^ )y x a  syntax. The power function has a number of applications in finance. Suffice to 
note that discount factors and value relatives are power functions. 

Derivative of the Power Function  

The derivative of the power function is quite straightforward: 

5.1 Derivative of the power function 

a ad
x a x

dx
 1  

The derivative with respect to ( )Y  of the above equation lies at the foundation of the 
duration approach to measuring interest rate risk for debt securities. In fact this derivative is 
knows in finance as dollar duration (D$). 

5.2 Dollar Duration (D$) 

D$ ( ) ( )T Td
Y T Y

dY
       11 1   

Chain Rule (Derivative of a Function of a Function) 

The chain rule is often used in both simple and advanced financial applications. Hence it is 
necessary to understand how it works. Denoting two functions with ( )f  and ( )g we have a 
function of a function if: 

( ) [ ( )]y x f g x   

The derivative of ( )y  relative to ( )x is obtained by applying the chain rule in the following 
way: 
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5.3 – Chain Rule and Power Function 
[g( )]

[g( )]
d xdy dy

dx d x dx
   

The Natural Exponential Function 

The exponential and the logarithmic functions are a cornerstone of calculus, widely used in 
economic and financial applications. Log yields, also known as continuously compounded 
yields, are based on the natural exponential function. 

Exponential functions are the standard tool when modeling proportional growth (either 
positive or negative). It has been proven that proportional positive or negative growth can 
be modeled with, and only with, the exponential function.  

Exponential functions (as well as logarithms) can have different basis. However the most 
useful one is the irrational number (e = 2.718282 …) which is the base of the natural 
exponential and logarithmic functions. The equation is: 

exp( )xy e x   
The reason for choosing the natural exponential function is that its derivative has the useful 
property of being equal to the primitive function, and this simplifies considerably 
mathematical manipulations without any loss of generality. If the exponent of ( )e  is a 
function of ( )x we must apply the chain rule as shown in the following equations. 

5.4 Derivatives of the Natural Exponential Function 
( ) ( ),x x f x f x xd d

e e e e e
dx dx

   

Due to its widespread use, the exponential function can be calculated not only in Excel, with 
the spreadsheet function EXP, but also with most handheld calculators. The natural 
exponential function turns out to be necessary to define continuously compounded yield 
(exponential yield). The exp( )x function can model both exponential growth when ( )x  0  
and exponential decline when( )x  0 .  

 
Exhibit 5.1 – Positive and negative growth with the natural exponential 
function 

We are likely to come across the following self-explanatory properties of the exponential 
function: 
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One last point: exp( )x  will always return a positive number, as visualized in exhibit 6.1. This 
is a very important property in financial modelling because almost all financial assets have 
limited liability. Their return can well be negative (think of the financial crisis of 2008-09) but 
their price has zero as lower bound.  

The Logarithmic Function 

The logarithmic function is the inverse of the exponential function, that is: 

5.5 Natural Exponential Function 
ln( )ln(e ) , ex xx x 

  
This entails that the graphs of the two functions have identical shapes when you exchange 
the (x) and (y) axis, as shown in exhibit 6.2. We should also note that the logarithmic function 
is not defined for( )x  0 . Natural logs can be calculated with the Excel function LN or using 
a handheld calculator. Natural logs are also extensively used in econometric time-series 
analysis. 

 
Exhibit 5.2 – The natural log and exponential functions 

§6 – Linearity and Convexity 
Linear Function of Simple Yields 

We have already examined linear functions in TN1. Let us now extend the analysis of what 
linearity implies when we consider either realized portfolio returns or future expected 
returns. Consider exhibit 6.1 that shows the realized (end of year) simple returns and value 
relatives on a 5-asset portfolio over a 1-year time horizon. Clearly, asset weights must add 
up to one. 

 
Exhibit 6.1 − Value relatives of a 5-assets portfolio 
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The weighted arithmetic mean of value relatives ( ) .v  1 10  equals the value relative 
calculated with the weighted arithmetic mean of returns ( ) %r  10 . This can be shown as 
follows: 

6.1 The weighted arithmetic returns with simple rates 
( ) ( ) ( ) [ w ]

( )
n nv w r w r

r



      
 

1 11 1 1
1



  
This result is important because it shows that we must use simple yields when we want to 
relate portfolio returns to the average return of its components. This can be easily 
generalized to the stochastic return on some financial asset (stocks, bonds, foreign exchange, 
etc.) Just substitute the weights with probabilities and we find that the expected value 
relative E[ ]v  equals the value relative calculated on the expected yieldE[ ]r  .      

6.2 Expected return with simple rates 
E[ ] ( ) ( ) [ ]

E[ ]
n nv P r P r P

r
      
 

1 11 1 1
1



 

 
Exhibit 6.2 − Expected asset returns and value relatives 

 

 
Exhibit 6.3 − Expected asset returns and value relatives 

Convexity 

A function is upwards concave (convex in financial jargon) over some interval of ( )x  if a 
straight line (known as secant) through any two points of ( )y f x  will always lie above the 
function itself. In finance, the most frequently used convex functions is the exponential 
function, which is convex over the positive real line.  
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Exhibit 6.4 − Convexity of the function Rexp( )        

Relevance of Convexity 

From the point of view of finance, the most relevant property of convex functions is that the 
expected value of the function is always higher than the function of the expected value of 
the independent variable. This property is known as Jensen’s inequality (from the Danish 
mathematician Johan Jensen, who proved it in the early 1900s.) 

6.3 Jensen’s Inequality 
 E[ ] E (exp( ) exp E[ ]v R R       

Let us consider a very simple example, related to fixed income securities interest rate risk, to 
binomial option pricing models, and to the Black-Scholes options pricing model. Consider a 
10-year zero coupon bond yielding 5% at time-0.  Assume now that market-required yields 
either decrease to 4% or increase to 6% in a short time-interval dt( ) , with the same 50% 
probability. Clearly the expected yield will be 5% but the expected return will not be zero, 
due to the Jensen’s inequality. 

 
Exhibit 6.5: One binomial step with log yields 

Assume that a distribution of log yields has an expected valueE[ ] %R  10 . We can calculate 
the tangent to exp( ).v R  If the values of ( )v  did lie on the tangent we would have: 

 E[ ] exp E[ ]v r   

However, all the values of exp( )R  lie above the tangent, with the only exception of the 
tangent point exp( %).10  Therefore, we must have: 

 E[ ] exp E[ ]v R  
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§7 Integrals 
In §2 of this TN we have seen that the derivative ( )f x  of a function ( )F x , known as the 
primitive, measures the slope of ( )F x  and, therefore, its speed of change. Integration 
reverses this approach to calculate ( )F x  given its derivative. This turns out to be an 
extremely relevant development because, both in the natural sciences and in economics and 
finance, we can often measure rate of change but not the primitive, which must be 
calculated. The integration symbol is a stylized S, to indicate that an integral ( )F x  is some 
form of summation based on ( )f x . This link between derivatives and integrals lies at the 
foundations of the two fundamental theorems of calculus.  In the next sub-sections we shall 
try to provide an intuitive understanding of the link between integral and derivative. 

The Indefinite Integral 

In a large number of cases (but not always) we can find the integral equation ( )F x  of a given 
function ( )f x . [This is now made easy by online apps.] In our example we shall refer to the 
(value relatives/discount factors) equations based on log yields.  

7.1 Integral and Derivative of Value Relative 

F t R R t

d
f t R R t R R t

dt
F t R R R t dt

 

    

  

( | ) exp( )

( | ) exp( ) exp( )

( | ) exp( )

  

From Derivative to Integral  

A number of developments on derivatives and integrals are influenced by the tangent and 
area origins of calculus (see §2). This analysis is perfectly correct and rigorous, but not very 
intuitive from the point of view of many business students. Therefore, we shall adopt an 
approach based on the change of value-relative with the passing of time, assuming for 
simplicity that the log-yield rate remains constant (at 5%). We shall also cheat a little and 
start with a well-known primitive function, take it derivative and work back to the integral 
and to its summation meaning.    

7.2 Value-relative Equation 
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Exhibit 7.1 – Value relative as a function of time elapsed and a 5% 
constant log yield   

Derivative of the value-relative equation 

exp( ) exp( )
d

R t R R t
dt

      

We can easily see from exhibit 7.2 that the derivative of ( )v t is identical to ( )v t  scaled down 
by the product with the 5% log yield. 

 
Exhibit 7.2 – Derivative of the value-relative function 

At this point we can partition the t-axis in a relatively large number of intervals (we have 
chosen 120, with interval’s length of one quarter (four per year for 30 years). As ( )v t  is very 
smooth this will already give us an acceptable approximation. Given the value of ( | )v t n  at 
the beginning of the n-th interval, the value at the beginning of the following in interval can 
be calculated multiplying the slope of ( )v t by the interval’s length. Repeating the process we 
obtain the definite integral.  Note that the definite integral is a numerical value 

t ( )

( ) ( ) ( )
t

f t dx

d
v t t v t v t t

dt


 

   


360

0     

Clearly, if we take smaller time-intervals the sum becomes closer to the accurate value of the 
primitive function. In the calculus approach, the time intervals’ length will have zero as a limit   
We could consider the figure similar to that in Exhibit 7.1 to delimit a surface, as shown in 
exhibit 7.3. (In this case, both axis represent a distance.) 
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We can now take the same first-order Taylor series approach, calculating the derivatives and 
multiplying them by the x-axis intervals, which we denote with ( )d  to indicate that they 
are distance-intervals. These products will be (distance * distance), thereby representing 
areas. This is visualized in exhibit 7.4. 

Moreover, a number of functions do not have a closed-form antiderivative. Therefore ( )F x  
must be calculated with numerical methods. For example, in TN3 we shall see that the normal 
density function (the well-known bell curve) does not have an equation for its cumulative 
density. The integral exists, but its values must be calculated. 

We can now use the Taylor series approach (see §2) and multiply each of the 100 slopes by 
the 6-seconds intervals ( ).t   

Indefinite Integral (Antiderivative) 

An indefinite integral is written as follows, with no indication of upper and lower bounds. The 
(dx) is not a multiplier but simply a reminder that the integration takes place with reference 
to the variable (x). The constant of integration (C) has no defined value and is simply a 
reminder that a constant (if it exists) drops in taking the derivative and could need to be 
added back to F(x). 

( ) ( )F x f x dx C    

Clearly, the change in value of F(x) between two values of (x) will be: 

( ) ( ) ( )
b

a

F F b F a f x dx      

The above equation is known as the Second Fundamental Theorem of Calculus. 

§8 Log Yield 
With “classic” compounded yield, the yield rate appears in the base ( )Y1 of the exponential 

function.  With log yield (often referred to as continuously compounded yield), that we shall denote 

with ( ),R  the yield rate is at the exponent of the natural exponential function. Because of their 

mathematical properties, log yields are consistently used in options theory. When using log yields, 

day count is usually act/365. These are the equations: 

Log Yield Equations 
( ) exp( )

ln[ ( )]
( ) exp( )

ln[ ( )]

v T R T
v T R T
d T R T
d T R T

 
 
  
    

 
 

As compounded yields( )Y and log yields are both based on exponential functions they 
produce the same identical result when we adjust the numerical value of ( )R  as shown in 
the log yield equations.  

Example 8.1 − Compounded yield (quoted for act/365) is 4.5%. Calculate ( ).R  
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exp( )
ln( . ) .

R Y
R

 
 

1
1 045 4 4017

 

Example 8.2 − a 92 days T-bill has a log yield of 2.75%. Its price (B) is: 

, . %,
exp( . / ) .

t R K
B

   
    

92 365 2 75 100
100 0 0275 92 365 99 3092

 

Example 8.3 − a one-year T-bill is priced at 95.00. Its log yield is computed as follows: 

 ln ( ) ln . %
t

R v t t


       

1
100 95 5 1293  

Continuously Compounded Yield 
Log yields are often denoted as continuously compounded yields because the value-relative 
that we obtain using the log rate (R) is identical to that obtained using (R) as a simple 
annualized rate compounded an infinite number of times. For a simple proof see the 
mathematical appendix. This can be expressed with the following equation: 

 exp( ) lim /
n

n
R R n


 1   

 
Exhibit 8.1 – Numerical example of the continuous compounding 
calculation, where (n) indicates the number of compounding periods 
per year 

A Common Misconception 

We are likely to come across the statement that continuous compounding should be used 
only when coupons are paid with a very high frequency. For example, let us quote from a 
well-known fixed income textbook (GNMAs are bonds issued by the Government National 
Mortgage Association − also known as Ginnie Mae − a U.S. fully owned Government 
Corporation.) 

“Eurobonds pay annual coupons, U.S. treasuries’ coupons are semiannual, and GNMAs 
make monthly payments. As the coupons become more frequent, it becomes more 
accurate to assume exponential continuous compounding.”   

Clearly, this does not make sense. Given a value-relative ( ),v t  the log rate ( )R   is simply a 
mathematically efficient way to measure the rate of growth (positive or negative), and has 
nothing to do with the coupon payment frequency. In fact, we use log yields for all sort of 
securities, including:  
 Zero coupon bonds (no coupon payment) 
 Stochastic processes for non-dividend-paying securities (in option pricing) 
 

n (1 + R/n) n̂
1 1.050000
2 1.050625
4 1.050945

12 1.051162
365 1.051267
∞ 1.051271



© G.S. Questa, 2016    TN 2 – Basic Calculus with Finance     [2016-09-03]    Page 16 of 16 

 

 
 
 

Glossary
Antiderivative Functions Primitive
Concavity Integral (definite) Multivariate calculus
Continuously comp. yield Integral (indefinite) Secant
Convexity Integration Simple yields
Derivative Jensen’s inequality Taylor expansion
Deivative (first) Limited liability Tenor
Deivative (second) Limits of a function Transformations (functions)
Differentiable Functions Linearity Univariate calculus
Domain Log yields Upwards concave 
Duration Maxima of functions Zero coupon bonds 
Exponential function Minima of functions
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