Mortality postponement and compression at older-ages in human cohorts

Dr David McCarthy, University of Georgia
Dr Po-Lin Wang, University of South Florida

Presented at Longevity 18
Bayes Business School, London
$7^{\text {th }}$ September 2023

Background

- Maximum length of a human lifespan is an age-old question
- Psalm 90 (<500BC; 80 maximum)
- Censorinus (248; 100 or 110)
- In the modern era, some debate about whether the human lifespan has reached a limit
- Olshansky (2016); Dong et al (2016); Kirkwood and Austad (2000) assert we have reached a maximum
- Oeppen and Vaupel (2002); Vaupel (2010) and Rootzen and Zholud (2017); Zuo et al (2018) assert the opposite

What we do

- Most prior studies use period data (it's easier)
- We use a method of analyzing cohort data that we have developed to estimate the extent to which recent and historical mortality improvements at older ages are due to postponement or compression
- We find that:
- historically, mortality improvements at older ages were primarily the result of compression, although there have been prior episodes of postponement, BUT
- cohorts of current elderly appear to be enjoying a historically unprecedented episode of postponement
- We use our results to show why old-age mortality records have been so slow to increase
- If current patterns continue, records will rise nike silarge ${ }_{\text {orgia }}$
margins in the coming decades Terry College of Business

Prior publications

	North American Actuarial Journal	\| ${ }^{\text {Routedge }}$
\bigcirc		

An Analysis of Period and Cohort Mortality Shocks in International Data

David McCarthy \& Po-Lin Wang

Cite this article: David McCartiy \& Po-Lin Wang (2021) An Analysis of Peenod and Cohort, Hotaly Shocs in intemational 0
To link to this article: hntes//doio ory/10. 10800/10920277. 2019.1650287

留 Published online: 18 Now 2019.
Submit your raticle to his journal ©
|lul| Aticle views: 122
© ${ }^{\text {a }}$ View relased aricices $[8$
(1) ven CrosmarkdataC

Cthe cting aricies s view citing aricices ©

Reatived 25 F Ftruny $2019 \mid$ Aceperect 8 June nax
original article
Journal of Risk and Insurance

80 will be the new 70: Old-age mortality postponement in the United States and its likely effect on the finances of the OASI program

David McCarthy

```
M}\begin{array}{l}{\mathrm{ Department of Insurance, Legal sudics am}}\\{\mathrm{ Real Estat,, Teryy Collego of Busins,}}
Real Estat, Teryy College of Busines,
Correpondence
M Dawd MCCarnhy, Room A.A5, Moone
GA 3002,
```

Routledge

Insurance: Mathematics and Economics

Pooling mortality risk in Eurozone state pension liabilities: An application of a Bayesian coherent multi-population cohort-based mortality model
David G. McCarthy ${ }^{\text {a, }, 1}$, Po-Lin Wang ${ }^{\text {b }}$

1. Inroduction

Despite recent reforms. Eurpean pension systems are, and are
schediled
cost of publicmin. very cost of pubic pension systems across the Eurozone is currently
around 10.8 of cip per year and projected to rise by 1.18 of around 10.8% of GDP per year and projected to orise by 1.1 .1 of
GDP per year by 2040 , in response to
trpid popultaion ageing. - Corresponding anthoe - Conteropanding

This paper

PLOS ONE

G openaccess perr-revewed

Mortality postponement and compression at older ages in human cohorts
David McCarthy 回. Po-Lin Wang
Published: March 29, 2023 - https://doi.org/10.1371/journal.pone. 0281752

| Abstract
Introduction
Materials and methods
Results
Discussion
Supporting information
References
Reader Comments Figures

Abstract
A key but unresolved issue in the study of human mortality at older ages is whether mortality is being compressed (which implies that we may be approaching a maximum limit to the length of life) or postponed (which would imply that we are not). We analyze historical and current population mortality data between ages 50 and 100 by birth cohort in 19 currently-industrializ
countries, using a Bayesian technique to surmount cohort censoring caused by survival to countries, using a Bayesian technique to surmount cohort censoring caused by survival, to have been occasional episodes of mortality postponement. The pattern of postponement and have been occasional episodes of mortaity postponement. The pattern of postponement and
compression across different birth cohorts explain why longevity records have been slow to increase in recent years: we find that cohorts born between around 1900 and 1950 are experiencing historically unprecedented mortality postponement, but are still too young to break longevity records. As these cohorts attain advanced ages in coming decades, longevity records may therefore increase significantly. Our results confirm prior work suggesting that if there is a maximum limit to the human lifespan, we are not yet approaching it.

BROWSE
PUBLISH
ABout
Mortality postponement and compression at ol Overview of attention for article published in PLOS ONE, March 2023

Mentioned by

8 Redditors
Readers on

- 1 Mendeley

(2) So far, Altmetric has seen 95 news stories from 84 outlets.

0 msn 122살 최고 수명 기록은 언제 깨질까
기네스북에 '세계에서 가장 오래 산 사람'으로 기록돼 s 이다. 사망 당시 나이는 만 122 살이었다.
wbatile News story from Wbal-Tv on Wednes

WLWTE Study: Humans will break the longev Led by David McCarthy, an assistant professor of ir Georgia Terry College of...

(WMURG abc

 Study: Humans will break the longev Led by David McCarthy, an assistant professor of ir Georgia Terry College of...- Substantial media coverage
- Simpler than the others (no allowance for changing smoking habits, and no curvature, so pure Gompertz)

Basic method

- Fit a mortality model to all extinct cohorts individually (can use a variety of models, but Gompertz fits very well in recent cohorts) to summarize the mortality experience of each cohort using a small number of parameters
- Use these results to obtain a (set of) Bayesian prior(s) for how these parameters change over adjacent cohorts
- Combine the prior(s) with the data from all cohorts (extinct and surviving) to obtain a joint posterior estimate of the entire set of parameters of all cohorts
- Use MCMC methods to obtain the statistical distribution of this joint posterior estimate
- Interpret and analyse results

Gompertz law

$$
\log \left(\mu_{x, c}\right)=\lambda_{50 . c}+\delta_{c}(x-50), \quad 50 \leq x \leq 100
$$

- Cohort parameters determined at age 50 and set base mortality; period effects cause mortality to fluctuate around that level
- But Gompertz fits recently extinct cohorts extremely well

Gompertz law fits extinct cohorts really well

- Distribution of root mean-square error by year of birth

Gompertz parameters: Sweden

- General drift of parameters upwards and to the left
- Consistent with compression?
- But how much?

Compression vs postponement

- Posit existence of Gompertzian maximum age at which mortality hazard first hits $2 / 3$ (Barbi et al, 2018; Alvarez et al, 2021)
- Changes in slope needed to preserve GMA we ascribe to compression; changes in GMA to postponement
- Split changes in remaining life expectancy at 50 across cohorts into that due to compression and postponement

Changes in remaining life expectancy at 50 due to compression and postponement:

Sweden

- Before 1860: largely compression; 1860-1900: some postponement; 1910-1940: large postponement
- Pattern broadly replicated in other countries

$\begin{array}{lllllllllllllll}1700 & 1720 & 17^{\prime} 40 & 17^{\prime} 60 & 1780 & 1800 & 1820 & 1840 & 1860 & 1880 & 1900 & 1920 & 1940 & 1960\end{array}$
$\begin{array}{lllllllllllllll}177^{\prime} 00 & 1720 & 1740 & 1760 & 1780 & 1800 & 1820 & 1840 & 1860 & 1880 & 1900 & 1920 & 1940 & 1960\end{array}$ Birth year (end of 10-year period)

Due to compression

Postponement narrowly concentrated in

 two episodes; compression broader

Age at death of longest-lived person in each birth cohort

- Our methodology allows us to estimate the distribution of maximum age at death (Gumbel) and the GMA in each birth cohort; we compare these with databases of supercentenarians maintained by the GRG and the ILD (really a test of GMA assumption)
- GMA is constant over long periods but not over all of our data

All countries

- Model fits most countries extremely well: 2/3 assumption looks accurate!
- Longevity records haven't increased because cohorts reaching advanced ages did not experience postponement
- Postponement seems to be a cohort-based phenomenon

Overall

- Bayesian methodology allows estimates to be obtained for incomplete cohorts
- Requires strong assumptions about cohort mortality parameters and period shocks
- Requires a prior to be chosen
- But produces a posterior estimate with confidence intervals
- Results show that:
- GMA constant over long periods, but there have been prior episodes of postponement
- Observed patterns of mortality postponement in recent cohorts are extremely unlikely to have arisen by statistical error; pattern is similar in males and females and across countries
- Explain why mortality records have been slow to fall despite postponement

Implications

- Biological - our historical analysis suggests that assuming that patterns of old-age mortality are set at younger ages (before age 50) works well. Is there a biologival basis for this?
- Financial - while the chance that any one individual will live to these extreme ages is low, our results confirm prior work suggesting that individuals currently at retirement age should lengthen their planning horizons
- Economic - proportion of elderly in populations may rise beyond current projections
- Social - if true, our conclusions indicates that younger cohorts in some countries (e.g. the US) may have lower life expectancy when they reach extreme ages

