Explore latent factors of longevity trends with frailty-based stochastic models

VALERIA D'AMATO¹

JOINT RESEARCH WITH MARIA CARANNANTE¹, STEVEN HABERMAN², AND MASSIMILIANO MENZIETTI¹

¹UNIVERSITY OF SALERNO, ITALY

²FACULTY OF ACTUARIAL SCIENCE AND INSURANCE, BAYES BUSINESS SCHOOL, CITY UNIVERSITY OF LONDON

Agenda

1. Heterogeneity in mortality projections

- Identification of the factors that allow to quantify the "frailty"
- 3. Proposal of frailty mortality model

Introduction and research goals

Model risk

Mortality projections are affected by systematic deviations.

Deviations due to misspecification of mortality model are the **model risk** (Pitacco *et al.* 2009).

Model risk includes shocks caused by **period effects** that temporary change the mortality behaviours.

Frailty

Frailty is the set of unobservable factors that determines the heterogeneity in mortality.

In actuarial literature, frailty is distributed as a nonnegative real random variable.

Frailty represents **individual deviations** in mortality from the average behaviour estimated by the model, as analysed by Beard (1959, 1971) and Vaupel *et al.*(1979).

Frailty

Let Z_x the continuous random frailty at age x, with a probability density function, $g_x(z)$.

Let $\mu_x(z)$ the conditional force of mortality for an individual in a population group at age x and with a frailty level z:

$$\mu_{\mathcal{X}}(z) = \lim_{t \to 0} \frac{P(T_{\mathcal{X}} \le t | Z_{\mathcal{X}} = z)}{t}$$

where T_{χ} being the remaining lifetime.

Note that Z_x is invariant with respect to t.

Frailty

Vaupel *et al.* (1979) define the frailty as a multiplicative factor of the force of mortality:

$$\mu_{\chi}(z) = \mu_{\chi} \cdot z$$

The survival function of an individual at age 0 considering the frailty is defined as follows:

$$S(x,z) = e^{-\int_{1}^{x} \mu_{t}(Z)dt} = e^{-zH(x)}$$

With H(x) the cumulative standard force of mortality in the interval (0, x).

The role of frailty in mortality projections

Improvements in longevity increased mortality heterogeneity due to the onset of **co-morbidities** (Xu *et al.* 2019).

In much of actuarial literature, **co-morbidities**, **frailty and disability** are often used interchangeably in the identification of the vulnerable elderly (Fried *et al.* 2001, 2004, Jones *et al.* 2004).

The concept of frailty as the onset of a state of **health-related vulnerability to mortality** is inconsistent with the idea that frailty is invariant over time, as defined in most existing models (i. e. Haberman and Butt 2004, Su and Sherris 2012).

Research goals

- 1. Definition of a **time-varying** and quantifiable measure of frailty
- 2. Detection of the factors that determines the measure of frailty, using the **variable importance** of a tree-based algorithm
- 3. Proposal of a Lee-Carter family models that include a parameter of frailty as a factor that determines the mortality by age and time.

Mortality projection with frailty model

Frailty as a measurable parameter

Vaupel (1979) stresses the need to introduce a frailty parameter within the mortality models.

Frailty was considered difficult to quantify, as it is a latent variable that includes a number of unspecified factors.

This leads to poor specification of the models, with consequent underestimation of the mortality trends.

Frailty as a measurable parameter

Frailty parameter could be included in Lee-Carter family model, thanks to its desiderable properties:

- Few parameters and easy to interpret
- Allows modeling improvements in longevity
- Requires a limited number of a priori hypotheses
- Includes a second stage re-estimation of deaths

Frailty heterogeneity factors identification

Frailty quantification

The heterogeneity in frailty of a demographic population that determines **differentials in mortality**.

The literature shows that neglecting this feature leads to a **bias in projecting the longevity phenomenon**.

To avoid a misrepresentation of the longevity it is necessary to estimate a **frailty score**, using a set of covariates.

Frailty quantification

The idea is to focus on the frailty and detect the covariates to determine its heterogeneity.

The use of variable importance of a Random Forest algorithm allow overcoming the functional form of the model and considering non-linear correlations.

The English Longitudinal Study on Ageing (ELSA) is a longitudinal household survey dataset for the study of health, economic position, and quality of life among the elderly.

The dataset is harmonised with similar ones of many countries.

The dataset is composed of 9 waves from 2002 to 2019.

The starting sample included 11,050 respondents aged 50 and over on March 1, 2002.

The sample is refreshed every two waves, including individuals aged 50 years and over and their partners.

The survey is divided into parts, each of which deals with a different theme in the life of the respondents:

- A. DEMOGRAPHICS, IDENTIFIERS, AND WEIGHTS
- B. HEALTH
- C. INSURANCE
- D. COGNITION
- E. FINANCIAL AND HOUSING WEALTH
- F. INCOME AND CONSUMPTION
- G. FAMILY STRUCTURE
- H. EMPLOYMENT HISTORY

The survey is divided into parts, each of which deals with a different theme in the life of the respondents:

- I. RETIREMENT & EXPECTATIONS
- J. PENSION
- K. PHYSICAL MEASURES
- L. ASSISTANCE AND CAREGIVING
- M. STRESS
- O. END OF LIFE PLANNING
- P. CHILDHOOD
- Q. PSYCHOSOCIAL

The nine-waves harmonized dataset (Banks *et al.* 2021) includes any individual interviewed at least once, for a total of 19,802 respondents.

Respondents are individuals who were age-eligible at the time of their first interview, while the unit of observations are: individual, the couple (the respondent and his/her partner) and the household.

Data pre-processing

The original dataset is in the form of a cross-sectional data matrix, with the respondent i on the rows and the variables x_i on the columns, replicating the variables for each wave t.

We obtain a panel data matrix, with the respondent and waves on the rows i, t and the variables $x_{i,t}$ on the columns.

Data pre-processing

To do this we do the following steps for each individual respondent *i*:

- 1. We detect the first and the last wave in which the respondent participated;
- 2. We include in the dataset only the waves included in the first and the last waves;
- 3. We detect the waves included in between the first and the last waves at which the respondent does not participate;
- 4. The variables with missing data due to non-response are imputed using the median of the response of the individual in the other waves;
- 5. Other missing data are imputed using the median of the respondents. They represent about the 1% of the sample.

Data pre-processing

The purpose of the random forest is to identify the variables relevant measure the individual frailty.

Considering the size of the original matrix, it is necessary to make a qualitative selection of the variables before implementing the model.

The target variable is the **health status**, measured on a scale ranging from 1, indicating excellent, to 5, indicating poor health status.

The feature variables are selected from the following sections of the survey: A: Demographics, Identifiers, and Weights; B: Health; C: insurance; F: income and consumption; H: employment history; I: retirement and expectations; L: assistance and caregiving; O: end of life planning for a total of **35 variables.**

		Relative
Variable	Category	frequency
gender	male	0.443
	female	0.557
	white	0.964
Tace	non-white	0.036
	less than upper secondary	0.313
aducation	upper secondary and	
education	vocational trading	0.527
	tertiary	0.160
	married or civil partnership	0.670
	partnered	0.041
nartnor	separated	0.012
partner	divorced	0.080
	widowed	0.148
	never married	0.049
birthplace	UK	0.912
	Other	0.088
Birth year	min	1908
	q1	1936
	median	1945
	q3	1951
	max	1988

Socio-demographic variables

		Relative
Variable	Category	frequency
hypertension	no	0.590
	yes	0.410
diabataa	no	0.899
	yes	0.101
cancor	no	0.907
Calicei	yes	0.093
lung	no	0.940
	yes	0.060
hoort	no	0.808
	yes	0.192
stroke	no	0.954
	yes	0.046
psyche	no	0.904
	yes	0.096
arthritis	no	0.643
	yes	0.357
asthmaa	no	0.871
astrimae	yes	0.129
cataracts	no	0.791
Cataracts	yes	0.209

Co-morbidities variables

		Relative
Variable	Category	frequency
parkinson	no	0.993
	yes	0.007
	no	0.984
inpiracture	yes	0.016
	no	0.922
angina	yes	0.078
heartattack	no	0.948
	yes	0.052
a la sata sa	no	0.905
i i i y ci i i i	yes	0.095
osteoporosis	no	0.933
	yes	0.067
	excellent	0.146
sight	very good	0.333
	good	0.381
	fair	0.105
	poor	0.031
	blind	0.004
	excellent	0.188
	very good	0.276
hearing	good	0.322
	fair	0.164
	poor	0.049

Co-morbidities variables

		Relative
Variable	Category	frequency
	excellent	0.134
	very good	0.304
health status	good	0.318
	fair	0.176
	poor	0.068
	0	0.815
	1	0.090
	2	0.042
adl	3	0.023
	4	0.014
	5	0.010
	6	0.008
	0	0.470
mobility	1	0.165
	2	0.114
	3	0.083
	4	0.000
	5	0.034
	7	0.034
	more than once a week	0.013
	once a week	0.094
physical activity	one to three times a month	0.032
	hardly ever or never	0.102

Health status and habit variables

		Relative
Variable	Category	frequency
	more than once a week	0.772
	once a week	0.094
physical activity	one to three times a month	0.032
	hardly ever or never	0.102
drink	no	0.131
ullik	yes	0.869
smoko	no	0.377
SITURE	yes	0.623
social participation	no	0.701
	yes	0.299
informal care	no	0.952
	yes	0.048
formal care	no	0.949
iormai care	yes	0.051
nrofessional care	no	0.949
professional care	yes	0.051
Survival probability	min	0
	q1	50
	median	60
	q3	80
	max	100

Health status and habit variables

		Relative
Variable	Category	frequency
	employed	0.263
	self-employed	0.063
	unemployed	0.011
labour force status	partly retired	0.006
	retired	0.539
	disabled	0.051
	looking after home or family	0.067
	min	-81174
	q1	12285
household income	median	20229
	q3	32111
	max	879211
health insurance	no	0.866
	yes	0.134
lifo incuranco	no	0.657
life insurance	yes	0.343

Economic variables

Random forest

Comparing the summary statistics and the variable importance for the comorbidities variables, we observe the higher the incidence of a disease in the population, the higher its importance. This could lead to an underestimation of the role of comorbidities in the definition of frailty.

For this reason, we again estimate the RF by constructing, in a similar way to the adl, a variable of the **number of co-morbidities** of an individual. Furthermore, the model is estimated without considering the year of birth, being a redundant variable as it is already considered in the mortality models.

Random forest

Variable Importance

Let $\mu_{x,t}$ the force of mortality. A Lee-Carter model (Lee and Carter 1992) is defined as follows:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + b_x k_t + \varepsilon_{xt}$$

We define the force of mortality conditional to frailty $\mu_{x,t}$ and the relative model:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + b_x k_t + z_t + \varepsilon_{xt}$$

Where z_t is a time-dependent multiplicative coefficient of the force of mortality. Frailty Lee-Carter model (FLCA)

Let $\mu_{x,t}$ the force of mortality. A Lee-Carter model (Lee and Carter 1992) is defined as follows:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + b_x k_t + \varepsilon_{xt}$$

We define the force of mortality conditional to frailty $\mu_{x,t}$ and the relative model:

$$y_{x,t} = \log(\mu_{x,t}) = z_x + b_x k_t + \varepsilon_{xt}$$

Where z_x is an age-dependent factor that affects the age-specific mortality rate Age-dependent frailty Lee-Carter model (AFLCA)

Let $\mu_{x,t}$ the force of mortality. A Lee-Carter model (Lee and Carter 1992) is defined as follows:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + b_x k_t + \varepsilon_{xt}$$

We define the force of mortality conditional to frailty $\mu_{x,t}$ and the relative model:

$$y_{x,t} = \log(\mu_{x,t}) = a_x z_t + b_x k_t + \varepsilon_{xt}$$

Where z_t is a time-varying factor that modifies age-specific mortality rates according to a temporal ageing trend of population

Age and time interaction frailty Lee-Carter model (IFLCA)

Let $\mu_{x,t}$ the force of mortality. A Lee-Carter model (Lee and Carter 1992) is defined as follows:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + b_x k_t + \varepsilon_{xt}$$

We define the force of mortality conditional to frailty $\mu_{x,t}$ and the relative model:

$$y_{x,t} = \log(\mu_{x,t}) = a_x + g_x z_t + b_x k_t + \varepsilon_{xt}$$

Where z_t is a time-varying factor, independent by age-specific mortality rates ax, but with an age-specific frailty factor g_x to estimate in combination with z_t

Age-specific and temporal frailty Lee-Carter model (IFLCA)

To estimate z_t the definition of a measurable variable of frailty is required.

We build a Co-morbidity (Aggregated) Matrix CI:

$$CI_{t} = \begin{pmatrix} ci_{11} & ci_{12} & \dots & ci_{1n} \\ ci_{21} & ci_{22} & \dots & ci_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ci_{\omega 1} & ci_{\omega 2} & \dots & ci_{\omega n} \end{pmatrix}$$

where ci_{xt} is an index that measures the score of co-morbidity for an individual at age x at time t

To estimate z_t the definition of a measurable variable of frailty is required.

We build a Co-morbidity (Aggregated) Matrix CI:

$$CI_{t} = \begin{pmatrix} ci_{11} & ci_{12} & \dots & ci_{1n} \\ ci_{21} & ci_{22} & \dots & ci_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ci_{\omega 1} & ci_{\omega 2} & \dots & ci_{\omega n} \end{pmatrix}$$

where ci_{xt} is an index that measures the score of co-morbidity for an individual at age x at time t

We consider three measures of co-morbidity index to measure

1. Average score

$$ci_{xt} = \frac{1}{K} \sum_{k=1}^{K} ci_k$$

k is a generic individual with age x at time t

 ci_k is a co-morbidity index, that is the amount of co-morbidity of an individual k.

We consider three measures of co-morbidity index to measure

2. Increase score

$$ci_{xt} = \frac{1}{K} \sum_{k' \neq k}^{K} \overline{ci}_{k'} - \overline{ci}_{k}$$

 \overline{ci}_k is the average co-morbidity score with age x at time t $\overline{ci}_{k'}$ is the average co-morbidity score with age x + 1 at time t

We consider three measures of co-morbidity index to measure

3. Relative score

$$ci_{xt} = \frac{ci_k - \overline{ci}_k}{\overline{ci}_k}$$

 ci_k is a co-morbidity index, that is the amount of co-morbidity of an individual k \overline{ci}_k is the average co-morbidity score with age x at time t

Fig. 8 z_t parameter comparison for frailty measures

Fig. 9 a_x parameter comparison for models

Fig. 10 b_x parameter comparison for models

Fig. 11 k_t parameter comparison for models

Fig. 12 z_t parameter comparison for models

Fig. 13 g_x parameter for ATFLCA model

Fig. 14 Forecasting for 20 steps ahead of models

Table 5Error measures of forecasts

	ME	MSE	MPE	MAPE
LCA	1.59E-04	5.55E-06	1.97E-03	$\begin{array}{c} 0.01628 \\ 0.00649 \\ 0.02939 \\ 0.02645 \\ 0.01390 \end{array}$
FLCA	0.00077	0.00078	-0.00019	
AFLCA	-3.00E-05	0.00E+00	8.20E-04	
IFLCA	0.00E+00	0.00E+00	1.32E-03	
ATFLCA	-6.16E-06	1.24E-06	-4.39E-05	

Conclusions

We try to identify the main latent factors explaining the frailty component, to clarify its role in the mortality projections.

Our findings based on a machine learning classification of a longitudinal study of ageing lead to recognising comorbidity as the most important variable determining frailty

From a mathematical analytical point of view, this result encourages the theoretical assumption of embedding in a stochastic mortality model the observable component of comorbidity as a predictor of frailty, to avoid systematic bias in the projections

Due to the desirable properties, we propose a frailty-based stochastic for projecting mortality in the Lee-Carter family setting.

Conclusions

We compare the models we developed, all revealing good forecasting performance. However, our research has pointed out that the observable component of comorbidity as a predictor of frailty varying across age and time better adjusts the mortality probability of an individual.

Reference

Banks, J., Batty, G. David, Breedvelt, J., Coughlin, K., Crawford, R., Marmot, M., Nazroo, J., Oldfield, Z., Steel, N., Steptoe, A., Wood, M., Zaninotto, P. (2021). English Longitudinal Study of Ageing: Waves 0-9, 1998-2019. [data collection]. 37th Edition. UK Data Service. SN: 5050, DOI: 10.5255/UKDA-SN-5050-24

Beard, R. E. (1959). Note on some mathematical mortality models. In CIBA Foundation Colloquia on Ageing (ed. C. E. W. Wolstenholme and M. O. Connor) 5, Boston: 302–311

Beard, R. E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. In Biological aspects of demography (ed. W. Brass), pp. 57–68. Taylor & Francis, London

Fried, L.P., Ferrucci, L., Darer, J., Williamson, J.D., Anderson, G. (2004) Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care, The Journals of Gerontology: Series A, Biological sciences and medical sciences 59, 255–263

Fried L.P,. Tangen C.M., Walston J. (2001) Frailty in older adults: evidence for a phenotype, The Journals of Gerontology: Series A, Biological sciences and medical sciences 56, 146–156

Jones D.M., Song X., Rockwood K. (2004) Operationalizing a frailty index from a standardized comprehensive geriatric assessment, Journal of the American Geriatrics Society 52, 1929–1933

Haberman S, Butt, Z (2004), Application of frailty-based mortality models using generalized linear models. ASTIN Bulletin, 34(1), 175-197

Pitacco E., Denuit M., Haberman S., Olivieri A., (2009), Modeling Longevity Dynamics for Pensions and Annuity Business, Oxford University Press, Oxford: United Kingdom

Su, S. and Sherris, M. (2012). Heterogeneity of Australian population mortality and implications for a viable life annuity market, Insurance: Mathematics and Economics 51, 322–332

Vaupel, J. W., K. G. Manton, and E. Stallard (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography 16(3): 439–54

Thanks for your attention!

vdamato@unisa.it