Lifecycle Portfolio Choice with Systematic Longevity Risk and Variable Investment-Linked Deferred Annuities

Vasily Kartashov, <u>Raimond Maurer</u>, Olivia S. Mitchell, Ralph Rogalla

Frankfurt, September 2011

VILDAs –

Variable Investment-Linked Deferred Annuities

- Premium is paid immediately / benefits start later at pre-specified retirement age (pension product; no bequest; inflexibility; survival credit)
- Retirement-Payments linked to return of underlying portfolio (bonds/stocks)
- Pricing depends on deferral period, loadings, mortality assumptions, and guarantees by annuity provider
- Guarantees by the annuity provider
 - \Box Investment risk: (\rightarrow covered by annuitant; portfolio allocation)
 - \Box Individual longevity risk (\rightarrow covered by insurance company; creating risk pools)
 - Systematic longevity risk (change of mortality assumptions)
 - Covered by insurance company (\rightarrow pricing; internal/external hedging)
 - Covered by annuitant (\rightarrow updating rule for benefits)

Literature & Contributions

- LC-portfolio choice studies with life annuities:
 - Many studies on immediate life annuities: Milevsky/Yong (2007, 2009), Horneff et al. (2008, 2009, 2010);
 - Little research on deferred life annuities although they appear to be ubiquitous (SoSe; DB plans): Horneff et al. (2010); Milevsky (2005);
- Models with uncertain mortality rates:
 - Many empirical work on mortality developments / pricing of life annuities: Lee/Carter 1992, Cairns/Blake/Dowd (2008); Milevsky et al. (2009)
 - Little research on uncertain mortality rates in LC-portfolio choice: Horneff et al. (2010); Cocco/Gomes (2011 WP)
- We ask:
 - ✓ What role of VILDAs in LC-portfolio choice?
 - ✓ How does stochastic mortality influence individuals optimal behavior?
 - How results depend on annuity provider's approach to systematic longevity risk?

Impact of Deferring & Investment Risk on Payouts (50:50 stock/bond allocation)

Level (survival credit & investment returns) and range (investment volatility) of payouts increase with deferring period

Management of Systematic Mortality Risk: Self-Insurance Scheme

Notes: Implied loading relative to actuarial (trend adjusted) fair premium (US females) to self finance VILDA at the specified confidence level. VILDA payments start at age 67; AIR (3%)

Management of Systematic Mortality Risk: Participation Scheme

Cumulated Adjustment Factors: Difference of benefit payments between participating VILDAs (bought at age 20) and actuarial fair priced non-participating VILDAs (trend adjusted).

Multi-Period Life-Cycle Model

- Household (dynamic consumption utility optimizer)
 - □ Decides each year how much to consume / save (stocks/bonds/VILDAs)
 - □ CRRA utility function (no bequest motive; RRA=5, DF=0.96)
 - □ Stochastic, unspanned labor income (Cocco et al. 2005 high school profile)
 - □ Retirement from age 67 on (public pension 40% of last salary)
 - □ Uncertain time of death between age 20-120
 - Setting 1: given mortality rates
 - Setting 2: stochastic mortality rates by CBD (2008) 2-factor model; fitted US f.rates (1933-2007)

Incomplete life annuity markets

- □ Deferred life-annuity with investment-linked payments from age 67 on
- □ No annuity purchases after retirement/deferring age 67
- □ Pricing / Risk management of systematic mortality risk by annuity provider
 - Setting 2a: Self-Insurance calculating sufficient premiums (99.99% quantile pricing)
 - Setting 2b: Participating annuities (updating rule)

Numerical solution by dynamic optimization; MC Sim. 1 Mio. LifeCycles

Life Cycle Results with Deterministic/Stochastic Mortality: Mean Annuity Purchases & Payments (multiple of first labor income)

			Stochastic
	Given Life	Stochastic LT,	LT, Non-
Age	Table (LT)	Participating	participating

Panel A: Annuity Purchases

30	0.00	0.00	0.00
40	0.27	0.10	0.00
50	0.50	0.55	0.89
60	0.51	0.54	1.07
67	1.06	1.20	1.39

Panel B: Annuity Payments

67	1.84	1.73	1.60
80	2.07	1.96	1.82
90	2.19	2.08	1.93
100	2.33	2.20	2.03

Welfare Analysis - VILDA-related Consumption Increases (mean in %)

Age	Given Life Table (LT)	Stochastic LT, Participating	Stochastic LT, Non- participating
20	1.52	1.31	0.99
40	4.35	3.58	2.49
60	5.44	4.11	2.31
80	16.36	12.53	7.18
100	19.03	25.53	18.41

Notes: Mean additional consumption (in %) at specified age that household with access to VILDAs is able to afford compared to household with no access VILDAs

Demand Side: Break-Even Loadings -VILDA Participation vs. Non-participation

	We	Wealth level (x initial labor income)			
Age	2 (%)	3 (%)	4 (%)	5 (%)	
40	1.52	1.19	1.02	0.69	
50	1.37	1.20	1.46	1.72	
60	3.84	3.63	3.68	3.57	
65	7.70	5.99	5.23	4.79	

Notes: Loading to actuarial fair premium for non-participating VILDA compared to participating VILDA with no-loadings.

Sensitivity Analysis (for stochastic mortality): Range of VILDA-related Consumption Increases

	Participating VILDA		Non-participating VILDA			
Age	5% Quantile (%)	Mean (%)	95% Quantile (%)	5% Quantile (%)	Mean (%)	95% Quantile (%)
20	1.31	1.31	1.31	0.99	0.99	0.99
40	3.25	3.58	3.73	2.38	2.49	2.43
60	3.80	4.11	4.24	2.09	2.31	2.49
80	12.39	12.53	12.53	7.44	7.18	7.07
100	24.53	25.53	25.93	19.14	18.41	18.06

Excess consumption (in %) at specified age that household with access to VILDAs is able to afford compared to household in non-VILDA world.

Conclusion

- VILDAs are private (funded) pensions products allowing households to participate survival credit, access to financial markets, low premiums
- Managing of Systematic Mortality Risk:
 - □ Self-insurance of guaranteed mortality assumptions could be very expensive (unless there is an inexpensive natural hedge available). Efficiency improvement using the mortality instruments?
 - Participation scheme is more attractive to households
- Even with expensive self-insurance VILDAs substantially increase the consumption over the life cycle
- Milevsky (2005: 110): "(...) engaging in irreversible financial transactions that is annuitization - involving large lump sums will never be appealing to individuals regardless of (whether they grasp) the importance of longevity insurance."
- VILDAs to overcome the psychological barriers to voluntary annuitization?

Mean VILDA Bond Share (%), for Alternative Mortality Table Assumptions

			Stochastic LT,
	Given Life	Stochastic LT,	Non-
Age	Table (LT)	Participating	participating
45	0.24	0.40	0.32
50	0.33	0.35	0.69
60	0.52	0.50	0.51
67	0.60	0.60	0.59
80	0.58	0.58	0.58
90	0.59	0.59	0.59
100	0.60	0.61	0.61

Life Cycle Results with Deterministic Mortality: Annuity Purchases and Payments

Age	Age 5% Quantile		95% Quantile				
Panel A: Annu	Panel A: Annuity Purchases						
30	0.00	0.00	0.00				
40	0.00	0.27	2.16				
50	0.08	0.50	1.22				
60	0.06	0.51	1.43				
67	0.21	1.06	2.79				
Panel B: Annuity Payments							
67	0.59	1.84	4.08				
80	0.59	2.07	4.81				
90	0.58	2.19	5.26				
100	0.57	2.33	5.71				

Money (as a multiple of initial labor income) invested in VILDAs at specified age as well as benefits (as a multiple of initial labor income) paid by accumulated VILDAs at specified age.

Life Cycle Results with Deterministic Mortality: VILDA-related Consumption Increases

Age	5% Quantile (%)	Mean (%)	95% Quantile (%)
20	1.52	1.52	1.52
40	3.17	4.35	4.40
60	4.60	5.44	5.91
80	17.13	16.36	16.38
100	19.54	19.03	19.08

Excess consumption (in %) at specified age that household with access to VILDAs is able to afford compared to household in non-VILDA world.