Forecasting portfolio credit default rates

Dirk Tasche

Bank of England – Prudential Regulation Authority¹ dirk.tasche@gmx.net

> Cass Business School February 18, 2015

¹The opinions expressed in this presentation are those of the author and do not necessarily reflect views of the Bank of England.

Introduction

Forecasting as a measure extension problem

When to deploy the Kullback-Leibler estimator?

Expected loss forecast

Conclusions

References

э

Data

Moody's corporate issuer and default counts in 2008 and 2009².

Grade	2008		2009	
	Issuers	Defaults	Issuers	Defaults
Caa-C	421	63	528	182
В	1158	25	962	72
Ba	527	6	511	12
Baa	1025	5	1011	9
A	981	5	964	2
Aa	595	4	527	0
Aaa	145	0	136	0
All	4852	108	4639	277

Dirk Tasche (PRA)

э

ヘロト ヘアト ヘビト ヘビト

²Source: Moody's (2013)

Forecast problem

Moody's corporate issuer proportions and default rates in 2008 and issuer proportions in 2009³. All numbers in %.

Grade	2008		2009	
	Issuers	Default rate	Issuers	Default rate
Caa-C	8.7	15.0	11.4	?
В	23.9	2.2	20.7	?
Ba	10.9	1.1	11.0	?
Baa	21.1	0.5	21.8	?
Α	20.2	0.5	20.8	?
Aa	12.3	0.7	11.4	?
Aaa	3.0	0.0	2.9	?
All	100.0	2.2	100.0	?

```
<sup>3</sup>Source: Moody's (2013)
```

Dirk Tasche (PRA)

Introduction

Comparison of two approaches

Observed default rates (DR) for 2008⁴ and 2009 and Total Probability (TP) and Kullback-Leibler (KL) forecasts for 2009. All numbers in %.

Grade	DR 2008	TP 2009	KL 2009	DR 2009
Caa-C	14.96	12.09	30.22	34.47
В	2.16	3.24	9.53	7.48
Ba	1.14	1.46	4.47	2.35
Baa	0.49	0.78	2.42	0.89
А	0.51	0.33	1.02	0.21
Aa	0.67	0.12	0.36	0.00
Aaa	0.00	0.03	0.10	0.00
All	2.23	2.46	6.69	5.97

⁴Default rates for 2008 were smoothed by quasi-moment matching (Tasche, 2013) before being used for the TP and KL forecasts.

Introduction

Objective

Default rate forecasts are often based on

- regression on macroeconomic variables or
- assumptions on shared portfolio characteristics (e.g. with credit bureau data collections).
- Drawbacks:
 - Long time series of observations are required.
 - Firm specific underwriting policies are not taken into account.

We investigate methods that

- allow for period-to-period forecasts and
- only rely on internal data.

Setting

- Formalise setting of slide 4. We only consider binary classification problem.
- Known:
 - Probability space $(\Omega, \mathcal{A}, P_0)$ (training set).
 - σ -field $C \subset A$ (covariates).
 - Event $A \in A$, $A \notin C$ (class of example).
 - Probability measure P_1 on (Ω, C) (test set without class labels).
- In rating example (slide 4):
 - \blacktriangleright C is information provided by rating grade.
 - A means issuer's default. Issuer's default status is not known at the beginning of the year.
 - P₀ is known joint distribution of rating grades at beginning of 2008 and default status at end of 2008.
 - P₁ is known distribution of rating grades at beginning of 2009.

Problem

- Find extension P_1^* of P_1 to $\sigma(\{A\} \cup C)$ such that we can compute $P_1^*[A]$ and $P_1^*[A | C]$.
- The extension should meaningfully incorporate features of P₀.
- In the rating example P^{*}₁[A] is a forecast of the portfolio-wide 2009 default rate and P^{*}₁[A | C] is a forecast of the grade-level default rates.

Assumptions:

- $P_0|_{\mathcal{C}}$ has a density *f* with respect to some measure μ on (Ω, \mathcal{C}) .
- Suppose $p_0 = P_0[A] \in (0, 1)$.
- In the example:
 - µ is the Laplace distribution on {Caa-C,..., Aaa} and f is given by the rating frequencies.
 - ▶ *p*₀ = 2.2%.

The Law of Total Probability approach

• Classical case: For C-measurable partition C_1, C_2, \ldots of Ω

$$\mathbf{P}[\mathbf{A}] = \sum_{k=1}^{\infty} \mathbf{P}[\mathbf{A} \mid \mathbf{C}_k] \mathbf{P}[\mathbf{C}_k].$$

- For classification problem:
 - Replace $P[C_k]$ by $P_1[C_k]$ and $P[A | C_k]$ by $P_0[A | C_k]$.
 - In general, P₁^{*}[B] = E₁[P₀[B | C]], B ∈ A defines a probability measure on (Ω, A) if P₁ ≪ P₀|_C.
- ► This gives column "TP 2009" on slide 5 (assuming that $P_0[A | C] = P_1^*[A | C]$).
- In the machine learning literature, this solution is called covariate shift approach (Moreno-Torres et al., 2012).

Class Density Ratios

- Since $P_0|_{\mathcal{C}} \ll \mu$ we have μ -densities f_A and f_{A^c} of $P_0[\cdot |A]|_{\mathcal{C}}$ and $P_0[\cdot |A^c]|_{\mathcal{C}}$.
- Assumption: $f_{A^c} > 0$.
- Define the **density ratio** $\lambda_0 = f_A / f_{A^c}$.
- On (Ω, C, P_0) then we have

$$f = \rho_0 f_A + (1 - \rho_0) f_{A^c}$$

$$P_0[A | C] = \frac{\rho_0 \lambda_0}{1 - \rho_0 + \rho_0 \lambda_0}.$$
(1)

• Hence $P_0|_{\mathcal{C}}$ is a mixture distribution. This suggests estimation of $P_1^*[A]$ by a **mixture model** approach.

Forecasting as a measure extension problem

Example: Moody's 2008 rating distributions

11/24

The Kullback-Leibler estimator

► Assume that P₁ has density g > 0 with respect to µ. Minimise the Kullback-Leibler (KL) distance between g and p f_A + (1 − p) f_{A^c}:

$$KL(p) = \int g \log\left(\frac{g}{p f_A + (1-p) f_{AC}}\right) d\mu$$

= E₁ [log(g/f_{AC})] - E₁ [log(p \lambda_0 + 1 - p)]. (2)

- If E₁ is an empirical measure, minimising the KL distance gives a maximum likelihood estimator of P₁^{*}[A].
- First order condition for minimum:

$$\operatorname{KL}'(\rho) = 0 \iff \operatorname{E}_1\left[\frac{\lambda_0 - 1}{1 - \rho + \rho \lambda_0}\right] = 0.$$
 (3)

A solution of (3) is called KL estimator of P^{*}₁[A].

イロト 不得 トイヨト イヨト ヨー ろくの

Exact fit for the KL estimator

Suppose that P₁[λ₀ = 1] < 1. Then there is a unique solution 0 < p₁ < 1 to (3) if and only if</p>

$$E_1[\lambda_0] > 1$$
 and $E_1[1/\lambda_0] > 1$. (4)

- If there is a solution 0 < p₁ < 1 to (3) then there is a probability measure P^{*}₁ on σ({A} ∪ C) such that
 - 1) $P_1^*|_{\mathcal{C}} = P_1$, 2) $P_1^*[\mathcal{A}] = p_1$, and 3) $P_1^*[\mathcal{C} | \mathcal{A}] = \int_{\mathcal{C}} \frac{g \lambda_0}{1 - p_1 + p_1 \lambda_0} d\mu$ and $P_1^*[\mathcal{C} | \mathcal{A}^c] = \int_{\mathcal{C}} \frac{g}{1 - p_1 + p_1 \lambda_0} d\mu$ for $\mathcal{C} \in \mathcal{C}$.
- Property 1) is called exact fit.
- P^{*}₁ is the only probability measure on σ({A} ∪ C) with 1) and density ratio λ₀. P^{*}₁ is called KL extension of P₁.
- ► The measure extension result still holds if *g* is a density of P₁ with respect to some measure $\nu \neq \mu$.

Comments

- In the multi-class case, there is no similarly simple condition like (4) for the existence of a solution to the first order equations for the KL minimisation.
- The criterion (4) seems to be satisfied most of the time.
- Is there another way to assess ex ante (before column "DR 2009" on slide 5 is observed) whether Total Probability or KL approach (or none of the two) is better?
- A partial response comes from studying prior probability shift (Moreno-Torres et al., 2012):
 - In general, it holds that $g_A = \frac{g \lambda_0}{1 \rho_1 + \rho_1 \lambda_0} \neq f_A$ and $g_A = \frac{g \lambda_0}{1 \rho_1 + \rho_1 \lambda_0} \neq f_A$
 - $g_{\mathcal{A}^c} = rac{g}{1-p_1+p_1\,\lambda_0}
 eq f_{\mathcal{A}^c}.$
 - ▶ Prior probability shift denotes special case $g = q f_A + (1 q) f_{A^c}$. Then it follows that $f_A = g_A$ and $f_{A^c} = g_{A^c}$.

Example: Best vs. exact fit for Moody's 2009 data

Observed vs. best fit 2009 unconditional rating distribution 0.20 Observed Best fit Probability 0.10 0.00 Caa-C в Ba Baa А Aa Aaa Best fit vs. exact fit 2009 conditional rating distributions 0.5 Best fit default 4.0 Exact fit default Best fit survival Probability 0.3 Exact fit survival 0.2 0.1 0.0 Caa-C В Ва Baa А Aa Aaa

Dirk Tasche (PRA)

Forecasting portfolio credit default rates

Prior probability shift

• Let $q \in (0, 1)$ and assume that P_1 is given by

$$\frac{dP_1}{d\mu} = g = q f_A + (1-q) f_{A^c}.$$
 (5)

- Then $p_1 = q$ is the unique solution of (3) in (0, 1).
- Moreover, it holds that

$$E_{1}[P_{0}[A | C]] - q = (p_{0} - q) \frac{E_{0}[P_{0}[A | C](1 - P_{0}[A | C])]}{p_{0}(1 - p_{0})}$$

For the regression of $\mathbf{1}_A$ on \mathcal{C} under P_0 we have that

$$1 - R^2 = \frac{E_0[P_0[A \mid C] (1 - P_0[A \mid C])]}{p_0 (1 - p_0)}$$

► Hence the Total Probability and KL estimates of *q* are the less different the better the forecast of *A* by P₀[*A* | *C*] is on the training set.

Dirk Tasche (PRA)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Some thoughts

- Under assumption (5), the KL estimator is an unbiased estimator of the class probability.
- Hofer and Krempl (2013) analyse a credit dataset that seems to fulfil (5).
- On Moody's data (Moody's, 2013), KL performs worse than Total Probability on average.
- Clearly, if historical records are available a decision between KL and Total Probability should be based on time series analysis.
- For non-credit applications, sometimes a rationale based on causality can be helpful.

Causality in classification problems

- Classification problem: Infer class Y of an observation based on covariates X.
- Fawcett and Flach (2005) distinguish two types of 'classification domains':
 - (i) $X \rightarrow Y$ where the class is causally dependent on the covariates *X*.
 - (ii) $Y \rightarrow X$ where different classes cause different outcomes of X.
- Fawcett and Flach (2005) describe two examples of (ii):
 - Infection status with regard to a disease and illness symptoms.
 - Manufacturing fault status and properties of the produced goods.
- ► (ii) is considered a justification of assumption (5).
- ► There is no clear causality in credit classification problems.

A prudent approach to probability of default quantification I

Let g > 0 be a μ-density of P₁ on (Ω, C). If (4) holds, g has the following decomposition:

$$g = p_1 g_A + (1 - p_1) g_{A^c},$$

with g_A and g_{A^c} as on Slide 14.

• Define P_0^* on $(\Omega, \sigma(\{A\} \cup C))$ by

$$rac{d \, \mathrm{P}^*_0 ig|_{\mathcal{C}}}{d \, \mu} \; = \; p_0 \, g_{\mathcal{A}} + (1 - p_0) \, g_{\mathcal{A}^c}$$

and its KL extension. Then $P_0^*[A | C] = P_0[A | C]$.

• Moreover, with $R_*^2 = 1 - \frac{E_0^*[P_0[A | C](1 - P_0[A | C])]}{p_0(1 - p_0)}$ we obtain

$$p_1 R_*^2 + (1 - R_*^2) p_0 = E_1 [P_0[A | C]].$$

Dirk Tasche (PRA)

Forecasting portfolio credit default rates

A prudent approach to probability of default quantification II

Hence, it holds that

$$\begin{split} \rho_0 &\leq \rho_1 \; \Rightarrow \; \rho_0 \leq \mathrm{E}_1 \left[\mathrm{P}_0[\boldsymbol{A} \,|\, \boldsymbol{\mathcal{C}}] \right] \leq \rho_1, \\ \rho_0 &\geq \rho_1 \; \Rightarrow \; \rho_0 \geq \mathrm{E}_1 \left[\mathrm{P}_0[\boldsymbol{A} \,|\, \boldsymbol{\mathcal{C}}] \right] \geq \rho_1. \end{split}$$

- This observation suggests the following prudent estimation method for P₁^{*}[A]:
 - Determine p_1 according to (3).
 - If $p_0 \le p_1$ choose $P_1^*[A] = p_1$.
 - If $p_0 \ge p_1$ choose $P_1^*[A] = E_1[P_0[A | C]]$.
- ► With this approach, there is an incentive to optimise the accuracy of the conditional probabilities of default P₀[A | C] (see slide 16).

イロト 不得 トイヨト イヨト

Expected loss forecast

The problem

- For sake of illustration, suppose that on slide 4
 - 'issuers' is replaced by '% of exposure' and
 - 'default rate' is replaced by 'loss rate'.
- Are then the Total Probability and KL forecast methods applicable?
 - Clearly, 'yes' for Total Probability because then it is simply assumed that the grade-level loss rates in 2009 are the same as the ones observed in 2008.
 - Less clear for KL because its derivation is heavily based on probability calculus.
- Two interpretations of model (slide 7):
 - Individual: p_0 is one issuer's probability of default.
 - ► Collective: *p*⁰ is the proportion of all issuers that default.

The finite measure approach

- With the collective interpretation of the model (slide 7), it is applicable to the 'exposure – loss rate' problem:
 - Probabilities are understood as proportions.
 - Probability calculus is calculus of proportions in terms of finite measures.
 - Conditional probabilities are relative proportions.
 - Bayes' formula is a re-engineering tool without interpretation of causality.
- Limited practical application to a retail credit loss estimation problem was inconclusive with regard to suitability of approach.
- Suggestion to use the prudent approach described before.

イロト 不得 トイヨト イヨト

Conclusions

- We have studied the problem of forecasting prior class probabilities in the presence of a changed covariates distribution.
- Straight-forward forecasts based on Law of Total Probability (TP) may underestimate the amount of change of the prior probabilities.
- Alternative simple finite mixture model approach is promising:
 - Deploying the Kullback-Leibler (KL) estimator provides exact fit of the changed covariates distribution.
 - In the binary classification case, the KL estimator always forecasts more change of the prior probabilities than the TP.
 - In credit risk, this can be used to obtain conservative estimates of probability of default and expected loss.
- This approach may reduce dependence on macroeconomic data and assumptions of similarities of portfolios.
- Loss provisioning and stress testing are potential applications.

- T. Fawcett and P.A. Flach. A response to Webb and Ting's On the Application of ROC Analysis to Predict classification Performance under Varying Class Distributions. *Machine Learning*, 58(1):33–38, 2005.
- V. Hofer and G. Krempl. Drift mining in data: A framework for addressing drift in classification. *Computational Statistics & Data Analysis*, 57(1):377–391, 2013.
- Moody's. Annual Default Study: Corporate Default and Recovery Rates, 1920-2012. Special comment, Moody's Investors Service, February 2013.
- J.G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N.V. Chawla, and F. Herrera. A unifying view on dataset shift in classification. *Pattern Recognition*, 45(1):521–530, 2012.
- D. Tasche. The art of probability-of-default curve calibration. *Journal of Credit Risk*, 9(4):63–103, 2013.

< 日 > < 同 > < 回 > < 回 > < □ > <