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Motivation (1/3): an history of demographics

I The first mortality table appeared in 1662 by John Graunt
I He estimated death probabilities as a function of age

I Two centuries later, there was a huge development of graphical
formalizations of life trajectories within a population by Lexis
(1875) and his contemporaries

Figure: Examples of the so-called ’Lexis Diagram’

I These first demographers showed that it is crucial to address
simulataneously two components:

1. Consider the non-homogeneous case in which the death rate
depends on both age and time

2. Understand the mortality rate as an aggregate quantity which
depends on an underlying population dynamics



Motivation (2/3): recent awareness about anomalies
I The analysis of cohort effects has long fascinated demographers

I these effects correspond to the observation that specific generations can have longevity characteristics different from
those of the previous and the following ones

I It is through the study of such cohort effects that Richards (2008) suggested

that these could be anomalies in the calculation of death rates due to shocks

in birth patterns
I Cairns, Blake, Dowd & Kessler (2016) confirmed the conjecture by Richards on the example of England and Wales,

and used monthly fertility data to detect and correct the anomalies
I B. (2016) focused on the Human Mortality Database (V5), showed that these anomalies are universal and proposed to

link it with the Human Fertility Database to correct such errors

Figure: LEFT: births by month in France. RIGHT: False ”Cohort effects” in mortality
improvements from crude tables of the V5 Human Mortality Database (now V6)



Motivation (3/3): improving mortality estimates with
monthly fertility data

I Using fertility data at a refined time scale (monthly), it is possible
to refine the traditional death rate estimates
I Example below extracted from B. (2016)

Figure: Mortality improvement rates before (left) and after (right) correction
based on monthly fertility data

I Aim of our project: build on the previous empirical work and
propose a mathematically-founded construction of mortality tables
based on traditional census estimates while taking advantage of
monthly fertility data
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Non-parametric inference from one to two dimensions

I The Nelson-Aalen estimate in one dimension writes

β̂(t) =

∫ t

0

I (Y (s) > 0)

Y (s)
dNs

I Generalization of one-dimensional non-parametric estimators is not
straightforward! Indeed, one would like to define

β̂(t) =

∫ ∞
0

I (Y (t, a) > 0)

Y (t, a)
N(t, da)

where Y (t, a) is the (stochastic) number of living with exact age a at exact
time t. Issue: Y (t, a) = 0 or 1

From Keiding (1990), ”One way of understanding the difficulties in establishing an Aalen theory in the Lexis diagram is

that although the diagram is two-dimensional, all movements are in the same direction (slope 1) and in the fully non-parametric model the

diagram disintegrates into a continuum of life lines of slope I with freely varying intensities across lines. The cumulation trick from Aalen’s

estimator (generalizing ordinary empirical distribution functions and Kaplan & Meier’s (1958) non-parametric empirical distribution

function from censored data) does not help us here.”



Dealing with life lines in the Lexis diagram

I Statistical point of view:
I Bi-variate smoothing is required to tackle the life lines issue in the

Lexis diagram
I Non-parametric inference with age x time (no birth-death process)

I Keiding (1990)
I McKeague & Utikal (1990)
I Nielsen & Linton (1995)
I Brunel, Comte & Guilloux (2008)
I Comte, Gaiffas & Guilloux (2010)

I Practical demographic point of view:
I The death rate is assumed to be piecewise constant on squares,

parallelograms or triangles in the Lexis diagram
⇒ all life lines crossing the region can be used to estimate the death
rate
⇒ the approach amounts to a smoothing with uniform kernel



Key constraints in the project

The (applied part of the) project must deal with the following constraints

I The death rate depends on both age and time

I The propulation evolves as a stochastic age-structured and time
inhomogeneous birth-death process

I Only the following observables are available in the Lexis diagram:
I Traditional annual census estimates
I Death counts in annual Lexis triangles
I Birth counts at the montly scale
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Age pyramid

I Evolves over time due to several demographic events:
I Deaths
I Births
I Migration flows

I Let g(a, t): number of individuals with exact age a at exact time t
⇒ Continuous age and time setting

I Example:
∫ a2

a1
g(a, t)da

the number of individuals with exact age in [a1, a2) at time t

I Example: [intergenerational issues] Dependency ratio

rt =

∫∞
65

g(a, t)da∫ 65

15
g(a, t)da

.
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Mortality force & Cohort dynamics

I Let µ(a, t) ≡ mortality force at exact age a and exact time t

I Drives the time evolution of a given cohort

I Let g(0, ν) be given (number of newborns at time ν)

I The number of survivors at age a in the cohort is

g(a, ν + a) = g(0, ν) exp

(
−
∫ a

0

µ(s, ν + s)ds

)
I Differentiation (age and time) leads to the...

...transport component of McKendrick-Von Foerster equation

( ∂a + ∂t)g(a, t) = −µ(a, t)g(a, t).
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Endogeneous births in the renewal component

I People of a birth cohort share the fact that they are born from the
same population:

Renewal component of the McKendrick-Von Foerster equation

g(0, ν) =

∫ ∞
0

g(a, ν)b(a, ν)da.

Recall the transport component :

( ∂a + ∂t)g(a, t) = −µ(a, t)g(a, t).



Stochastic setting and micro/macro link

I Due to the finite population size, demographic events (individual
births and deaths) occur at random times
⇒ Microscopic point of view

I Need of stochastic modeling to account for idiosyncratic risk

I Zt([a1, a2)) ≡ the stochastic number of individuals with age in
[a1, a2) at exact time t

Micro-macro consistency∗

E [Zt([a1, a2))] =

∫ a2

a1

g(a, t)da [Linear model]

I Simulation by means of the Thinning algorithm

∗Convergence of sequence of renormalized population processes (large number effect) also holds
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Period and cohort tables

I Three directions of analysis in the Lexis diagram; age, period and
cohort
I The difference between cohort and period tables lies on the choice

of the two degrees of freedom to be fixed among the three described
above

Figure: Population used (in grey) for the computation of cohort death rates
(left) and period death rates (right) in the Lexis diagram



Observables in the Lexis diagram - population counts
In an ideal demographic world, two kinds of population estimates are
recorded in the one-year age × time square:

(deterministic or stochastic setting)

I Population at exact time t, with age x last birthday:

P(t, x) =

∫ x+1

x

g(a, t)da or Zt([x , x + 1))

I Individuals who attained exact age x in the year [t, t + 1):

N(t, x) =

∫ t+1

t

g(x , s)ds or

∫ t+1

t

Zs({x})ds

Figure: Observables in the Lexis diagram



Observables in the Lexis diagram - death counts
I Death counts Also, number of deaths are provided on the upper

and lower triangles of the Lexis diagram. Let us first introduce such
upper (U) and lower (L) triangles for each age range x and
observation year t as

TU(t, x) = {(s, a) : a ∈ [x , x + 1) and s ∈ [t, t − x + a)}
TL(t, x) = {(a, s) : a ∈ [x , x + 1) and s ∈ [t − x + a, t + 1)}

If we denote Γ(dt,da) the point process of deaths then the number
of deaths provided write DU(t, x) = Γ(TU(t, x)) and
DL(t, x) = Γ(TL(t, x)).

Figure: Observables in the Lexis diagram



Observables in the Lexis diagram - relations

I Fundamental relations in a closed population (integration by parts):

N(t, x + 1) = P(t, x)− DU(t, x),

P(t + 1, x) = N(t, x)− DL(t, x).

Figure: Observables in the Lexis diagram



Monthly fertility records

I Monthly fertility records are available in the Human Fertility
Database
I Deterministic setting: The number of births in the month

[t, t + 1/12) is ∫ t+1/12

t

g(0, s)ds

I Stochastic setting: To properly define such estimates, one can
construt the counting process related to births events as

Nb(dt) =

∫
(i,θ)∈N?×[0,∞)

1i≤〈ZN
t−,1〉

10<θ≤m1(i,t)Q(dt, di , dθ).

The available estimates are then Nb([t, t + 1/12)) for each t ∈ 1
12
N.



Demographic reasoning

Several assumptions underly the classical formulas, in particular:

I (H1) Uniform distribution of births within each cohort

I (H2) Uniform distribution of deaths within each triangle

The classical demographic reasoning is split in two main steps:

I Step 1: computation of the total exposure under the assumption that no
deaths occur, gives under (H1):

1

2
[N(x , t) + N(x + 1, t)]

I Step 2: adjust the main component to death occurrences in the triangle,
under (H2) - this corresponds to add a second order term of the form

1

3
[DU(x , t)− DL(x , t)]



Closed forms at first order (1/3)
Notations used:

I S(x , t) := e
−

∑x−1
y=0 µL(y,t−x+y)

is the base survival function to age x

I H(x , t) :=
∑x−1

y=0 {µU(y , t − x + y + 1)− µL(y , t − x + y)} quantifies the gain
in longevity within the same cohort

EL(x , t) = S(x , t)

∫ t+1

t

∫ x+s−t

x
g(0, s − a)e−(t−x−s+a)H(x,t)e−(a−x)µL(x,t)dads

≈S(x , t)

∫ t+1

t

∫ x+s−t

x
g(0, s − a)e−(t−x−s+a)H(x,t)(1− µL(x , t)(a− x))dads

= E1
L (x , t)− µL(x , t)E2

L (x , t)

where the ’if no deaths occur’ exposure is

E1
L (x , t) = N(x , t)

(
1 +

L′t−x (H(x , t))

Lt−x (H(x , t))

)

I Lt−x (.) is the Laplace transform of the r.v. Bt−x ”date of birth in the year
t − x”, taking values in [0, 1]

I If no improvement in mortality within the cohort, then H(x , t) = 0, and
E1
L (x , t) = N(x , t) (1− E [Bt−x ])

I If additionally births are uniformly distributed within the year, then
E1
L (x , t) = 1

2
N(x , t)

= Classical main component of the exposure-to-risk



Closed forms at first order (2/3)

EL(x , t) = S(x , t)

∫ t+1

t

∫ x+s−t

x
g(0, s − a)e−(t−x−s+a)H(x,t)e−(a−x)µL(x,t)dads

≈S(x , t)

∫ t+1

t

∫ x+s−t

x
g(0, s − a)e−(t−x−s+a)H(x,t)(1− µL(x , t)(a− x))dads

= E1
L (x , t)− µL(x , t)E2

L (x , t)

where the ’if we correct for deaths’ component writes

E2
L (x , t) =

1

2
N(x , t)

[
1 +

2L′t−x (H(x , t)) + L′′t−x (H(x , t))

Lt−x (H(x , t))

]

I Lt−x (.) is the Laplace transform of the r.v. Bt−x ”date of birth in the year
t − x”, taking values in [0, 1]

I If no improvement in mortality within the cohort, then H(x , t) = 0, and
E2
L (x , t) = 1

2
N(x , t)

[
1− 2E [Bt−x ] + Var(Bt−x )

]
I If additionally births are uniformly distributed within the year, then

E2
L (x , t) = 1

24
N(x , t) , therefore µL(x , t)E2

L (x , t) ≈ 1
12
DL(x , t)

≈ classical second order correction of the exposure-to-risk



Closed forms at first order (3/3)

I The relation µL(x , t) = DL(x,t)
E 1
L (x,t)−µL(x,t)E 2

L (x,t)
leads to (omit

dependence in (x,t), and denote L ≡ Lt−x(H(x , t)) for simplicity):

µL =
L + L′

L + 2L′ + L′′

{
1−

√
1− DL

N/2

L(L + 2L′ + L′′)

(L + L′)2

}

I Practically, Lt−x(.) is estimated based on monthly birth counts, and
H(x , t) is estimated recursively based on the mortality table

I Some analysis:
I Denote σ2 = Var(Bt−x); if H ≡ 0 (no improvement within the

cohort), and births are centered (E[Bt−x ] = 1/2) then

µL =
1

2σ2

{
1−

√
1− DL

N/2
× 4σ2

}
≈ DL

N/2

I Similar reasoning leads to (recursive) closed-forms for the death rate
un the upper triangle µU(x , t).



Final estimation method

I Issues with the closed forms:
I The Taylor expansion is not valid for ages below around 5 and above

around 60, as death rate values in these ranges are not small
I The recursive estimation transports the initial bias for low ages to

higher ages in each cohort

I Solution: keep the untractable formulas to numerically (and
recursively) find the death rate estimate as the solution to some
inverse problem

Proposition: The following equalities hold:

exp (−µL(x , t)) Lt−x
(
H(x , t)−µL(x , t)

)
=

(
1− DL(x , t)

N(x , t)

)
Lt−x

(
H(x , t)

)

Lt−x−1

(
H(x , t − 1)− µL(x , t − 1)

)
=

(
1 +

DU(x , t)

N(x + 1, t)

)
Lt−x−1

(
H(x , t − 1)− µL(x , t − 1) + µU(x , t)

)
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Data & algorithm

I Initial step:
I Start at age zero and estimate the death rate in the lower triangle
µL(0, t) for each available year of birth t

I Only number of births by months and deaths in the lower triangle are
required

I Then compute the death rate in the upper triangle µU(0, t), based
on µL(0, t) estimated previously

I Then Recursive computation of µL(x , x + t) and then µU(x , x + t)
for increasing x .



Births distribution



Population counts P(x , t)

Population estimates 1st January (France)
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Deaths in lower Lexis triangles: DL(x , t)

Number of deaths in lower Lexis triangles (France)
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Deaths in upper Lexis triangles: DU(x , t)

Number of deaths in upper Lexis triangles (France)
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Mortality rate at age zero - lower triangle
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Mortality rate at age zero - lower triangle
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Mortality rate at age zero - upper triangle
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Mortality rate at age 60 - upper triangle
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Mortality rate at age 60 - upper triangle

1920 1940 1960 1980 2000

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

UT mortality rate at age 60 − Ratio

Year



Old and new mortality table (lower triangles)

Mortality improvements (France)
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Consequences for the insurance market?



Stochastic population dynamics - a word
I Based on the thinning representation (stochastic equation) for

counting processes:

Nt = N0 +

∫ t

0

∫
R+

1[0,Ψ(Nu,0≤u<s)](θ)Q(ds,dθ).

I Contruction of a birth-death stochastic age-structured population
process

I Statistical setting: We have (i) data ZN and (ii) a parameter of
interest f . Asymptotics are taken as N →∞.

I Structure of the problem:

HN(ZN) = 0 for some SDE HN ,

ZN → ξ limiting object,

H(ξ, f ) = 0 for some PDE H.
I Here ZN is a (large) human population evolving through time and

f (t, a) the density (or mortality rate, or fertility rate) of the
population with age a at time t.



Conclusion & Perspectives

I Summary
I New tables easy to compute...
I ...with a slight attention that these are recursive: any revision of past

population estimates / death counts will imply to re-compute the
following mortality rates... Natural !

I Perspectives
I statistical analysis of the construction method, based on the

stochastic population model
I dealing with population flows in age × year squares
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