Longevity 13 Conference

Modeling and Forecasting Age-at-death Distributions

Ugofilippo Basellini & Carlo Giovanni Camarda

Taipei, 21st September 2017

2

Motivation

• Background:

- mortality modeling and forecasting are generally based on mortality rates
- age-at-death distributions are very informative, yet neglected for modeling and forecasting

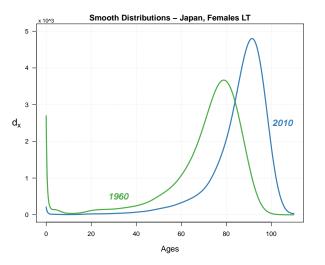
2

Motivation

• Background:

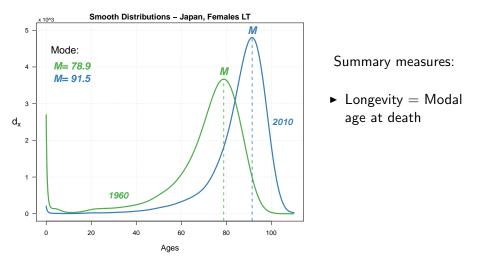
- mortality modeling and forecasting are generally based on mortality rates
- age-at-death distributions are very informative, yet neglected for modeling and forecasting
- Research question: model and forecast mortality by studying changes in age-at-death distributions

Age-at-death Distributions

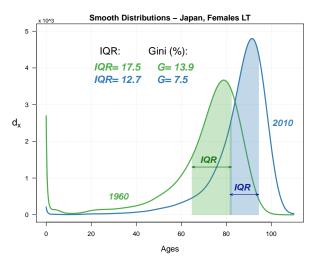


Summary measures:

Age-at-death Distributions



Age-at-death Distributions

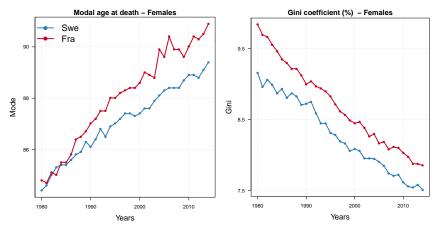


Summary measures:

- Longevity = Modal age at death
- Lifespan Inequality = (Relative) variability of death distribution

Longevity & Lifespan Inequality

Joint trends studied extensively, but hard to disentangle age-specific contributions



Taipei, September 2017

The STAD Model

Notation:

- ► *x*: age
- ► f(x): standard distribution
- g(x): observed distribution
- t(x): transformation function

The STAD Model

Notation:

- ► *x*: age
- ► f(x): standard distribution
- g(x): observed distribution
- t(x): transformation function

Aim: Look for a t(x) such that:

• g(x) conforms to f(x) on the warped axis, i.e. g(x) = f(t(x))

5

The STAD Model

Notation:

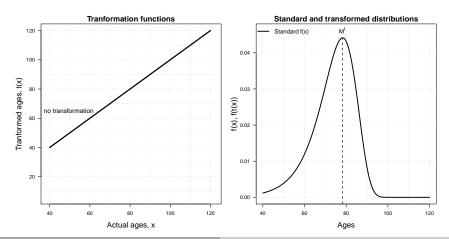
- ► *x*: age
- f(x): standard distribution
- g(x): observed distribution
- t(x): transformation function

Aim: Look for a t(x) such that:

- g(x) conforms to f(x) on the warped axis, i.e. g(x) = f(t(x))
- ► t(·) is a segmented function of the difference in modal ages and the change in the variability before and after M:

$$t(x; \mathbf{s}, b_L, b_U) = \begin{cases} M^f + b_L (x - \mathbf{s} - M^f) & \text{if } x \le M^g \\ M^f + b_U (x - \mathbf{s} - M^f) & \text{if } x > M^g \end{cases}$$

The STAD Model



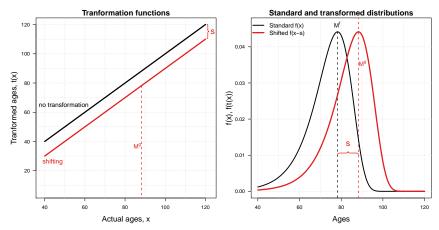
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

The STAD Model

$s = M^g - M^f$ is the difference between the M of g(x) and f(x)(shifting dynamic of mortality)

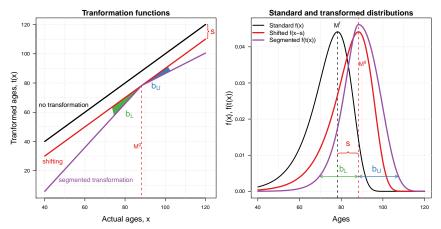


Taipei, September 2017

Basellini & Camarda

The STAD Model

 b_L and b_U measure the change in lifespan variability of f(x - s) before and after M^g (compression dynamic of mortality)



Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

8

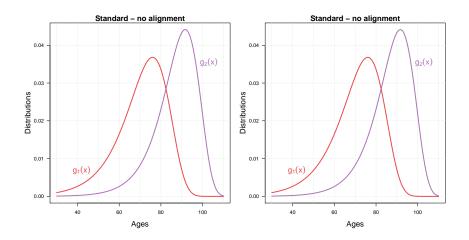
The Standard Distribution

► Relational models: theoretical framework, transformed f(x) captures mortality developments over time

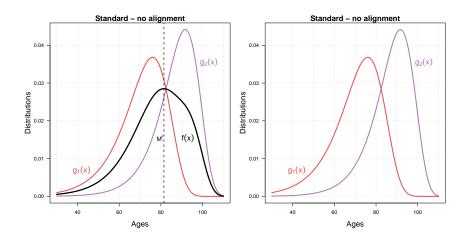
- ► Relational models: theoretical framework, transformed f(x) captures mortality developments over time
 - \Rightarrow choice of f(x) is important and should be made with care

8

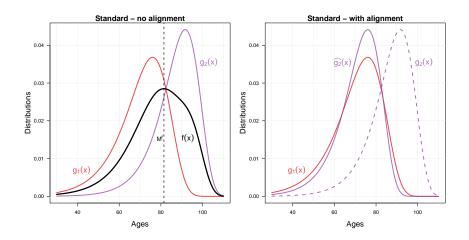
- ► Relational models: theoretical framework, transformed f(x) captures mortality developments over time
 - \Rightarrow choice of f(x) is important and should be made with care
- ► Landmark registration: alignment of observed densities to the mode of the first distribution



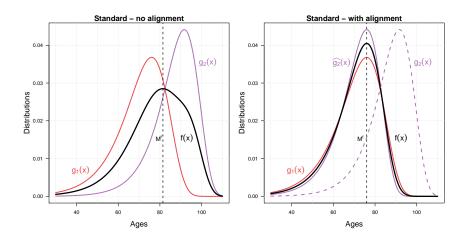
9



9



9



Application to observed data

- Smoothing:
 - apply continuous model to discrete data
 - ► avoid rigid parametric mortality structure

Application to observed data

Smoothing:

- apply continuous model to discrete data
- avoid rigid parametric mortality structure
- ► **Estimation:** for each year, b_L and b_U estimated by maximum likelihood from the assumption:

 $D_x \sim \text{Poisson}(E_x \mu_x)$

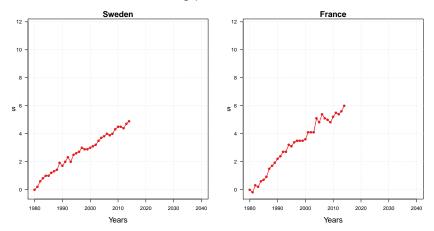
Application to observed data

- Smoothing:
 - apply continuous model to discrete data
 - avoid rigid parametric mortality structure
- ► **Estimation:** for each year, b_L and b_U estimated by maximum likelihood from the assumption:

$$D_x \sim \text{Poisson}(E_x \mu_x)$$

► Data: observed death counts and exposure times for females aged 30+ during 1980-2014 in Sweden and France (retrieved from the Human Mortality Database)

Estimation



Shifting parameter s:

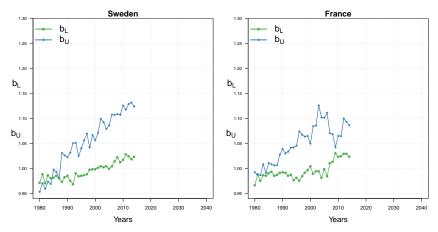
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

Estimation

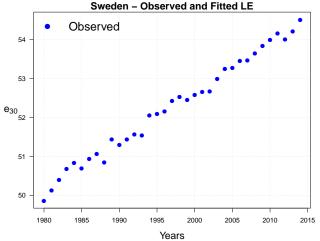
Compression/expansion parameters b_L and b_U :



Results

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:



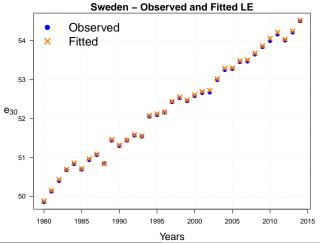
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:



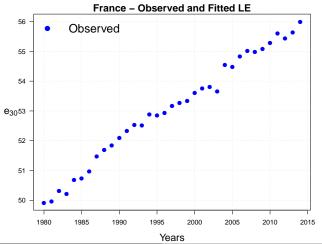
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:



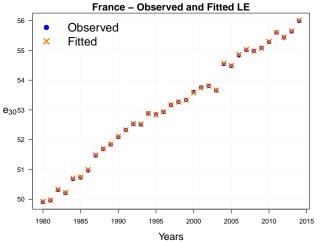
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions 14

Observed vs Fitted Data

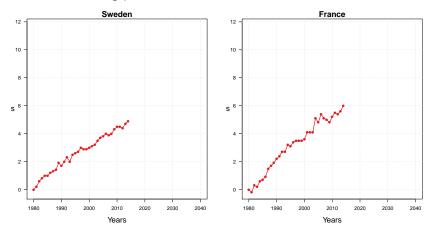
Good performance in terms of goodness-of-fit:



15

Forecasting with univariate ARIMA model

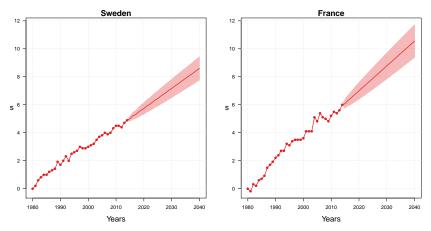
Shifting parameter *s* forecast with 80% C.I.:



15

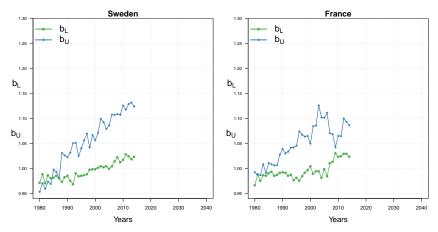
Forecasting with univariate ARIMA model

Shifting parameter s forecast with 80% C.I.:



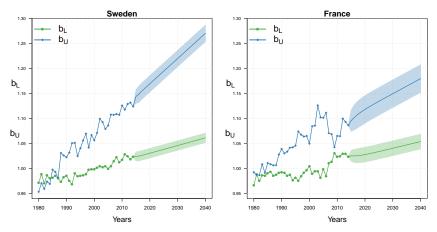
Forecasting with multivariate VAR model

Compression/expansion b_L and b_U forecast with 80% C.I.:



Forecasting with multivariate VAR model

Compression/expansion b_L and b_U forecast with 80% C.I.:

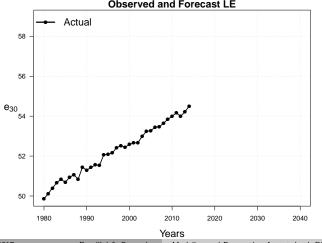


Taipei, September 2017

Results

Forecasting - e_{30}

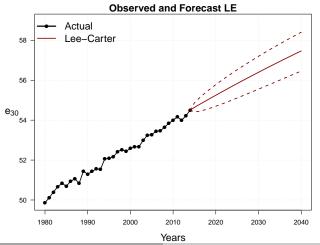
Remaining female life expectancy with 80% CI - Sweden:



Observed and Forecast LE

Forecasting - e_{30}

Remaining female life expectancy with 80% CI - Sweden:



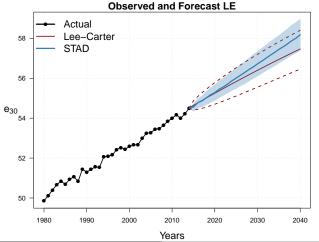
Taipei, September 2017

Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

Forecasting - e_{30}

Remaining female life expectancy with 80% CI - Sweden:



Taipei, September 2017

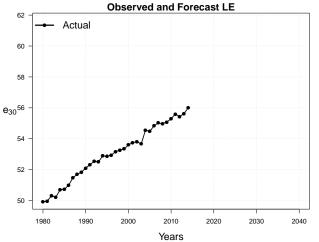
Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

Results

Forecasting - e_{30}

Remaining female life expectancy with 80% CI - France:



Taipei, September 2017

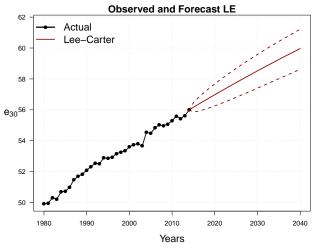
Basellini & Camarda

Modeling and Forecasting Age-at-death Distributions

18

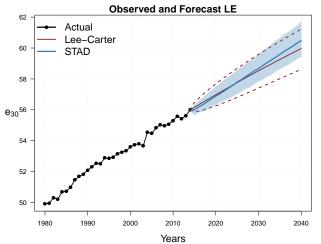
Forecasting - e_{30}

Remaining female life expectancy with 80% CI - France:

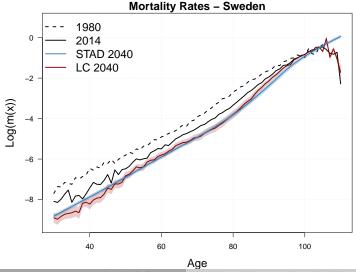


Forecasting - e_{30}

Remaining female life expectancy with 80% CI - France:



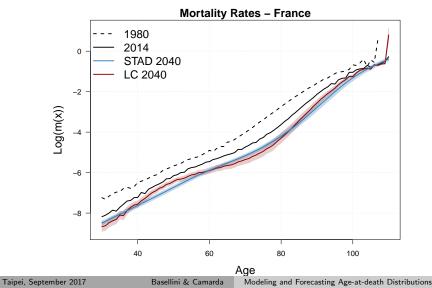
Forecasting - m_x



Taipei, September 2017

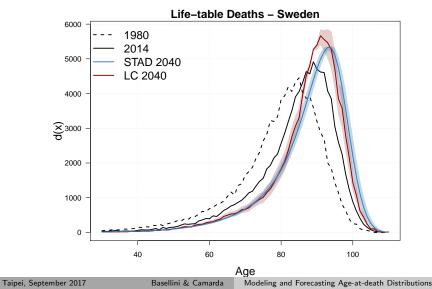
Basellini & Camarda

Forecasting - m_x

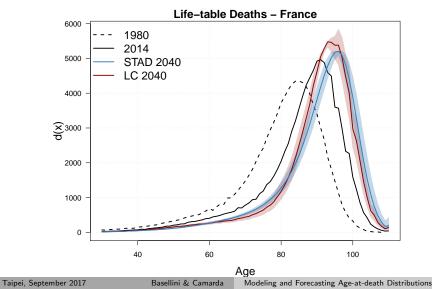


20

Forecasting - d_x



Forecasting - d_x



Summary

 One of the very first attempts of modeling and forecasting mortality from age-at-death distributions

- One of the very first attempts of modeling and forecasting mortality from age-at-death distributions
- Segmented linear transformation of the ages allows to capture mortality development very parsimoniously

- One of the very first attempts of modeling and forecasting mortality from age-at-death distributions
- Segmented linear transformation of the ages allows to capture mortality development very parsimoniously
- ► Good performance of the model in terms of goodness-of-fit

- One of the very first attempts of modeling and forecasting mortality from age-at-death distributions
- Segmented linear transformation of the ages allows to capture mortality development very parsimoniously
- ► Good performance of the model in terms of goodness-of-fit
- Forecast remaining life expectancy reflects well the past linear increase and it is more optimistic than the Lee-Carter model

Future work

Extension to the entire age range

Future work

- Extension to the entire age range
- Application to longevity risk products & pricing comparison against other models

Future work

- Extension to the entire age range
- Application to longevity risk products & pricing comparison against other models
- Application to cause-specific mortality

Thanks for your attention.

Comments and/or questions?

- One of the very first attempts of modeling and forecasting mortality from age at death distributions
- Segmented linear transformation of the ages allows to capture mortality development very parsimoniously
- ► Good performance of the model in terms of goodness-of-fit
- Forecast remaining life expectancy reflects well the past linear increase and it is more optimistic than the Lee-Carter model