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Introduction

Data

Moody’s corporate issuer and default counts in 2008 and 20092.

Grade 2008 2009
Issuers Defaults Issuers Defaults

Caa-C 421 63 528 182
B 1158 25 962 72
Ba 527 6 511 12
Baa 1025 5 1011 9
A 981 5 964 2
Aa 595 4 527 0
Aaa 145 0 136 0
All 4852 108 4639 277

2Source: Moody’s (2013)
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Introduction

Forecast problem
Moody’s corporate issuer proportions and default rates in 2008 and
issuer proportions in 20093. All numbers in %.

Grade 2008 2009
Issuers Default rate Issuers Default rate

Caa-C 8.7 15.0 11.4 ?
B 23.9 2.2 20.7 ?
Ba 10.9 1.1 11.0 ?
Baa 21.1 0.5 21.8 ?
A 20.2 0.5 20.8 ?
Aa 12.3 0.7 11.4 ?
Aaa 3.0 0.0 2.9 ?
All 100.0 2.2 100.0 ?

3Source: Moody’s (2013)
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Introduction

Comparison of two approaches

Observed default rates (DR) for 20084 and 2009 and Total Probability
(TP) and Kullback-Leibler (KL) forecasts for 2009. All numbers in %.

Grade DR 2008 TP 2009 KL 2009 DR 2009
Caa-C 14.96 12.09 30.22 34.47
B 2.16 3.24 9.53 7.48
Ba 1.14 1.46 4.47 2.35
Baa 0.49 0.78 2.42 0.89
A 0.51 0.33 1.02 0.21
Aa 0.67 0.12 0.36 0.00
Aaa 0.00 0.03 0.10 0.00
All 2.23 2.46 6.69 5.97

4Default rates for 2008 were smoothed by quasi-moment matching (Tasche, 2013)
before being used for the TP and KL forecasts.
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Introduction

Objective

I Default rate forecasts are often based on
I regression on macroeconomic variables or
I assumptions on shared portfolio characteristics (e.g. with credit

bureau data collections).
I Drawbacks:

I Long time series of observations are required.
I Firm specific underwriting policies are not taken into account.

I We investigate methods that
I allow for period-to-period forecasts and
I only rely on internal data.
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Forecasting as a measure extension problem

Setting

I Formalise setting of slide 4. We only consider binary
classification problem.

I Known:
I Probability space (Ω,A,P0) (training set).
I σ-field C ⊂ A (covariates).
I Event A ∈ A, A /∈ C (class of example).
I Probability measure P1 on (Ω, C) (test set without class labels).

I In rating example (slide 4):
I C is information provided by rating grade.
I A means issuer’s default. Issuer’s default status is not known at the

beginning of the year.
I P0 is known joint distribution of rating grades at beginning of 2008

and default status at end of 2008.
I P1 is known distribution of rating grades at beginning of 2009.
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Forecasting as a measure extension problem

Problem

I Find extension P∗1 of P1 to σ({A} ∪ C) such that we can compute
P∗1[A] and P∗1[A | C].

I The extension should meaningfully incorporate features of P0.
I In the rating example P∗1[A] is a forecast of the portfolio-wide 2009

default rate and P∗1[A | C] is a forecast of the grade-level default
rates.

I Assumptions:
I P0

∣∣
C has a density f with respect to some measure µ on (Ω, C).

I Suppose p0 = P0[A] ∈ (0,1).
I In the example:

I µ is the Laplace distribution on {Caa-C, . . . ,Aaa} and f is given by
the rating frequencies.

I p0 = 2.2%.
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Forecasting as a measure extension problem

The Law of Total Probability approach

I Classical case: For C-measurable partition C1,C2, . . . of Ω

P[A] =
∞∑

k=1

P[A |Ck ] P[Ck ].

I For classification problem:
I Replace P[Ck ] by P1[Ck ] and P[A |Ck ] by P0[A |Ck ].
I In general, P∗1[B] = E1

[
P0[B | C]

]
, B ∈ A defines a probability

measure on (Ω,A) if P1 � P0
∣∣
C .

I This gives column “TP 2009” on slide 5 (assuming that
P0[A | C] = P∗1[A | C]).

I In the machine learning literature, this solution is called covariate
shift approach (Moreno-Torres et al., 2012).
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Forecasting as a measure extension problem

Class Density Ratios

I Since P0
∣∣
C� µ we have µ-densities fA and fAc of P0[· |A]

∣∣
C and

P0[· |Ac]
∣∣
C .

I Assumption: fAc > 0.
I Define the density ratio λ0 = fA / fAc .
I On (Ω, C,P0) then we have

f = p0 fA + (1− p0) fAc

P0[A | C] = p0 λ0
1−p0+p0 λ0

.
(1)

I Hence P0
∣∣
C is a mixture distribution. This suggests estimation of

P∗1[A] by a mixture model approach.
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Forecasting as a measure extension problem

Example: Moody’s 2008 rating distributions
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Forecasting as a measure extension problem

The Kullback-Leibler estimator

I Assume that P1 has density g > 0 with respect to µ. Minimise the
Kullback-Leibler (KL) distance between g and p fA + (1− p) fAc :

KL(p) =

∫
g log

(
g

p fA+(1−p) fAc

)
dµ

= E1
[
log(g/fAc )

]
− E1

[
log(p λ0 + 1− p)

]
.

(2)

I If E1 is an empirical measure, minimising the KL distance gives a
maximum likelihood estimator of P∗1[A].

I First order condition for minimum:

KL′(p) = 0 ⇐⇒ E1

[
λ0 − 1

1− p + p λ0

]
= 0. (3)

I A solution of (3) is called KL estimator of P∗1[A].
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Forecasting as a measure extension problem

Exact fit for the KL estimator
I Suppose that P1[λ0 = 1] < 1. Then there is a unique solution

0 < p1 < 1 to (3) if and only if

E1[λ0] > 1 and E1[1/λ0] > 1. (4)

I If there is a solution 0 < p1 < 1 to (3) then there is a probability
measure P∗1 on σ({A} ∪ C) such that

1) P∗1
∣∣
C= P1,

2) P∗1[A] = p1, and
3) P∗1[C |A] =

∫
C

g λ0
1−p1+p1 λ0

dµ and P∗1[C |Ac ] =
∫

C
g

1−p1+p1 λ0
dµ for

C ∈ C.
I Property 1) is called exact fit.
I P∗1 is the only probability measure on σ({A} ∪ C) with 1) and

density ratio λ0. P∗1 is called KL extension of P1.
I The measure extension result still holds if g is a density of P1 with

respect to some measure ν 6= µ.
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Forecasting as a measure extension problem

Comments

I In the multi-class case, there is no similarly simple condition like
(4) for the existence of a solution to the first order equations for
the KL minimisation.

I The criterion (4) seems to be satisfied most of the time.
I Is there another way to assess ex ante (before column “DR 2009”

on slide 5 is observed) whether Total Probability or KL approach
(or none of the two) is better?

I A partial response comes from studying prior probability shift
(Moreno-Torres et al., 2012):

I In general, it holds that gA = g λ0
1−p1+p1 λ0

6= fA and
gAc = g

1−p1+p1 λ0
6= fAc .

I Prior probability shift denotes special case g = q fA + (1− q) fAc .
Then it follows that fA = gA and fAc = gAc .
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Forecasting as a measure extension problem

Example: Best vs. exact fit for Moody’s 2009 data
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Forecasting as a measure extension problem

Prior probability shift
I Let q ∈ (0,1) and assume that P1 is given by

d P1
d µ = g = q fA + (1− q) fAc . (5)

I Then p1 = q is the unique solution of (3) in (0,1).
I Moreover, it holds that

E1
[
P0[A | C]

]
− q = (p0 − q) E0[P0[A | C] (1−P0[A | C])]

p0 (1−p0)
.

I For the regression of 1A on C under P0 we have that

1− R2 = E0[P0[A | C] (1−P0[A | C])]
p0 (1−p0)

.

I Hence the Total Probability and KL estimates of q are the less
different the better the forecast of A by P0[A | C] is on the training
set.
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When to deploy the Kullback-Leibler estimator?

Some thoughts

I Under assumption (5), the KL estimator is an unbiased estimator
of the class probability.

I Hofer and Krempl (2013) analyse a credit dataset that seems to
fulfil (5).

I On Moody’s data (Moody’s, 2013), KL performs worse than Total
Probability on average.

I Clearly, if historical records are available a decision between KL
and Total Probability should be based on time series analysis.

I For non-credit applications, sometimes a rationale based on
causality can be helpful.
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When to deploy the Kullback-Leibler estimator?

Causality in classification problems

I Classification problem: Infer class Y of an observation based on
covariates X .

I Fawcett and Flach (2005) distinguish two types of ’classification
domains’:

(i) X → Y where the class is causally dependent on the covariates X .
(ii) Y → X where different classes cause different outcomes of X .

I Fawcett and Flach (2005) describe two examples of (ii):
I Infection status with regard to a disease and illness symptoms.
I Manufacturing fault status and properties of the produced goods.

I (ii) is considered a justification of assumption (5).
I There is no clear causality in credit classification problems.
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When to deploy the Kullback-Leibler estimator?

A prudent approach to probability of default
quantification I

I Let g > 0 be a µ-density of P1 on (Ω, C). If (4) holds, g has the
following decomposition:

g = p1 gA + (1− p1) gAc ,

with gA and gAc as on Slide 14.
I Define P∗0 on (Ω, σ({A} ∪ C)) by

d P∗0
∣∣
C

d µ
= p0 gA + (1− p0) gAc

and its KL extension. Then P∗0[A | C] = P0[A | C].

I Moreover, with R2
∗ = 1− E∗

0 [P0[A | C] (1−P0[A | C])]
p0 (1−p0)

we obtain

p1 R2
∗ + (1− R2

∗) p0 = E1
[
P0[A | C]

]
.
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When to deploy the Kullback-Leibler estimator?

A prudent approach to probability of default
quantification II

I Hence, it holds that

p0 ≤ p1 ⇒ p0 ≤ E1
[
P0[A | C]

]
≤ p1,

p0 ≥ p1 ⇒ p0 ≥ E1
[
P0[A | C]

]
≥ p1.

I This observation suggests the following prudent estimation
method for P∗1[A]:

I Determine p1 according to (3).
I If p0 ≤ p1 choose P∗1[A] = p1.
I If p0 ≥ p1 choose P∗1[A] = E1

[
P0[A | C]

]
.

I With this approach, there is an incentive to optimise the accuracy
of the conditional probabilities of default P0[A | C] (see slide 16).
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Expected loss forecast

The problem

I For sake of illustration, suppose that on slide 4
I ’issuers’ is replaced by ’% of exposure’ and
I ’default rate’ is replaced by ’loss rate’.

I Are then the Total Probability and KL forecast methods
applicable?

I Clearly, ’yes’ for Total Probability because then it is simply assumed
that the grade-level loss rates in 2009 are the same as the ones
observed in 2008.

I Less clear for KL because its derivation is heavily based on
probability calculus.

I Two interpretations of model (slide 7):
I Individual: p0 is one issuer’s probability of default.
I Collective: p0 is the proportion of all issuers that default.
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Expected loss forecast

The finite measure approach

I With the collective interpretation of the model (slide 7), it is
applicable to the ’exposure – loss rate’ problem:

I Probabilities are understood as proportions.
I Probability calculus is calculus of proportions in terms of finite

measures.
I Conditional probabilities are relative proportions.
I Bayes’ formula is a re-engineering tool without interpretation of

causality.
I Limited practical application to a retail credit loss estimation

problem was inconclusive with regard to suitability of approach.
I Suggestion to use the prudent approach described before.

Dirk Tasche (PRA) Forecasting portfolio credit default rates 22 / 24



Conclusions

I We have studied the problem of forecasting prior class
probabilities in the presence of a changed covariates distribution.

I Straight-forward forecasts based on Law of Total Probability (TP)
may underestimate the amount of change of the prior probabilities.

I Alternative simple finite mixture model approach is promising:
I Deploying the Kullback-Leibler (KL) estimator provides exact fit of

the changed covariates distribution.
I In the binary classification case, the KL estimator always forecasts

more change of the prior probabilities than the TP.
I In credit risk, this can be used to obtain conservative estimates of

probability of default and expected loss.
I This approach may reduce dependence on macroeconomic data

and assumptions of similarities of portfolios.
I Loss provisioning and stress testing are potential applications.
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