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Motivation

Because of the nonlinear nature of the
guantities of interest, such as life expectancy,
annuity premium: anc sc on, ar analytic
approach to the calculation of prediction
Intervals Is intractable, so that It is necessary
to resort to asimulation approach.




Motivation

The presence adlependence across time leads
to systemati overestimatiol or unde-
estimation of uncertainty In the mortality
estimates, caused by whether negative or
positive dependence dominates.




Motivation

The correlation structure between the residuals has to
be tackled. Otherwise prediction intervals for
projection: underestimar the actua longevity risk.

In other words, It is necessary to assess a significant
and further source of risk: a sort dépendency risk.




The Lee Carter model

Lee and Carter (1992) suggested a log-bilinear form
for the force of mortality:

m, =exp@, + B,k +u,)

In(m,) =a, + Bk +u,




The LC Sieve Bootstrap

In the literature, there is more than obeotstrap method for
dependent dataas for example block, local, wild, Markov
bootstrap, sub-sampling aseeve

Choi anc Hall (2000 show tha! the sieve bootstra; has
substantial advantages over blocking methods, to such an
extent that block—based methods are not really competitive. In
particular, other authors showhat the sieve bootstrap
outperforms the block bootstrap (Hardle et al. 2003).




The LC Sieve bootstrap

Notation:

u., error term
£, Innovation tern
r, estimated innovation or residi

r, mean value of the residu

r.-T, centred residua

IA:r ecdf of residual

u*  bootstraperrc £ 1ID term from

xt

N\

F

r




The LC Sieve Bootstrap

The Scheme:

The error ternis approximated by aAR(«)  representation:

Ue =Y Pl + &, X=1,2,..m
=1




The LC Sieve Bootstrap

The Steps:

1. Fit the model and obtain the OL S estimates :

p(n)
0, => @0, +&, X=1,2,..m

J=1




The Lc Sieve Bootstrap

The Steps:

2. Specify thelag length p(n)
by BIC, AIC, etc




The LC Sieve Bootstrap

The Steps:

3. Calculate the autoregressive coefficients by the Ordinary
Least Squares or by using the Yule-Walker method

N\

@, i=1...p(n)




The LC Sieve Bootstrap

The Steps:

4. Cal cule}te the residuals (or estimated innovations) associated
with ¢ according the following formu

p(n)

e =U, — U, X=12,....m
j=1

t=p(n)+1,...,n




The LC Sieve Bootstrap

The Steps:

5. Calculatethe centred residuals




The LC Sieve Bootstrap

The Steps:

0. Define the empirical distribution function of the centre«
residuals

Fo ()=

— > Yy

Nn- pt p+1




The LC Sieve Bootstrap

The Steps:

/. Draw &‘; 11D terms from F,, with replacement




The LC Sieve Bootstrap

The Steps:

8. Bootstrap U aresimulated by recursion according to tl
bootstrap regression model:

N

p(n
Uy =D P Uy, +E, Xx=12,..m
j=1




The LC Sieve Bootstrap

Summary:

In other words, the values of ., _are obtained by randomly
samplin¢ with replacemer from F, anc consequent| the
simulatedu,, are computed and th@,,  are mapped. Finally

the estimatesa” ., g . , K,  are obtained by fitting the log-
bilinear structure to the m,




Numerical Application

Application scheme:

-Model Fitting
-Analysis of residuals
-Simulation algorithm

-Comparison of the results




Numerical Application

Dataset:

The population data is composed by the Italian male frg

1980 up to 2006 fronD up to 100 years, collected from

Human Mortality Database. The death rates above age
have been aggregated in an open age group 100+.

m

100




Numerical Application

Log death rate

Italy: male death rates (1980-2006)
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Figure 1- log death rates - Italian male population, age from 0 to 100




Numerical Application

Main effects Interaction
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Figure 2- ax, bx, kt, basic LC model - Italian male population, aggrom 0 to 100




Numerical Application

ERROR MEASURES BASED ON MORTALITY RATES

Averages across ages:

ME MSE MPE MAPE
Mean error Mean Squared Mean Percentage| Mean Absolute
Error Error Percentage Error
-0.0000¢ 0.0002¢ 0.0110: 0.0836:
Averages across years:
IE ISE IPE IAPE
Integrated Error Integrated Integrated Integrated
Squared Error Percentage Error Absolute
Percentage Error
-0.00455 0.01930 1.10273 8.19838




Numerical Application

ERROR MEASURES BASED ON LOG MORTALITY RATES

Averages across ages:

ME MSE MPE MAPE
Mean error Mean Squared | Mean Percentage| Mean Absolute
Error Error Percentage Error
0.00367 0.0148 -0.01132 0.0359¢
Averages across years:
IE ISE IPE IAPE

Integrated Error Integrated Integrated Integrated
Squared Error | Percentage Error Absolute

Percentage Error

0.36583

1.43059

-1.00498

3.40482




Numerical Application

Fitted vs residuals.,.fixing t=2006
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Figure 3 - Fitted ax vs residuals



Numerical Application
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Fitted vs residuals,fixing t=2006
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Figure 4 - Fitted bx vs residuals




Numerical Application

Fitted vs Residuals, age=65
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Figure 5 - Fitted kt vs residuals




Numerical Application

Residuals for Italian male, basic Lee Carter
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Figure 6 — Residuals years vs age — basic LC on Italia 1




Numerical Application

Figure 7 —Paths for ax — Sieve Bootstrap
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Numerical Application
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Figure 8 - Simulated paths for bx — Sieve Bootstrap




Numerical Application

Figure 9 - Simulated paths for kt — Sieve Bootstrap




Numerical Application
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Figure 10 - Forecasted kt — Sieve Bootstrap



Numerical Application
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Figure 11 — Paths for ax — Residual standard bootstrap




Numerical Application

2 10 O 10 0 i H)

4 3D

T T T T T
5 10 15 20 25

t
Figure 12 - Simulated paths for bx — Residual standard bootstrap




Numerical Application
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Figure 13 - Forecasted kt — Residual standard bootstrap




Numerical Application
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Figure 14 - Forecasted kt — Residual standard bootstrap



Numerical Application

Residual Bootstrap Sieve Bootstrap

h 5% 95% 5% 95%

1 -38.10 -34.81 -41.75 -28.37
2 -41.45 -37.53 -45.66 -32.52
3 -43.66 -39.89 -47.82 -34.01
4 -46.30 -42.34 -49.82 -37.49
5 -48.82 -44.78 -52.95 -40.37
6 -51.40 -47.22 -55.07 -41.89
7 -53.95 -49.67 -57.69 -43.44
8 -56.52 -52.13 -61.43 -47.03
9 -59.08 -54.60 -63.52 -50.13
10 -61.66 -57.07 -66.63 -51.33
11 -59.55 -64.23 -68.97 -53.24
12 -62.02 -66.80 -72.17 -55.72
13 -69.37 -64.47 -74.42 -57.84
14 -71.94 -66.91 -77.69 -60.33
15 -74.50 -69.36 -80.27 -62.98

Table 3- Non parametric standard bootstrap and Sieve bootstrap 5% ah
95% Confidence Intervals for k.,



Concluding Remarks

Our research proposes a particular bootstrap
methodology, the LC Sieve Bootstrap, for
capturing the dependence in deriving
prediction intervals, thus avoiding a
systematic  over-estimation or under-
estimation of the amount of uncertainty in the
parameter estimates, respectively if negative
or positive dependence dominates.




Concluding Remarks

e The standard residual bootstrap procedure

does not preserve the correlation structure in
the data.

e The sieve bootstrap, on the other hand,
captures the dependency structure, leading to
more reliable uncertainty measurement
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