Mortality Surface by Means of Continuous Time Cohort Models

Petar Jevtić, Elisa Luciano and Elena Vigna

Longevity Eight 2012, Waterloo, Canada, 7-8 September 2012

University of Torino, Collegio Carlo Alberto

Jevtić, Luciano, Vigna

Outline

- Model construction
- Choosing the appropriate number of factors

The Simple APC Model

- The simple APC model
- Methodology

Jevtić, Luciano, Vigna

Achievements and Conclusions

University of Torino, Collegio Carlo Alberto

Introduction	The Simple APC Model	
0000000 0000	0000000 00	

Motivation

Jevtić, Luciano, Vigna

- Insurance companies and pension funds are exposed to mortality risks.
- The development of a **liquid** and **transparent** mortality-linked capital market is desired.
- Mortality-risk appraisal consisting in an accurate, yet easy-to-handle description of human survivorship is fundamental in this respect.
- A number of proposals have been put forward, some of which have great potential, but still without any consensus being reached on the best approach to mortality risk modeling.

A D > A D >

Introduction	The Simple APC Model	Calibration 000000	
Goals			

We have developed our model with the following goals in mind:

- Analytical tractability
- Parsimoniousness
- Fit to historical data
- Sull or low probability of negative intensities (specific to our model)
- Possibility and ability of deterministic forecasting
- Possibility and ability of stochastic forecasting
- Possibility and ability of measuring correlation among different generations

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

<ロ> <同> <同> < 同> < 三> < 三

Introduction	The Simple APC Model	
••••• ••••	0000000 00	
Model construction		

A single generation

The standard uni-dimensional framework

Stochastic mortality of a given generation is described by means of a Cox process

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$, where \mathbb{P} is the real-world probability measure
- { $\mathcal{F}_t : 0 \le t \le T$ } satisfies the usual technical conditions
- μ(t, x) the mortality intensity of an individual belonging to a given generation, initial age x, at calendar time t
- n number of state processes
- $\boldsymbol{X}(t) = [X_1(t), .., X_n(t)]^T$ the vector of state processes
- $R: D \to \mathbb{R}, D \subset \mathbb{R}^n$

We define:

$$\mu(t) \stackrel{\text{\tiny def}}{=} R(\boldsymbol{X}(t))$$

Consequently, the survival probability from t to T, conditional on being alive at t is:

$$S(t,T) = \mathbb{E}_t \left[e^{-\int_t^T \mu(s) ds} \right] = \mathbb{E}_t \left[e^{-\int_t^T R(X(s)) ds} \right]$$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction	The Simple APC Model	
000000 0000	0000000 00	

Model construction

A single-generation DPS framework

The Duffie, Pan and Singleton (2000) framework

If $d\mathbf{X}(t) = \lambda(\mathbf{X}(t))dt + \sigma(\mathbf{X}(t))d\mathbf{Z}(t)$, having

- **Z** a (\mathcal{F}_t) -standard Brownian motion in \mathbb{R}^n ,
- $\lambda : D \to \mathbb{R}^n, \sigma : D \to \mathbb{R}^{n \times n}, \lambda, \sigma$, and $R : D \to \mathbb{R}$ are affine,

•
$$\lambda(x) = \mathbf{K}_0 + \mathbf{K}_1 x$$
, for $\mathbf{K} = (\mathbf{K}_0, \mathbf{K}_1) \in \mathbb{R}^n \times \mathbb{R}^{n \times n}$,

- $(\boldsymbol{\sigma}(x)\boldsymbol{\sigma}(x)^T)_{ij} = (\boldsymbol{H}_0)_{ij} + (\boldsymbol{H}_1)_{ij} \cdot x$, for $\boldsymbol{H} = (\boldsymbol{H}_0, \boldsymbol{H}_1) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n \times n}$,
- $R(x) = r_0 + r_1 x$, where $(r_0, r_1) \in \mathbb{R} \times \mathbb{R}^n$.

we have that

$$\mathbb{E}[e^{-\int_t^T R(\mathbf{X}(s))ds} \mid \mathcal{F}_t] = e^{\alpha(t;T) + \beta(t;T) \cdot \mathbf{X}(t)},$$

where $\alpha(\cdot) : \mathbb{R}^+ \to \mathbb{R}^n$ and $\beta(\cdot) : \mathbb{R}^+ \to \mathbb{R}^n$ satisfy the complex-valued ODEs

$$\beta'(t;T) = \mathbf{r}_1 - \mathbf{K}_1^T \beta(t;T) - \beta(t;T)^T \mathbf{H}_1 \beta(t;T)/2,$$

$$\alpha'(t;T) = \mathbf{r}_0 - \mathbf{K}_0 \beta(t;T) - \beta(t;T)^T \mathbf{H}_0 \beta(t;T)/2,$$

with boundary conditions $\alpha(T, T) = \beta(T, T) = 0$.

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction

The Simple APC Model

Calibration

Achievements and Conclusions

Model construction

Transition to the entire mortality surface

Transitioning from single-generation to mortality surface

- We label each generation with a proper index $i \in \mathbb{I} \subset \mathbb{N}$,
- Each generation has its own mortality intensity,
- We assume that the state processes of each of the generations are driven by Brownian motions that have a correlation **unique** for that generation.
- In effect, each generation is assigned its own correlation matrix.

Given the *n* state processes driving the mortality intensity of generation *i*, we have:

$$d\mathbf{X}^{i}(t) = \boldsymbol{\lambda}(\mathbf{X}^{i}(t))dt + \boldsymbol{\sigma}(\mathbf{X}^{i}(t))d\mathbf{W}^{i}(t)$$

where

- $W(t) = [W_1^i(t), W_2^i(t), ..., W_n^i(t)]$
- $\rho_{n \times n}^{i} = {\rho_{lm}^{i}}_{1 \le l,m \le n}$ instantaneous correlation matrix proper of generation *i*
- $\rho_{lm}^{i}dt = \left\langle dW_{l}^{i}(t), dW_{m}^{i}(t) \right\rangle$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

ヘロマ ヘロマ ヘロマ イ

Introduction

The Simple APC Model

Calibration 000000 Achievements and Conclusions

Model construction

Using the DPS framework for a mortality surface

In order to use the DPS framework in case of a mortality surface, we need to:

• Use the Cholesky decomposition of the correlation matrix ρ^i

$$\boldsymbol{\rho}^i = \mathbf{H}^i (\mathbf{H}^i)^T$$
, and

• Transform W(t) to

 $d\mathbf{W}^{i}(t) = \mathbf{H}^{i} d\mathbf{Z}(t),$

where Z(t) is a vector of uncorrelated Brownian motions.

Finally, we obtain:

$$d\mathbf{X}^{i}(t) = \lambda(\mathbf{X}^{i}(t))dt + \sigma(\mathbf{X}^{i}(t))\mathbf{H}^{i}d\mathbf{Z}^{i}(t)$$

University of Torino, Collegio Carlo Alberto

allowing us to make use of the DPS framework.

Jevtić, Luciano, Vigna

Introduction	The Simple APC Model	
0000000 0000	0000000 00	
Model construction		

Additional assumptions

We make the following additional assumptions:

• For any generation *i*, each of its state processes follows an Ornstein-Uhlenbeck dynamic

$$dX_k^i(t) = \psi_k X_2^i dt + \sigma_k dW_k^i(t), \ k = \overline{1, n},$$

where $\psi_k \in \mathbb{R}, \sigma_k > 0$ and $W_1^i(t), W_2^i(t), \dots, W_n^i(t)$ are correlated.

Using a more compact form, we have:

$$d\boldsymbol{X}^{i}(t) = \boldsymbol{\Psi}\boldsymbol{X}^{i}(t)dt + \boldsymbol{\Sigma}d\boldsymbol{W}^{i}(t),$$

or

$$d\boldsymbol{X}^{i}(t) = \boldsymbol{\Psi}\boldsymbol{X}^{i}(t)dt + \boldsymbol{\Sigma}\boldsymbol{\mathsf{H}}^{i}d\boldsymbol{\mathsf{Z}}^{i}(t),$$

where $\Psi = \text{diag}[\psi_1, \psi_2, ..., \psi_n]$, and $\Sigma = \text{diag}[\sigma_1, \sigma_2, ..., \sigma_n]$.

Finally, we set

$$R(\mathbf{X}^{i}(t)) = \mathbf{1} \cdot \mathbf{X}^{i}(t).$$

University of Torino, Collegio Carlo Alberto

(日)

Jevtić, Luciano, Vigna

Introduction	The Simple APC Model	
0000000 0000	0000000 00	
Model construction		

The general solution

• In the survivorship context, it is convenient to set the valuation time t = 0, and reason in terms of remaining life $\tau = T - t$. With this transformation, using the DPS framework, we need to solve *n* systems of the form:

$$\hat{\beta}'(\tau) = -\mathbf{1} + \Psi \hat{\beta}(\tau)$$
$$(\hat{\alpha}^{i})'(\tau) = \frac{1}{2} \hat{\beta}(\tau)^{T} \mathbf{\Sigma} \boldsymbol{\rho}^{i} \mathbf{\Sigma}^{T} \hat{\beta}(\tau)$$
$$(\hat{\alpha}^{i})'(0) = \hat{\beta}'(0) = 0.$$

• Finally, we have

$$S^{i}(0, au) = \mathbb{E} igg[\exp igg(- \int_{0}^{ au} \mathbf{1} \cdot \mathbf{X}^{i}(s) ds igg) igg] = e^{\hat{lpha}^{i}(au) + \hat{eta}(au) \cdot \mathbf{X}^{i}(0)}.$$

• The *n* solutions of the *n* systems are given by:

$$\hat{eta}(au) = -\int_0^ au e^{\Psi(au-s)} \cdot \mathbf{1} ds$$

 $\hat{lpha}^i(au) = \int_0^ au rac{1}{2} \hat{eta}(s)^T \mathbf{\Sigma} oldsymbol{
ho}^i \mathbf{\Sigma}^T \hat{eta}(s) ds$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction	The Simple APC Model	
000000 0000	0000000 00	
Model construction		

Two models

Reminder: Previously, we have omitted the argument *x* for notational convenience.

University of Torino, Collegio Carlo Alberto

Two models of different complexities

The General OU APC Model

- $\psi_1, \psi_2, ..., \psi_n, \sigma_1, \sigma_2, ..., \sigma_n$ depend on x
- $\hat{\alpha}_{x}^{i}(\tau), \hat{\beta}_{x}(\tau)$ depend on x

•
$$S_x^i(0,\tau) = e^{\hat{\alpha}_x^i(\tau) + \hat{\beta}_x(\tau) \cdot \mathbf{X}_x^i(0)}$$

•
$$S_{x+t}^{i}(t,T) = e^{\alpha_{x+t}^{i}(T-t)+\beta_{x+t}(T-t)\cdot\mathbf{X}_{x+t}^{i}(t)}$$

The Simple OU APC Model

• All of the coefficients are not age-dependent.

•
$$S^{i}(0,\tau) = e^{\hat{\alpha}^{i}(\tau) + \hat{\beta}(\tau) \cdot \mathbf{X}^{i}(0)}$$

Onward, we will be examining the Simple OU APC Model.

Jevtić, Luciano, Vigna

Introduction	The Simple APC Model				
000000 0000	0000000 00				
Choosing the appropriate number of factors					
The data se	t				

An important question:

How many factors do we actually need for calibration?

Our calibration data set:

- The male population of the United Kingdom,
- Cohort death rates for life age x = 40,
- We examine them until they have reached the age of **59** having $\tau = 1, \dots, 19$
- The generations *i* span from **1900-1950**, with a **5-year increment**,
- 11 cohorts in total.

$$\tilde{S}_{x}^{i}(0,\tau) = \prod_{s=1}^{\tau} (1 - q_{i}(x + s - 1, x + s))$$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

< D > < B > < E >

Introduction	The Simple APC Model			
000000 0 000	0000000 00			
Chapping the appropriate number of festers				

Choosing the appropriate number of factors

The survival probability surface

Figure 1: The survival probability surface representing the data set

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction

The Simple APC Model

Calibration

Achievements and Conclusions

Choosing the appropriate number of factors

The survival probability surface - the relevant segment

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction	The Simple APC Model			
000000 000●	0000000 00			
Choosing the appropriate number of factors				

Principal Component Analysis

Application of the PCA

We use the observed survival probabilities to compute the corresponding average mortality intensity for generation *i*.

$$\bar{\mu}_{x}(0,\tau_{j}) = -\frac{1}{\tau_{j}}\log \tilde{S}_{x}^{j}(0,\tau_{j}) = -\frac{1}{\tau_{j}}\sum_{s=1}^{\tau_{j}}\log(1-q_{i}(x+s-1,x+s))$$

Results from the PCA:

- The mean and the first principal component account for 95.72% of the data,
- The mean, the first and the second principal component account for 99.83% of the data.

Conclusion

The obtained results indicate that having two factors is a rational initial choice.

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction 0000000 0000	The Simple APC Model ●0000000 ○0	Calibration 000000	
The simple APC model			

The two-factor model

• Within the simple APC model, we have, for a given generation i

$$dX_{1}(t) = \psi_{1}X_{1}dt + \sigma_{1}dZ_{1}(t) dX_{2}^{i}(t) = \psi_{2}X_{2}dt + \sigma_{2}\rho^{i}dZ_{1}(t) + \sigma_{2}\sqrt{1 - (\rho^{i})^{2}}dZ_{2}(t)$$

• The mortality intensity of generation *i* is given by

$$\mu^{i}(t) = X_{1}(t) + X_{2}^{i}(t).$$

• By solving the ODEs, we obtain that:

$$\begin{split} \hat{\beta}_{j}(\tau) &= -\int_{0}^{\tau} e^{\psi_{j}(\tau-s)} ds = \frac{1}{\psi_{j}} \left(1-e^{\psi_{j}\tau}\right), \, j \in \{1,2\} \\ \hat{\alpha}^{i}(\tau) &= \sum_{j=1}^{2} \frac{\sigma_{j}^{2}}{2\psi_{j}^{3}} \left(\psi_{j}\tau - 2e^{\psi_{j}\tau} + \frac{1}{2}e^{2\psi_{j}\tau} + \frac{3}{2}\right) \\ &+ \frac{\rho^{i}\sigma_{1}\sigma_{2}}{\psi_{1}\psi_{2}} \left(\tau - \frac{e^{\psi_{1}\tau}}{\psi_{1}} - \frac{e^{\psi_{2}\tau}}{\psi_{2}} + \frac{e^{(\psi_{1}+\psi_{2})\tau}}{\psi_{1}+\psi_{2}} + \frac{\psi_{1}^{2} + \psi_{1}\psi_{2} + \psi_{2}^{2}}{\psi_{1}\psi_{2}(\psi_{1}+\psi_{2})}\right). \end{split}$$

Jevtić, Luciano, Vigna

ъ University of Torino, Collegio Carlo Alberto

・ロト ・回ト ・ヨト ・

	The Simple APC Model		
000000	0000000	000000	
0000	00		

The simple APC model

Visual representation of the model - An example with three generations

Main characteristics:

• every generation characterized by its own ρ

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction	
0000000	

The Simple APC Model

Calibration

Achievements and Conclusions

The simple APC model

Visual representation of the model - An example with three generations

Main characteristics:

- every generation characterized by its own ρ
- $\psi_1, \psi_2, \sigma_1, \sigma_2$ same for all generations

Introduction 0000000 0000 The Simple APC Model

Calibration

Achievements and Conclusions

The simple APC model

Visual representation of the model - An example with three generations

Main characteristics:

- every generation characterized by its own ρ
- $\psi_1, \psi_2, \sigma_1, \sigma_2$ same for all generations
- Z₁(t), Z₂(t) are orthogonal BMs

	The Simple APC Model	
0000000 0000	0000000 00	
The simple APC model		

Theoretical constraint

The specified model for the mortality intensity of one generation is known in the interest-rate domain as the **two-factor Gaussian model**, or **G2++** (Brigo and Mercurio, 2006). Each intensity is Gaussian, and can become negative with a positive probability:

$${\sf Pr}(\mu^i(au) < 0) = \Phi\left(-rac{{\sf E}(\mu^i(au))}{\sqrt{{\sf Var}(\mu^i(au))}}
ight)$$

where $\Phi(\cdot)$ is the CDF of the standard normal distribution,

$$\begin{split} E(\mu^{i}(\tau)) &= f^{i}(0,\tau) + \frac{\sigma_{1}^{2}}{2\psi_{1}^{2}} \left(1 - e^{\psi_{1}\tau}\right)^{2} + \frac{\sigma_{2}^{2}}{2\psi_{2}^{2}} \left(1 - e^{\psi_{2}\tau}\right)^{2} + \rho^{i} \frac{\sigma_{1}\sigma_{2}}{\psi_{1}\psi_{2}} \left(1 - e^{\psi_{1}\tau}\right) \left(1 - e^{\psi_{2}\tau}\right), \\ Var(\mu^{i}(\tau)) &= -\frac{\sigma_{1}^{2}}{2\psi_{1}} \left(1 - e^{2\psi_{1}\tau}\right) - \frac{\sigma_{2}^{2}}{2\psi_{2}} \left(1 - e^{2\psi_{2}\tau}\right) - 2\rho^{i} \frac{\sigma_{1}\sigma_{2}}{\psi_{1} + \psi_{2}} \left(1 - e^{(\psi_{1} + \psi_{2})\tau}\right), \end{split}$$

and $f^i(0,\tau)$ is the **forward mortality intensity** for the instant τ :

$$\begin{split} f^{i}(0,\tau) &= -\frac{\partial \log S^{i}(0,\tau)}{\partial \tau} = e^{\psi_{1}\tau}X_{1}(0) + e^{\psi_{2}\tau}X_{2}^{i}(0) \\ &- \sum_{j=1}^{2}\frac{\sigma_{j}^{2}}{2\psi_{j}^{3}}\left(\psi_{j} - 2\psi_{j}e^{\psi_{j}\tau} + \psi_{j}e^{2\psi_{j}\tau}\right) - \frac{\rho^{i}\sigma_{1}\sigma_{2}}{\psi_{1}\psi_{2}}\left(1 - e^{\psi_{1}\tau} - e^{\psi_{2}\tau} + e^{(\psi_{1}+\psi_{2})\tau}\right) \end{split}$$

University of Torino, Collegio Carlo Alberto

Jevtić, Luciano, Vigna

	The Simple APC Model	
000000 0000	0000000 00	
The simple APC model		

Correlations

Benefits of the model

The model enables the derivation of formulas for **instantaneous correlations** among intensities of different generations.

• For the generation *i* the instantaneous mortality intensities follows the SDE:

$$d\mu^{i}(t) = [\psi_{1}X_{1}(t) + \psi_{2}X_{2}^{i}(t)]dt + (\sigma_{1} + \rho^{i}\sigma_{2})dZ_{1}(t) + \sigma_{2}\sqrt{1 - (\rho^{i})^{2}}dZ_{2}(t)$$

• Instantaneous correlation between $\mu^{i}(\cdot)$ and $\mu^{j}(\cdot)$ is equal to

$$\operatorname{Corr}[d\mu(t_i), d\mu(t_j)] = \frac{(\sigma_1 + \rho^i \sigma_2)(\sigma_1 + \rho^j \sigma_2) + \sigma_2^2 \sqrt{(1 - (\rho^i)^2)(1 - (\rho^j)^2)}}{\sqrt{(\sigma_1 + \sigma_2 \rho^i)^2 + \sigma_2^2(1 - (\rho^j)^2)}} \sqrt{(\sigma_1 + \sigma_2 \rho^j)^2 + \sigma_2^2(1 - (\rho^j)^2)}$$

Jevtić, Luciano, Vigna

Mortality Surface by Means of Continuous Time Cohort Models

University of Torino, Collegio Carlo Alberto

イロト イヨト イヨト イヨト

	The Simple APC Model	
0000000 0000	0000000 00	
The simple APC model		

Simulation

Benefits of the model

The model enables us to make **stochastic forecasting** of the survival probability curve in an **arbitrary future time** p > 0.

- Simple two-factor model no dependence on age.
- When viewed from time 0, survival curve at time *p* > 0, for a head in generation *i*, is the random object:

$$S^{i}(p,\tau) = e^{\alpha^{i}(\tau-p)+\beta(\tau-p)\cdot\mathbf{X}^{i}(p)}.$$

• Given the calibrated parameters, we simulate $X_1(p)$ and $X_2(p)$:

$$\begin{aligned} X_1(t) &= \exp(\psi_1 t) X_1(0) + \sigma_1 \exp(\psi_1 t) \sqrt{\frac{1}{2\psi_1} (1 - \exp(-2\psi_1 t))} Z_1 \\ X_2(t) &= \exp(\psi_2 t) X_2(0) + \sigma_2 \rho^i \exp(\psi_2 t) \sqrt{\frac{1}{2\psi_2} (1 - \exp(-2\psi_2 t))} Z_1 \\ &+ \sigma_2 \sqrt{1 - (\rho^i)^2} \exp(\psi_2 t) \sqrt{\frac{1}{2\psi_2} (1 - \exp(-2\psi_2 t))} Z_2 \end{aligned}$$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

	The Simple APC Model	
000000 0000	00000000 00	
The simple APC model		

Parameters

Parameters

Initial values of factors are calibrated, because they cannot be observed!

Fixing the number of relevant factors to two results in:

- four parameters common to all generations: $[\psi_1, \psi_2, \sigma_1, \sigma_2]$
- three parameters specific to each generation: $[\rho^i, X_1^i(0), X_2^i(0)]$
- given k = 11 generations, we have in total: 4 + 3k = 37 parameters

We collect them in:

$$\boldsymbol{\theta} = [\psi_1, \psi_2, \sigma_1, \sigma_2, \rho^1, \rho^2, ..., \rho^k, X_1^1(0), X_1^2(0), ..., X_1^k(0), X_2^1(0), X_2^2(0), ..., X_2^k(0)]$$

Given the meaning, we restrict to:

$$\Theta = \left\{ \psi_1, \psi_2 \in [-1, 1], \ \sigma_1, \sigma_2 \in [0, 1], \ \boldsymbol{\rho} \in [-1, 1]^k, \boldsymbol{X}_1(0) \in [-1, 1]^k \right\}.$$

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

	The Simple APC Model	
0000000 0000	00000000 00	
The simple APC model		

Parameters

Controlling for low probability of negative mortality intensity

Given an a priori decision of $Pr(\mu^i < 0) \le 1\%$, for each generation *i* we choose $X_2^i(0), i \in \{1, ..., k\}$ during calibration.

- If we treat Pr(µⁱ < 0) as one more parameter, then given the equations describing the theoretical constraints, and all of the other parameters, we can find Xⁱ₂(0), i ∈ 1, 2, ..., k for any given τ.
- We need it for τ between 1 and the extreme age, which is 69.

For each generation *i* we choose $X_2^i(0)$ such that the constraint is satisfied for all τ .

< D > < B > < E > <</p>

	The Simple APC Model	
000000 0000	0000000 00	
The simple APC model		

Error (or cost) definition

Error (or cost) definition

We minimize mean square error between the actual and estimated parameters with the mean computed across k = 11 generations and durations $\tau = 19$.

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} \sqrt{\frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{\tau} (\tilde{S}^i(j) - S^i(j;\boldsymbol{\theta}))^2}$$

University of Torino, Collegio Carlo Alberto

< ロ > < 同 > < 三 >

Jevtić, Luciano, Vigna

Introduction 0000000 0000 The Simple APC Model

Calibration

Achievements and Conclusions

Methodology

Differential evolution - Our use of the algorithm

Figure 3: The Differential Evolution algorithm

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

Introduction 0000000 0000 Methodology The Simple APC Model

Calibration

Achievements and Conclusions

Differential evolution - What have we done?

- 30 experiments, with $n_l = 100000$ iterations per experiment.
- Grid Computing Platform of The Wharton School, University of Pennsylvania
- Each experiment conducted on a single 2.5 GHz core with 4GB RAM
- Average duration of an experiment: 24h

◆□▶◆□▶◆豆▶◆豆▶ 目 のへの

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto

	The Simple APC Model	Calibration	
0000000 0000	0000000 00	00000	
Results			

Cost and Parameters

Table 1: Calibration results

	Cost	0.000620565995355	
	ψ_1	0.000000740897643	
	ψ_2	0.094424069684062	
	σ_1	0.000810431271431	
	σ_2	0.000255756355983	
	ρ	X ₁ (0)	X ₂ (0)
1900	0.99999999999999999	0.001880353247158	0.002828417849011
	:	:	:
1925	-0.250316766642870	-0.000433647930847	0.002851663487249
:	:	:	:
	•	•	•
1950	-0.9999999999999999	0.000351991785546	0.001355915840057

크

<ロ> <同> <同> <同> < 同> < 同>

Jevtić, Luciano, Vigna

	The Simple APC Model	Calibration	
0000000 0000	0000000 00	00000	
D III			

Probability of negative intensities

Figure 4: Probability of negative mortality intensity for the generation 1950

Jevtić, Luciano, Vigna

Mortality Surface by Means of Continuous Time Cohort Models

University of Torino, Collegio Carlo Alberto

Introduction 0000000 0000	The Simple APC Model	Calibration OO●OOO	
Results			

Residuals

Figure 5: Calibration residuals plot

Jevtić, Luciano, Vigna

Mortality Surface by Means of Continuous Time Cohort Models

ъ University of Torino, Collegio Carlo Alberto

ъ

	The Simple APC Model	Calibration	
0000000 0000	0000000 00	000000	
Results			

Correlation

Table 2: Correlation table (%)

	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950
1900	100.00										
1905	96.01	100.00									
1910	94.97	99.93	100.00								
1915	94.89	99.92	99.99	100.00							
1920	95.15	99.95	99.99	99.99	100.00						
1925	94.91	99.93	99.99	100.00	99.99	100.00					
1930	94.96	99.93	100.00	99.99	99.99	99.99	100.00				
1935	95.84	99.99	99.95	99.94	99.97	99.95	99.95	100.00			
1940	96.93	99.93	99.75	99.73	99.79	99.73	99.75	99.91	100.00		
1945	99.61	98.10	97.35	97.29	97.49	97.31	97.35	97.98	98.72	100.00	
1950	100.00	96.01	94.97	94.89	95.15	94.91	94.96	95.84	96.93	99.61	100.00

크

▲口→ ▲圖→ ▲理→ ▲理→

Mortality Surface by Means of Continuous Time Cohort Models

Jevtić, Luciano, Vigna

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	

Results

Percentage Absolute Relative Error

Figure 6: Percentage Absolute Relative Error

Jevtić, Luciano, Vigna

Mortality Surface by Means of Continuous Time Cohort Models

University of Torino, Collegio Carlo Alberto

Introduction 0000000 0000	The Simple APC Model	Calibration 00000	
Results			

Forecast

Figure 7: Survival probability curve at p=1, $S(1, \tau)$, given the mean and the 90% confidence interval

Jevtić, Luciano, Vigna

Mortality Surface by Means of Continuous Time Cohort Models

University of Torino, Collegio Carlo Alberto

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	Achievements and Conclusions
Conclusion			

• Our model is analytically tractable and parsimonious.

University of Torino, Collegio Carlo Alberto

Jevtić, Luciano, Vigna

	The Simple APC Model	Achievements and Conclusions
0000000	0000000	

Conclusion

- Our model is analytically tractable and parsimonious.
- Calibration by means of Differential Evolution optimization algorithm produces a fit as good as 6 · 10⁻⁴, and yields robust and stable parameters.

	The Simple APC Model	Achievements and Conclusions
000000	0000000	
0000		

Conclusion

- Our model is analytically tractable and parsimonious.
- Calibration by means of Differential Evolution optimization algorithm produces a fit as good as 6 · 10⁻⁴, and yields robust and stable parameters.
- We control the probability of negative mortality intensities.

Jevtić, Luciano, Vigna Mortality Surface by Means of Continuous Time Cohort Models University of Torino, Collegio Carlo Alberto

	The Simple APC Model	Achievements and Conclusions
0000000 0000	0000000 00	

Conclusion

- Our model is analytically tractable and parsimonious.
- Calibration by means of Differential Evolution optimization algorithm produces a fit as good as 6 · 10⁻⁴, and yields robust and stable parameters.
- We control the probability of negative mortality intensities.
- Both in-sample and out-of-sample deterministic forecasts have been examined.
 - In-sample errors up to age 59 are very small.
 - Out-of-sample errors remain small at least until age 65.

A D > A D >

Mortality Surface by Means of Continuous Time Cohort Models

Jevtić, Luciano, Vigna

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	Achievements and Conclusions
Conclusion			

• The ex-post in-sample performance of stochastic forecasts is very satisfactory. We anticipate that the increase in the error at later ages for out-of-sample forecast would probably be rectified with the introduction of a **third factor**, and will pursue this extension after further empirical investigation.

University of Torino, Collegio Carlo Alberto

Jevtić, Luciano, Vigna

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	Achievements and Conclusions
Conclusion			

- The ex-post in-sample performance of stochastic forecasts is very satisfactory. We anticipate that the increase in the error at later ages for out-of-sample forecast would probably be rectified with the introduction of a **third factor**, and will pursue this extension after further empirical investigation.
- The resulting longevity intensity model extends the G2++ interest-rate model, as the factors here have different weights for each generation. By doing so, we allow for the calculation of **imperfect correlations** of mortality intensities across generations.

Jevtić, Luciano, Vigna

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	Achievements and Conclusions
Conclusion			

- The ex-post in-sample performance of stochastic forecasts is very satisfactory. We anticipate that the increase in the error at later ages for out-of-sample forecast would probably be rectified with the introduction of a **third factor**, and will pursue this extension after further empirical investigation.
- The resulting longevity intensity model extends the G2++ interest-rate model, as the factors here have different weights for each generation. By doing so, we allow for the calculation of **imperfect correlations** of mortality intensities across generations.
- The calibration to the data concerning UK males confirms that correlations across generations are smaller than one.

University of Torino, Collegio Carlo Alberto

Jevtić, Luciano, Vigna

Introduction 0000000 0000	The Simple APC Model	Calibration 000000	Achievements and Conclusions
Conclusion			

- The ex-post in-sample performance of stochastic forecasts is very satisfactory. We anticipate that the increase in the error at later ages for out-of-sample forecast would probably be rectified with the introduction of a **third factor**, and will pursue this extension after further empirical investigation.
- The resulting longevity intensity model extends the G2++ interest-rate model, as the factors here have different weights for each generation. By doing so, we allow for the calculation of **imperfect correlations** of mortality intensities across generations.
- The **calibration** to the data concerning UK males confirms that correlations across generations are **smaller than one**.
- The possibility of **capturing this correlation**, thanks to a generation-based model, together with the use of the **Differential Evolution** algorithm, which permits an efficient calibration, are the major contributions of this work.

0000

The Simple APC Model

Calibration

Achievements and Conclusions

Thank you!

Thank you for your attention!

・ロ・・日・・日・・日・ つへの

Jevtić, Luciano, Vigna

University of Torino, Collegio Carlo Alberto