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1Synthetic data for risk management and model validation

“Excessive reliance on historical financial data in model validation can lead to less 

robust risk management in the future.” [Marti, 2020].

Generating realistic synthetic financial data improves model resilience and

accuracy in back-testing due to potential biases in historical data.

Our analysis provides indications that using generative neural networks for

(correlation) data augmentation enhances validation and risk management
capabilities.

Examining how assets correlate in crisis mode is crucial, so quants use synthetic
data to model various market scenarios realistically.



2Generative Neural Networks for correlation analysis

[Marti, 2020] proposed Generative Adversarial Networks

(GANs) to generate plausible financial correlation matrices.

The author shows that the synthetic matrices generated with

GANs present most of the properties observed on the

empirical financial correlation matrices.

In line with [Marti, 2020] we generated synthetic asset

correlation matrices verifying the “stylized facts” of financial

correlations.

We used a different type of neural network, Variational

Autoencoders (VAE), to map historical correlation matrices
into a compressed representation (“latent space”).

We show that it is possible to interpret the location of points in

the latent space, i.e. the rationale underlying the mapping.



3Methodological framework

Analysis of VAE latent space

Check synthetic data “quality”

Generate synthetic correlations

Training Variational Autoencoder 

on historical correlations

http://www.canstockphoto.com/file_view.php?id=2969035
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Autoencoders



5Auto Encoders

AE is a type of neural network with two parts: an encoder and a decoder, trained together to

reconstruct the original input.

ENCODER

neural network that maps inputs into a

latent space (that has few dimensions)

DECODER

neural network that maps points in the
latent space back to the input space

Reconstruction:
𝑋 = 𝑓(𝐶(𝑋) = 𝜎 𝑊𝑇𝑐 + 𝑏

Input: X

Bottleneck: 

𝐶 𝑥 = 𝜎(𝑊𝑋 + 𝑏)



6Variational Auto Encoders

VAE is a type of neural network with two parts: an encoder and a decoder, trained together

to reconstruct the original image, where the compressed space is probabilistic (i.e. it

contains a random component).

ENCODER

neural network that maps inputs into a
latent space (that has few dimensions)

DECODER

neural network that maps points in the
latent space back to the input space

Reconstruction 𝑋

Generator

Latent space: ZInput: X q(z|x) p(x|z)



7Variational Auto Encoder – Probabilistic rationale

Z X

HIDDEN VARIABLE 𝒁

That generates the 

observation 𝑋
We want to infer the 

distribution of 𝑍 observing 𝑋

Computing 𝑝 𝑥 = 𝑝(𝑥|𝑧)𝑝 𝑧 𝑑𝑧 is difficult.

We can minimize the Kullback-Leibler divergence between the two distributions.

𝑝(𝑧|𝑥) = 𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝 𝑥 =  𝑝(𝑥|𝑧)𝑝 𝑧 𝑑𝑧

We approximate 𝑝(𝑧|𝑥) by a tractable distribution 𝑞(𝑧|𝑥).

We look for parameters of 𝑞(𝑧|𝑥) such that it becomes very similar to 𝑝(𝑧|𝑥), so we can use it to

perform approximate inference of the intractable distribution.



8Variational Auto Encoder – Variational lower bound

Desired posterior

Family of distribution

Gregory Gundersen, «The ELBO in Variational Inference” https://gregorygundersen.com/blog/2021/04/16/variational-inference/

Because we cannot compute the desired

KL divergence, we optimize a different

objective that is equivalent to this KL

divergence up to constant. This new

objective is called the evidence lower

bound or ELBO



9Variational Auto Encoder – Training

reconstruction error term compares the input 𝒙 with the output ෝ𝒙 = 𝐷 𝒛 .

regularization term is proportional to the Kullback-Leibler divergence of the encoded

distribution w.r.t. the target distribution (i.e. to the standard 2D Gaussian).

reconstruction error

correlation matrix in input

Decoder applied to

latent parameters 𝒛 sampled from the distribution

obtained encoding 𝒙

Gaussian distribution

obtained encoding 𝒙
standard Gaussian

distribution

regularization strength

regularization

(Kullback-Leibler divergence)

The Encoder and Decoder are trained to minimize a loss given by two terms:



10Variational Auto Encoder – Implementation

Gregory Gundersen, The Reparameterization Trick 29 April 2018 https://gregorygundersen.com/blog

The loss function includes the MSE, that measures the reconstruction error, and the KL divergence,

that measures the distribution mismatch in the latent space.

minimized to keep 𝒙𝒓 close to 𝒙
⇒ good reconstruction

minimized to keep 𝓝(𝝁,𝝈) close to 𝓝(𝟎, 𝟏)
⇒ regularization (avoid overfitting)

𝝐 ~𝒩 𝟎, 𝟏
sample noise

𝒙 pushed through encoder

𝝁𝒙, 𝝈𝒙 = 𝑀 𝒙 , Σ 𝒙

𝒛 = 𝝁𝒙 + 𝝐 ∙ 𝝈𝒙
reparameterize

𝒛 pushed through decoder

𝒙𝒓 = 𝑝𝑡ℎ𝑒𝑡𝑎(𝒙|𝒛)

reconstruction loss

variational loss



11Variational Auto Encoders – latent attributes

Variational Autoencoders learn descriptive attributes (latent attributes) of the input data

(such as skin color, smile, glasses, beard, etc.) in an attempt to describe an observation in

some compressed representation.

Matthew N. Bernstein Variational autoencoders March 14, 2023 https://mbernste.github.io/posts/vae/



12Variational Auto Encoders – probabilistic structure

VAE map images into a set
of “latent characteristics”.

A Variational Autoencoder represents each latent attribute as a range of possible values. It

describes latent attributes in probabilistic terms.

Jeremy Jordan, Variational Autoencoders https://www.jeremyjordan.me/variational-autoencoders/

Each feature is expressed
as a random variable



13Variational Auto Encoders – latent space

For any sample from the latent distributions, we expect the decoder to be able to accurately

reconstruct the input. Values that are close to each other in latent space should correspond to

very similar reconstructions.

Matthew N. Bernstein Variational autoencoders March 14, 2023 https://mbernste.github.io/posts/vae/
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Synthetic data “quality”



15Variational Auto Encoders – Data augmentation

The idea is to use VAE for data augmentation, harnessing the probabilistic

nature of the latent space.

The “probabilistic decoder” is a distribution 𝒑 𝒙 𝒛 , while the “probabilistic

encoder” is a distribution 𝒒 𝒛 𝒙 .

The assumption underlying the latent space is that the data 𝒙 are generated

from a random process involving an unobserved continuous random variable 𝒛
(latent variable).

The parameters of these distributions are given by two neural networks

(encoder and decoder).



𝜇1

Variational Auto Encoders – data generation

The VAE decoder generates a "plausible" correlation matrix from a point in the latent space.

We define a grid of points of the latent space and use the decoder to compute the corresponding

correlation matrix.

                                                                      

𝑧1
𝑧2

Decoder

Grid of points
in the latent space

Synthetic correlation
matrices

We check whether the stylized facts of financial correlation matrices hold, for both the historical and the

synthetic matrices.

decoder

16

𝜇2



17Stylized facts of financial correlations

The distribution of correlations is significantly shifted towards positive values.

Eigenvalues follow the Marchenko–Pastur distribution, except for a very large

first eigenvalue (the market) and a couple of other large eigenvalues.

The Perron-Frobenius property holds true (first eigenvector has positive entries).

Correlations have a hierarchical structure.

The Minimum Spanning Tree (MST) obtained from a correlation matrix

approximately satisfies the scale-free property.



18Stylized facts : Eigenvalues and eigenvectors

“The largest eigenvalue of the correlation matrix is a measure of the intensity of the correlation

present in the matrix […] Generally this largest eigenvalue is larger during times of stress and

smaller during times of calm.” [Millington and Niranjan, 2021a]

Each eigenvector can be viewed as a set of weights of assets that defines a new index which

is uncorrelated with the other eigenvectors. It follows that a change in eigenvectors can

impact portfolio diversification. [Nguyen et al., 2018]

Financial correlation matrices have been extensively studied leveraging on random matrix theory

(RMT) and graph analysis.

Under the lenses of RMT, the eigenvalues and eigenvectors of the correlation matrix are compared

to those of a random matrix, generated from random uncorrelated time-series.



19Stylized facts: graph analysis

Construct a “distance matrix”
from the correlation matrix.

Use this distance matrix as
adjacency matrix for a
“distance graph” G whose
nodes represent the assets.
The distance is used as
“weights” of the edges.

A spanning tree of the graph is
a subgraph that includes every
vertex of G and does not

contain any loop.

Random network

Scale- free network

Very few nodes have high 

degrees while most nodes 
have degree equal to 1.

A minimum spanning tree (MST)
is a spanning tree having the
minimum possible weights
among all possible spanning
trees.



20Stylized facts: graph analysis - MST algorithms

Determine an arbitrary vertex as the starting vertex of the Minimum Spanning Tree (MST).

Repeat steps 2,3,4 till there are vertices that are not included in the MST (known as fringe vertex).

Find edges connecting any tree vertex with the fringe vertices.

Find the minimum among these edges.

Add the chosen edge to the MST if it does not form any cycle.



21Hierarchical structure

Nodes are colored according to their economic sector membership. Some

clustering of nodes is observed: branches of the trees tend to contain companies in

the same sector and there are several hub nodes.
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Application: Credit Concentration Risk



23Literature

Variational Autoencoders in finance

[Bergeron, Hull et al., 2022] used Variational Autoencoders

to estimate missing points on partially observed volatility
surfaces.

[Brugiere and Turinici, 2023] proposed Variational

Autoencoders to compute an estimator of the Value at Risk
for a financial asset.

[Sokol 2022] used Variational Autoencoders to simulate
interest rates curves.



24Credit Concentration Risk

Credit risk concentrations, by their nature, are based on common or correlated risk factors,
which, in times of stress, have an adverse effect on the creditworthiness of each of the

individual counterparties making up the concentration. Concentration risk arises in both direct

exposures to obligors and may also occur through exposures to protection providers. Such
concentrations are not addressed in the Pillar 1 capital charge for credit risk.

Basel Committee on Banking Supervision Supervisory review process SRP32 Credit Risk 01 January 2023

A risk concentration is any single exposure or group of exposures with the potential to

produce losses large enough (relative to a bank’s capital, total assets, or overall risk level) to

threaten a bank’s health or ability to maintain its core operations. Risk concentrations are
arguably the single most important cause of major problems in banks.

[..]Banks should explicitly consider the extent of their credit risk concentrations in their
assessment of capital adequacy under Pillar 2.[..]



25Credit Portfolio Concentration Risk (1/3)

One of the most adopted models to measure the credit risk of a loan portfolio was proposed by Vasicek and it is
currently a market standard used by regulators for capital requirements. This model provides a closed-form

expression to measure the risk in the case of asymptotic single risk factor (ASRF) portfolios.

A commonly adopted methodology of measuring concentration risk is to use a Monte Carlo simulation of the
portfolio loss distribution according to a more general model of multiple systematic factors.

value of the 𝑖-th
counterparty

systematic factor 𝑌𝑗
belonging to a set of 

macroeconomic 

factors 𝒀𝒋 , with 

correlation matrix 𝚺

idiosyncratic 

independent 

process
correlation matrix 

𝜶 𝜶′ = 𝚺

independent 

factors



26Credit Portfolio Concentration Risk (2/3)



27Credit Portfolio Concentration Risk (3/3)

The bank’s portfolio is clustered into sub-portfolios with homogeneous risk characteristics

(i.e. economic sector, geographical area, rating class or counterparty size).

A distribution of losses is simulated for each sub-portfolio and the Value at Risk (VaR) is

calculated on the aggregated loss.

The asset correlation matrix 𝚺 is a critical parameter for the estimation of the sub-portfolio

loss distribution, that is the core component for the estimation of the concentration risk.



The dataset contains 206 correlation matrices of the monthly log-returns of 44 equity indices(*), calculated on their monthly
time series from February 1997 to June 2022, using overlapping rolling windows of size 100 months.

28The dataset - historical correlation matrices

Monthly time series of the log-returns of 44 equity indices (February 1997 – June 2022)

100 months wide window

100 months wide window

100 months wide window

100 months wide window

correlation matrix 1

correlation matrix 2

correlation matrix k

correlation matrix 206

window 1

window 2

window k

window 206

…

…

…

…

We randomly split (70% - 30%) the dataset in
a training sample, used to train the network,
and a validation set, used to evaluate the
performance.

(*) Historical time series considered are Total Market (Italy, Europe, US and Emerging Markets) and their related sector indices (Consumer Discretionary, Energy, Basic Materials,
Industrials, Consumer Staples, Telecom, Utilities, Technology, Financials, Health Care), the source is Datastream.
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http://www.canstockphoto.com/file_view.php?id=2969035


29Variational Auto Encoders – Correlation Matrix

ENCODER

Encoding layers compress the values of the

44×44 correlation matrix into the values of just
4 nodes (that represent the mean and

variance of a bivariate gaussian distribution).

DECODER

Decoding layers recover the 44×44 values representing the
output matrix.

                                                                      

𝜇1
𝜇2
𝜎1
𝜎2

𝑧1
𝑧2

𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅1936

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅512

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅250

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝐿𝑎𝑡𝑒𝑛𝑡 𝑆𝑝𝑎𝑐𝑒
𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅250

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅512

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟
∈ 𝑅1936

𝑆𝑎𝑚𝑝𝑙𝑒𝑠

LATENT SPACE

The input matrix is encoded into a 2D Gaussian

distribution. A sample from this 2D Gaussian is

drawn and it is fed to the decoder.



30

Comparison with linear models



31Comparison with linear models

The linear autoencoder is equivalent to applying PCA to the input data in the sense that its output is a
projection of the data onto the low dimensional principal subspace [Plaut, 2018].

Linear models (PCA) have lower performances in
terms of Mean Squared Error both in sample and out
of sample, even increasing the dimensions of the
latent space.

The generative probabilistic component of VAE
decreases the performance when compared to a
deterministic autoencoder (AE). On the other hand, it
allows to generate new correlation matrices (that are
realistic in the sense of stylized facts).

Hence, neural networks actually bring an
improvement in minimizing the reconstruction error.

We compare the performances of the Variational Autoencoder with the deterministic Autoencoder

(AE) and with Principal Component Analysis (PCA).

http://www.canstockphoto.com/file_view.php?id=2969035


32Latent space comparison

The latent spaces generated by the VAE and AE are similar, while among the linear autoencoders (PCA) only the 3-

dimensional one highlights the cluster of points in the middle.

The Variational Autoencoder maps each one of the 206 historical correlation matrices into a bivariate

normal distribution in a two-dimensional probabilistic latent space. Here we show the location of the

encoded distributions.

VAE 3D PCA

2D PCA

AE
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Latent space interpretability



34Artificial Intelligence and Risk Management

Transparency can answer the question of

“what happened” in the system.

Interpretability can answer the question of

“why” a decision was made by the system and
its meaning or context to the user.

Explainability can answer the question of

“how” a decision was made in the system. “ML models can quickly become “black boxes”,
opaque systems for which the internal behaviour

cannot be easily understood, and for which

therefore it is not easy to understand (and verify)

how a model has reached a certain conclusion or

prediction.”

Discussion paper 5/22 by FCA 

and Bank of England highlights 

demand for "more clarity on 

explainability for AI 

applications“.



35Interpretability vs explainability

According to [Miller, 2019] and [Lipton, 2018]:

Interpretable is a model such that an observer can understand the cause of a decision.

Explanation is one mode in which an observer may obtain understanding in the latent space, for

instance, building a simple surrogate model that mimics the original model to gain a better

understanding of the original model’s underlying mechanics.

Definitions

For the sake of our analysis, we refer to the “interpretability” of the VAE as the possibility to understand the

reason underlying the responses produced by the algorithm in the latent space.

To understand the rationales underlying such representation, we analysed the relationship of the latent

parameters with the eigenvectors and eigenvalues of the original correlation matrices, that are known to
be linked to the variance and diversification features of the portfolio.

http://www.canstockphoto.com/file_view.php?id=2969035


36Correlations impact on VaR and VAE latent space

Linear dependence between the first
eigenvalue (𝝀𝟏) of the correlation matrix and
the first latent parameter of the VAE (𝜇1).

We expect the VaR to grow with the first
eigenvalue and indeed it has a distinct
negative linear dependence on 𝜇1.

The first latent parameter 𝜇1 is inversely proportional to the overall correlation, i.e. it expresses

the “diversification opportunities” on the market.

VaR

𝜇2

𝜇1
𝜇1

𝜆1



37Variational Auto Encoders – Interpretability (1/3)

The groups of points in the space (𝛼1, 𝛼2, 𝜆1) are mapped by the VAE into groups of points in the latent
space (𝜇1, 𝜇2).
Hence the “financial proximity” of the correlation matrices is mapped into spatial proximity in the latent

space (with a nonlinear mapping).

To understand the second latent space dimension, we consider the cosine similarity 𝜶𝒊,𝒕 between each

eigenvector 𝝂𝒊,𝒕 at a specific time and its average over time ഥ𝝂𝒊.

𝑖 is the number of the eigenvector and 𝑡 is the index of the matrix in the dataset.



38Variational Auto Encoders – Interpretability (2/3)

Hence, we find that the VAE mapping is continuous in meaningful financial features related to

diversification.

It turns out that groups of points in the space (𝛼1, 𝛼2, 𝜆1) are mapped by the VAE into coherent

groups of points in the latent space (𝜇1, 𝜇2).

1st eigenvalue

𝜇1

diversification opportunities
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FINANCIAL FEATURESLATENT VARIABLES

𝜇2



39Variational Auto Encoders – Interpretability (3/3)

Also for a grid of random samples, the distances of the first two eigenvectors from their time

average 𝛼1, 𝛼2 and the first eigenvalue 𝜆1 characterize the regions of the latent space: the

VAE’s mapping preserves the spatial coherence of the groups of points in the “financial space”.
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Quantifying the sensitivity to 
asset correlations



In each MC simulation, all the parameters of the model are held constant except the asset correlation matrix.

The CPM (Vasicek multi-factor model) cannot be solved in closed form, hence running a Monte Carlo simulation for each generated
matrix is necessary.

41Variational Auto Encoders – Value at Risk estimation

                                                                      

DecoderSamples Synthetic correlation matrices

CPM simulation

CPM simulation

CPM simulation

𝑉𝑎𝑅1

𝑉𝑎𝑅2

𝑉𝑎𝑅 𝑛

𝜇1

𝜇2

Monte Carlo simulation VaR estimates



Running the MC simulation for every sampled point of the latent space and interpolating we obtain the VaR surface.

42Variational Auto Encoders – Value at Risk estimation

Using the interpolated surface, we can estimate VaR for any given synthetic correlation matrix avoiding Monte Carlo
simulation.

VaR

Interpolated VaR surface𝜇1

𝜇2

Samples



43Time series - historical correlation matrices

Historical correlation
matrices

Encoder

Time series of the
compressed representation

Latent Space

Using the “compressed” representation of the historical correlation matrices, it is possible to analyze a bivariate time series that
represents correlation changes.



44Variational Auto Encoders – Value at Risk estimation

Bootstrapping the time series of (Δ𝜇1 , Δ𝜇2) we simulate the distribution of the variations of the

correlation matrix in a 1-year time horizon.

Bootstrap N points in the VAE 
latent space (1y time horizon)Time series of variations of latent variables



45Variational Auto Encoders – Value at Risk estimation

Harnessing the interpolated VaR surface, we derive the corresponding VaR distribution.

VaR

Bootstrap N points in the VAE 
latent space (1y time horizon)

The VaR surface gives N corresponding VaR
(without running Monte Carlo simulation N times)



46Variational Auto Encoders – Value at Risk estimation

Hence, we obtain an estimation of the CPM Value at Risk sensitivity to the variations of the correlation

matrix.

VaR

Bootstrap N points in the VAE latent 
space (1y time horizon)

The VaR surface gives N corresponding VaR (without 
running Monte Carlo simulation N times)

Distribution of VaR over the N 
synthetic correlation matrices



47Conclusions

We use a Variational Autoencoder (VAE) to generate realistic correlation

matrices for assessing credit portfolio concentration risk within a multi-

factor Vasicek model.

A VAE is trained on a dataset of correlation matrices derived from equity

indices time series.

The realistic data augmentation capability of the VAE is exploited allowing

to quickly estimate credit portfolio risk and to assess its sensitivity to the

correlation matrix.

The VAE's latent space turns out to be interpretable in the context of

portfolio diversification.
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