
Yaari’s LifeCycle Model in the 21st Century:
Consumption Under a Stochastic Force of Mortality

(Joint work with H. Huang and T.S. Salisbury)

Moshe A. Milevsky

Finance Area: Schulich School of Business
Graduate Faculty: Department of Mathematics & Statistics

York University, Toronto, Canada

8/Sep/2011 (Frankfurt)

M.A. Milevsky (York University) Yaari with Stochastic Mortality 8/Sep/2011 (Frankfurt) 1 / 29



Main Research Question

Does stochastic mortality matter, to individuals?

The Yaari (1965) lifecycle model describes how utility-maximizers
consume when faced with longevity risk.

His model is at the foundation of much of modern micro-economics.

The Yaari (1965) model was based on a deterministic force of
mortality in which the entire survival curve is known at time zero.

In this paper we extend the Yaari (1965) model —with no annuities —
to a world with stochastic mortality rates.
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The LifeCycle Model is Used to Provide Investment Advice

"...As far as I am aware, no one has challenged the view that if
people were capable of it, they ought to plan their consumption,
saving and retirement according to the principles enunciated by
Modigliani and Brumberg in 1950s...”
Professor Angus S. Deaton, Princeton University, 2005
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Force of Mortality

Let λ(t) denote the mortality rate of a cohort of a population. Let
Ft = σ{λ(q) | q ≤ t} be the filtration determined by λ· Then
individuals in the population have lifetimes of length ζ satisfying

P(ζ > s | ζ > t,F∞) = e−
∫ s
t λ(q) dq . (1)

Assume further that λ(t) is a Markov process, and define the survival
function p(t, s,λ) by

p(t, s,λ) = E
[
e−

∫ s
t λ(q) dq | λ(t) = λ

]
. (2)

This gives the conditional probability of surviving from time t to time
s, given knowledge of the mortality rate at time t. Therefore

P(ζ > s | ζ > t,Ft ) = E
[
e−

∫ s
t λ(q) dq | Ft

]
= p(t, s,λ(t)). (3)

If t = 0 then we write p(s,λ) for p(0, s,λ).
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Gompertz Mortality

A very popular law of mortality is the Gompertz law of mortality.

λ(t) =
1
b
exp

(
x + t −m

b

)
,

0 10 20 30
0.0

0.1

0.2

0.3

time

mortality

Notes: x = 65,m = 89.3, b = 9.5 and p(0, 35, 0.0081) = 5%
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The Yaari (1965) LifeCycle Model

Objective Function:

J = max
c
E
[∫ D

0
e−ρtu(c(t))1{t≤ζ}dt

]
,

where ζ ≤ D is the remaining lifetime satisfying Pr[ζ > t] = p(t,λ0).

When λ(t) is deterministic, the optimal consumption c∗(t) and
1{t≤ζ} are independent, so by Fubini’s theorem:

J = max
c

∫ D

0
e−ρtu(c(t))p(t,λ0)dt.

The budget constraint is:

Ft (t) = v(t,F (t))F (t) + π0 − c(t),
with F (0) = W > 0 and F (D) = 0.
The investment return v = v(t,F ) is defined by:

v(t,F ) =
{
r + ξλ(t), F ≥ 0,
R + λ(t), F < 0,
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Graphical View of the Solution

Four Different Wealth Trajectories
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Solution to LCM with DfM

When v(t) = r , and u(c) = c (1−γ)/(1− γ) then by the
Euler-Lagrange Theorem, the optimal F (t) must satisfy a
second-order non-homogenous differential equation in regions where
F (t) 6= 0.

The PDE to solve is:

Ftt (t)−
(
r − ρ− λ(t)

γ
+ r
)
Ft (t) + r

(
r − ρ− λ(t)

γ

)
F (t)

= −
(
r − ρ− λ(t)

γ

)
π0.

In general the PDE can’t be solved explicitly (unless λ is constant).
We were able to solve for Gompertz mortality.

Related literature: Leung (1990), Davies (1981), Lachance (2010).
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Analytic Solution to Yaari (1965)

When λ(t) is Gompertz we obtain an explicit expression for c∗(t) and
F (t).

Optimal consumption rate (when π0 = 0) is:

c∗(t) = c∗(0)ekt
(
p(t,λ0)

)1/γ
,

Optimal trajectory of wealth is:

F (t) =

(
F (0)− c∗(0)

∫ t

0
eks (p(s,λ0))1/γe−rsds

)
ert

=
(
F (0)− c∗(0)atx (r − k,m∗, b)

)
ert

Initial consumption rate is...

c∗(0) =
F (0)

aDx (r − k,m∗, b)
,

where k = (r − ρ)/γ and m∗ = m+ b ln[γ].
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Calibration: What Interest Rate Should we Use?

M.A. Milevsky (York University) Yaari with Stochastic Mortality 8/Sep/2011 (Frankfurt) 10 / 29



Numerical Results (DfM) #1

Optimal Consumption Rate
Coeffi cient of Relative Risk Aversion (CRRA) γ = 4

Nest Egg of $100 Invested at Following REAL Rates...
r = 0.5% r = 1.5% r = 2.5% r = 3.5%

Age 65
5 Years Later
10 Years Later
20 Years Later
30 Years Later
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Numerical Results (DfM) #1

Optimal Consumption Rate
Coeffi cient of Relative Risk Aversion (CRRA) γ = 4

Nest Egg of $100 Invested at Following REAL Rates...
r = 0.5% r = 1.5% r = 2.5% r = 3.5%

Age 65 $3.330 $3.941 $4.605 $5.318

5 Years Later $3.286 $3.888 $4.544 $5.247

10 Years Later $3.212 $3.801 $4.442 $5.130

20 Years Later $2.898 $3.429 $4.007 $4.627

30 Years Later $2.156 $2.552 $2.982 $3.444
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Numerical Results (DfM) #2

Optimal Initial Withdrawal Rate (IWR) from $100
As a Function of Pension Income π0

Depending on the Coeffi cient of Relative Risk Aversion
γ = 1 γ = 2 γ = 4 γ = 8

No Pension 6.330% 5.301% 4.605% 4.121%

π0 = $1
π0 = $2
π0 = $5

Note: Gompertz Mortality (m = 89.3, b = 9.5) and r = 2.5%

M.A. Milevsky (York University) Yaari with Stochastic Mortality 8/Sep/2011 (Frankfurt) 13 / 29



Numerical Results (DfM) #2

Optimal Initial Withdrawal Rate (IWR) from $100
As a Function of Pension Income π0

Depending on the Coeffi cient of Relative Risk Aversion
γ = 1 γ = 2 γ = 4 γ = 8

No Pension 6.330% 5.301% 4.605% 4.121%

π0 = $1 6.798% 5.653% 4.873% 4.324%

π0 = $2 7.162% 5.924% 5.078% 4.480%

π0 = $5 8.015% 6.553% 5.551% 4.839%

Note: Gompertz Mortality (m = 89.3, b = 9.5) and r = 2.5%
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Retire with a $100 Nest Egg and a $5 per year pension...
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Good advice, bad reason?
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Wealth Trajectory
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Numerical Results (DfM) #3

How Does Pensionization Impact Consumption?
Percent Risk Aversion γ = 4 Risk Aversion γ = 8

Pensionized Age 65 Age 80 Age 65 Age 80
0%
20%
40%
60%
100%
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Numerical Results (DfM) #3

How Does Pensionization Impact Consumption?
Percent Risk Aversion γ = 4 Risk Aversion γ = 8

Pensionized Age 65 Age 80 Age 65 Age 80
0% $4.605 $4.007 $4.121 $3.844

20% $5.263 $4.580 $4.801 $4.478

40% $5.795 $5.042 $5.385 $5.024

60% $6.227 $5.419 $5.937 $5.538

100% $6.330 $6.330 $6.330 $6.330
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More Randomness

Up until now we have assumed that λ(t) is deterministic.

What happens when we allow for a stochastic mortality rate λ(t)?
In particular, what if

dλ(t) = µ(t)λ(t)dt + σλ(t)dB(t)

How does optimal consumption behavior change and what is the
impact of "longevity risk aversion" on the optimal plan?
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Deterministic force of Mortality (DfM) World

10p90 =
35p65
25p65

Conditional Survival Probability:
x = 65 x = 75 x = 85 x = 90 x = 95 x = 100

To 65 1.000

To 75 0.8659 1.000

To 85 0.5733 0.6620 1.000

To 90 0.3696 0.4268 0.6447 1.000

To 95 0.1758 0.2031 0.3067 0.4757 1.000

To 100 0.0500 0.0577 0.0872 0.1353 0.2844 1.000

λx 0.0081 0.0232 0.0667 0.1129 0.1911 0.3234
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Stochastic force of Mortality (SfM) World

Conditional Survival Probability:
x = 65 x = 75 x = 85 x = 90 x = 95 x = 100

To 65 1.000

To 75 0.8659 1.000

To 85 0.5733 ? 1.000

To 90 0.3696 ? ? 1.000

To 95 0.1758 ? ? ? 1.000

To 100 0.0500 ? ? ? ? 1.000

λx 0.0081 ? ? ? ? ?
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Yaari (1965) under a SfM

The objective function is now written as:

J(t,λ,F ) =

max
c (s) adapted

E
[∫ T

t
e−

∫ s
t (r+λ(q)) dqu(c(s))ds

∣∣∣∣ λ(t) = λ,F (t) = F
]

We condition on wealth F (t) and the mortality rate λ(t).

The wealth process (budget constraint) still satisfies
dF (t) = (rF (t)− c(t))dt.
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Solution: Optimal Consumption under SfM

We can’t use Calculus of Variations and must resort to dynamic
programing.

Under the optimal control c(t), the expectation

E
[∫ T

0
e−

∫ s
t (r+λ(q)) dqu(c(s))ds

∣∣∣∣Ft] ,
is a martingale and...
It can be written as:

e−
∫ t
0 (r+λ(q)) dqJ(t,λ(t),F (t)) +

∫ t

0
e−

∫ s
t (r+λ(q)) dqu(c(s)) ds.

By Ito’s lemma, we have the following HJB equation for the value
function:

sup
c
{u(c)− cJF }+ Jt − (r + λ)J + rFJF + µ(t)λJλ +

σ2λ2

2
Jλλ = 0
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Solution under SfM: Part #2

Solve the HJB equation under CRRA utility as follows:

Let

u(c) =
c1−γ

1− γ
, J =

F 1−γ

1− γ
a(t,λ)

Apply the 1st order condition c∗ = J
− 1

γ

F . We obtain

c∗ = Fa−
1
γ

and get the following equation for a(t,λ):

at − (rγ+ λ)a+ γa1−
1
γ + µ(t)λaλ +

σ2λ2

2
aλλ = 0

with boundary condition a(T ,λ) = 0.
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Numerical Results (SfM)

Main Question: How does the volatility of mortality (σ), impact the
optimal initial withdrawal rate? The drift µ(t) of the mortality rate
process is calibrated to fit a Gompertz survival curve (m = 89.3, b = 9.5),
such that p(35, 0.0081) = 5%

Optimal Initial Withdrawal Rate (IWR)
Volatility γ = 0.5 γ = 1.0 γ = 1.5 γ = 3 γ = 5 γ = 10

σ = 0

σ = 15%

σ = 25%

Notes: Retirement age 65, interest rate r = 2%, mortality λ0 = 0.0081

M.A. Milevsky (York University) Yaari with Stochastic Mortality 8/Sep/2011 (Frankfurt) 26 / 29



Numerical Results (SfM)

Main Question: How does the volatility of mortality (σ), impact the
optimal initial withdrawal rate? The drift µ(t) of the mortality rate
process is calibrated to fit a Gompertz survival curve (m = 89.3, b = 9.5),
such that p(35, 0.0081) = 5%

Optimal Initial Withdrawal Rate (IWR)
Volatility γ = 0.5 γ = 1.0 γ = 1.5 γ = 3 γ = 5 γ = 10

σ = 0 7.59% 6.12% 5.58% 5.02% 4.78% 4.61%

σ = 15% 7.52% 6.12% 5.60% 5.04% 4.80% 4.62%

σ = 25% 7.44% 6.12% 5.62% 5.06% 4.82% 4.63%

Notes: Retirement age 65, interest rate r = 2%, mortality λ0 = 0.0081
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Main Theorem:

You might have noticed that the optimal IWR was invariant to
mortality volatility σ when γ = 1 (which is logarithmic utility). This
is not a coincidence. It is a theorem.

Denote by cSfM(t,λ,F ) the optimal consumption at time t, given
λ(t) = λ and F (t) = F , under a stochastic force of mortality (SfM)
model. Denote by cDfM(t,F ) the optimal consumption at time t,
when F (t) = F , under a deterministic force of mortality (DfM)
model.

THEOREM: Assume that the survival functions for the two models
agree: pSfM(t,λ0) = pDfM(t,λ0) for every t ≥ 0, and that utility is
CRRA(γ). There are three regimes: (a)
γ > 1 =⇒ cSfM(0,λ0,F ) ≥ cDfM(0,F ). (b)
γ = 1 =⇒ cSfM(0,λ0,F ) = cDfM(0,F ). (c)
0 < γ < 1 =⇒ cSfM(0,λ0,F ) ≤ cDfM(0,F ).

Proof in the paper...
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Conclusion

Stochastic mortality will change consumer behavior, but not as much
as one might expect, when properly calibrated.

Any horse race (i.e. comparison) between deterministic and stochastic
mortality models, should ensure rational mortality expectations.

Future research will examine the impact of annuities in such a model.
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