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Introduction

Data

Moody’s corporate issuer and default counts in 2008 and 20092.

Grade 2008 2009
Issuers | Defaults || Issuers | Defaults

Caa-C 421 63 528 | 182

B 1158 25 962 72

Ba 527 6 511 12
Baa 1025 5 1011 9

A 981 5 964 2

Aa 595 4 527 0
Aaa 145 0 136 0

LAl | 4852 ] 108 | 4639 | 277 |

2Source: Moody'’s (2013)
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Forecast problem

Moody’s corporate issuer proportions and default rates in 2008 and

Introduction

issuer proportions in 20093. All numbers in %.

Grade 2008 2009
Issuers | Default rate || Issuers | Default rate

Caa-C 8.7 15.0 1.4 ?

B 23.9 22| 20.7 ?

Ba 10.9 11 11.0 ?
Baa 211 05| 218 ?

A 20.2 05| 208 ?

Aa 12.3 0.7 1.4 ?
Aaa 3.0 0.0 2.9 ?
(Al [ 100.0 | 22 1000 7

3Source: Moody'’s (2013)
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Introduction

Comparison of two approaches

Observed default rates (DR) for 2008* and 2009 and Total Probability
(TP) and Kullback-Leibler (KL) forecasts for 2009. All numbers in %.

[ Grade [ DR 2008 | TP 2009 | KL 2009 | DR 2009 |

Caa-C | 14.96 | 1209 | 3022 | 34.47

B 216 3.24 9.53 7.48

Ba 114 1.46 4.47 2.35

Baa 0.49 0.78 2.42 0.89

A 0.51 0.33 1.02 0.21

Aa 0.67 0.12 0.36 0.00

Aaa 0.00 0.03 0.10 0.00
(Al | 223 | 246 | 669 | 597 |

“Default rates for 2008 were smoothed by quasi-moment matching (Tasche, 2013)
before being used for the TP and KL forecasts.
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Introduction

Objective

» Default rate forecasts are often based on
> regression on macroeconomic variables or
» assumptions on shared portfolio characteristics (e.g. with credit
bureau data collections).
» Drawbacks:
» Long time series of observations are required.
» Firm specific underwriting policies are not taken into account.
» We investigate methods that

» allow for period-to-period forecasts and
» only rely on internal data.

Dirk Tasche (PRA) Forecasting portfolio credit default rates 6/24



Forecasting as a measure extension problem

Setting

» Formalise setting of slide 4. We only consider binary
classification problem.
» Known:
Probability space (£, A, Py) (training set).
o-field C C A (covariates).
Event A € A, A ¢ C (class of example).
Probability measure Py on (£2,C) (test set without class labels).
» In rating example (slide 4):
» C is information provided by rating grade.
» A means issuer’s default. Issuer’s default status is not known at the
beginning of the year.
» Py is known joint distribution of rating grades at beginning of 2008
and default status at end of 2008.
» Py is known distribution of rating grades at beginning of 2009.

vV vyVvVYyy

Dirk Tasche (PRA) Forecasting portfolio credit default rates 7124



Forecasting as a measure extension problem

Problem

» Find extension P} of Py to o({A} U C) such that we can compute
P3i[A] and P;[A|C].
» The extension should meaningfully incorporate features of Py.

» In the rating example P3[A] is a forecast of the portfolio-wide 2009
default rate and P{[A|C] is a forecast of the grade-level default
rates.

» Assumptions:

> P0|C has a density f with respect to some measure p on (2,C).
» Suppose pp = Py[A] € (0,1).

» In the example:

» 1 is the Laplace distribution on {Caa-C,...,Aaa} and f is given by

the rating frequencies.
> po = 2.2%.
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Forecasting as a measure extension problem

The Law of Total Probability approach
» Classical case: For C-measurable partition Cy, Co, ... of Q

P[A] = > P[A|Ci] P[C].
pa

» For classification problem:
» Replace P[C] by P1[Ck] and P[A| Cx] by Po[A| Ck].
» In general, P;[B] = E; [Po[B|C]], B € A defines a probability
measure on (Q, A) if Py < PO]C.
» This gives column “TP 2009” on slide 5 (assuming that
Po[A|C] = PI[A|C]).
» In the machine learning literature, this solution is called covariate
shift approach (Moreno-Torres et al., 2012).
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Forecasting as a measure extension problem

Class Density Ratios

> Since Py |,< 1 we have p-densities f4 and fae of Po[- | A]|, and
Po[- | A%

Assumption: fac > 0.

Define the density ratio \g = f4 / fac.

On (,C,Py) then we have

v

v

v

f=pofa+(1—po)Ta

A
PolAIC] = 1 h o

(1)

v

Hence Po!c is a mixture distribution. This suggests estimation of
P3[A] by a mixture model approach.
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Forecasting as a measure extension problem

Example: Moody’s 2008 rating distributions

Original
g B Defaulters
- O Unconditional
> o O Survivors
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Forecasting as a measure extension problem

The Kullback-Leibler estimator

» Assume that Py has density g > 0 with respect to . Minimise the
Kullback-Leibler (KL) distance between g and pfa + (1 — p) fac:

KL(p) = /g log (W) ap 2)
= E1[log(g/fac)] — E1[log(pro + 1 — p)].
» If E4 is an empirical measure, minimising the KL distance gives a
maximum likelihood estimator of P{[A].
» First order condition for minimum:
KL'(p) =0 <= E;4 [

» A solution of (3) is called KL estimator of P{[A].
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Forecasting as a measure extension problem

Exact fit for the KL estimator

» Suppose that P1[\o = 1] < 1. Then there is a unique solution
0 < p1 < 1to (8)if and only if

Eq [)\0] >1 and E; [1 /)\0] > 1. (4)

» If there is a solution 0 < p; < 1 to (3) then there is a probability
measure P; on o({A} UC) such that

1) Pi|.=Py,
2) P;[A] = py, and
3) Pi[C|Al = Jo 5, dnand Pi[C| A% = [, 5595, dufor
Cec.
» Property 1) is called exact fit.

» Pj is the only probability measure on o({A} U C) with 1) and
density ratio Ag. P is called KL extension of Py.

» The measure extension result still holds if g is a density of Py with
respect to some measure v # p.
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Forecasting as a measure extension problem

Comments

» In the multi-class case, there is no similarly simple condition like
(4) for the existence of a solution to the first order equations for
the KL minimisation.

» The criterion (4) seems to be satisfied most of the time.

» |s there another way to assess ex ante (before column “DR 2009~
on slide 5 is observed) whether Total Probability or KL approach
(or none of the two) is better?

» A partial response comes from studying prior probability shift
(Moreno-Torres et al., 2012):

» In general, it holds that g4 = m # fp and
gAC - % ;é fAC

» Prior probability shift denotes special case g = qfa + (1 — q) fac.
Then it follows that f4 = ga and fac = gac.
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Forecasting as a measure extension problem

Example: Best vs. exact fit for Moody’s 2009 data
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Forecasting as a measure extension problem

Prior probability shift
» Let g € (0,1) and assume that Py is given by

g =g = qfa+(1—q)fe. (5)

v

Then py = q is the unique solution of (3) in (0, 1).
Moreover, it holds that

v

Eq[Po[A|C]] —q = (po — g) eIl S I ALED,

v

For the regression of 14 on C under Py we have that

2 _ Eo[Po[A|C](1=Po[A[C])]
1-R o po (1 PogJ

v

Hence the Total Probability and KL estimates of g are the less
different the better the forecast of A by Py[A|C] is on the training
set.
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When to deploy the Kullback-Leibler estimator?

Some thoughts

» Under assumption (5), the KL estimator is an unbiased estimator
of the class probability.

» Hofer and Krempl (2013) analyse a credit dataset that seems to
fulfil (5).

» On Moody’s data (Moody’s, 2013), KL performs worse than Total
Probability on average.

» Clearly, if historical records are available a decision between KL
and Total Probability should be based on time series analysis.

» For non-credit applications, sometimes a rationale based on
causality can be helpful.
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When to deploy the Kullback-Leibler estimator?

Causality in classification problems

v

Classification problem: Infer class Y of an observation based on
covariates X.

Fawcett and Flach (2005) distinguish two types of ‘classification
domains’:
(i) X — Y where the class is causally dependent on the covariates X.
(i) 'Y — X where different classes cause different outcomes of X.
Fawcett and Flach (2005) describe two examples of (ii):
» Infection status with regard to a disease and illness symptoms.
» Manufacturing fault status and properties of the produced goods.
(i) is considered a justification of assumption (5).

There is no clear causality in credit classification problems.

v

v

v

v
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When to deploy the Kullback-Leibler estimator?

A prudent approach to probability of default
quantification |
» Let g > 0 be a pu-density of Py on (Q2,C). If (4) holds, g has the
following decomposition:
9 = p1ga+(1—p1)3ga,
with g4 and gac as on Slide 14.
» Define P on (Q,0({A} UC)) by
dPgl,
dpu

and its KL extension. Then P3[A|C] = Po[A|C].
_ Eg[Po[A[C] (1=Po[A[C])]
po (1—po)

= Poga+ (1 —po)9ac

we obtain

» Moreover, with R2 = 1
p1 B2+ (1 - R%)py = Eq[Po[A|C]].
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When to deploy the Kullback-Leibler estimator?

A prudent approach to probability of default
quantification Il

» Hence, it holds that

Po < p1 = po < Eq[Po[A[C]] < pu,
po>p1 = po > Eq[Po[A|C]] > py.

» This observation suggests the following prudent estimation
method for P{[A]:

» Determine py according to (3).
» If po < p1 choose P;[A] = p;.
» If po > p1 choose P;[A] = E+ [Po[A|C]].

» With this approach, there is an incentive to optimise the accuracy
of the conditional probabilities of default Py[A | C] (see slide 16).
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Expected loss forecast

The problem

» For sake of illustration, suppose that on slide 4

» ‘issuers’ is replaced by '% of exposure’ and

» ’default rate’ is replaced by ’loss rate’.

» Are then the Total Probability and KL forecast methods
applicable?

» Clearly, 'yes’ for Total Probability because then it is simply assumed
that the grade-level loss rates in 2009 are the same as the ones
observed in 2008.

» Less clear for KL because its derivation is heavily based on
probability calculus.

» Two interpretations of model (slide 7):
» Individual: py is one issuer’s probability of default.
» Collective: py is the proportion of all issuers that default.
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Expected loss forecast

The finite measure approach

» With the collective interpretation of the model (slide 7), it is
applicable to the 'exposure — loss rate’ problem:

» Probabilities are understood as proportions.

» Probability calculus is calculus of proportions in terms of finite
measures.

» Conditional probabilities are relative proportions.

» Bayes’ formula is a re-engineering tool without interpretation of
causality.

» Limited practical application to a retail credit loss estimation
problem was inconclusive with regard to suitability of approach.

» Suggestion to use the prudent approach described before.
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Conclusions

We have studied the problem of forecasting prior class
probabilities in the presence of a changed covariates distribution.

Straight-forward forecasts based on Law of Total Probability (TP)
may underestimate the amount of change of the prior probabilities.
Alternative simple finite mixture model approach is promising:

» Deploying the Kullback-Leibler (KL) estimator provides exact fit of
the changed covariates distribution.

» In the binary classification case, the KL estimator always forecasts
more change of the prior probabilities than the TP.

» In credit risk, this can be used to obtain conservative estimates of
probability of default and expected loss.

This approach may reduce dependence on macroeconomic data
and assumptions of similarities of portfolios.

Loss provisioning and stress testing are potential applications.
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