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Motivation

I Background:
I mortality modeling and forecasting are generally based on

mortality rates
I age-at-death distributions are very informative, yet neglected

for modeling and forecasting

I Research question: model and forecast mortality by studying
changes in age-at-death distributions
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Age-at-death Distributions
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(Relative) variability
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Longevity & Lifespan Inequality

Joint trends studied extensively, but hard to disentangle
age-specific contributions
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The STAD Model

Notation:

I x : age

I f (x): standard distribution

I g(x): observed distribution

I t(x): transformation function

Aim: Look for a t(x) such that:

I g(x) conforms to f (x) on the warped axis, i.e. g(x) = f (t(x))

I t(·) is a segmented function of the difference in modal ages
and the change in the variability before and after M:

t(x ; s, bL, bU) =

{
M f + bL (x − s −M f ) if x ≤ Mg

M f + bU (x − s −M f ) if x > Mg
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The STAD Model

s = Mg −M f is the difference between the M of g(x) and f (x)
(shifting dynamic of mortality)
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Actual ages, x

Tr
an

fo
rm

ed
 a

ge
s,

 t(
x)

40 60 80 100 120

20

40

60

80

100

120

no transformation

Standard and transformed distributions

Ages

f(
x)

, f
(t

(x
))

40 60 80 100 120

0.00

0.01

0.02

0.03

0.04

MfStandard f(x)

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 6



Introduction
Model
Results

Conclusions

The STAD Model

s = Mg −M f is the difference between the M of g(x) and f (x)
(shifting dynamic of mortality)

Tranformation functions

Actual ages, x

Tr
an

fo
rm

ed
 a

ge
s,

 t(
x)

40 60 80 100 120

20

40

60

80

100

120

s

no transformation

shifting

Mg

Standard and transformed distributions

Ages

f(
x)

, f
(t

(x
))

40 60 80 100 120

0.00

0.01

0.02

0.03

0.04

Mg

Mf

s

Standard f(x)
Shifted f(x−s)

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 6



Introduction
Model
Results

Conclusions

The STAD Model

bL and bU measure the change in lifespan variability of f (x − s)
before and after Mg (compression dynamic of mortality)
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The Standard Distribution

I Relational models: theoretical framework, transformed f (x)
captures mortality developments over time

⇒ choice of f (x) is important and should be made with care

I Landmark registration: alignment of observed densities to
the mode of the first distribution
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The Standard Distribution
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Application to observed data

I Smoothing:
I apply continuous model to discrete data
I avoid rigid parametric mortality structure

I Estimation: for each year, bL and bU estimated by maximum
likelihood from the assumption:

Dx ∼ Poisson (Ex µx)

I Data: observed death counts and exposure times for females
aged 30+ during 1980-2014 in Sweden and France (retrieved
from the Human Mortality Database)
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Estimation

Shifting parameter s:
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Estimation

Compression/expansion parameters bL and bU :
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Observed vs Fitted Data

Good performance in terms of goodness-of-fit:

Years

1980 1985 1990 1995 2000 2005 2010 2015

50

51

52

53

54

e30

Sweden − Observed and Fitted LE

●

●

●

●
●

●

●
●

●

●
●

●
● ●

● ● ●

●
●

●
●

● ●

●

● ●

● ●

●

●
●

●
●

●

●
● Observed

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 13



Introduction
Model
Results

Conclusions

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:

Years

1980 1985 1990 1995 2000 2005 2010 2015

50

51

52

53

54

e30

Sweden − Observed and Fitted LE

●

●

●

●
●

●

●
●

●

●
●

●
● ●

● ● ●

●
●

●
●

● ●

●

● ●

● ●

●

●
●

●
●

●

●
● Observed

Fitted

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 13



Introduction
Model
Results

Conclusions

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:

Years

1980 1985 1990 1995 2000 2005 2010 2015

50

51

52

53

54

55

56

e30

France − Observed and Fitted LE

● ●

●
●

● ●

●

●
●

●

●
●

● ●

● ● ●
●

● ●

●
● ●

●

● ●

●
● ●

●
●

●
●

●

●
● Observed

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 14



Introduction
Model
Results

Conclusions

Observed vs Fitted Data

Good performance in terms of goodness-of-fit:

Years

1980 1985 1990 1995 2000 2005 2010 2015

50

51

52

53

54

55

56

e30

France − Observed and Fitted LE

● ●

●
●

● ●

●

●
●

●

●
●

● ●

● ● ●
●

● ●

●
● ●

●

● ●

●
● ●

●
●

●
●

●

●
● Observed

Fitted

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 14



Introduction
Model
Results

Conclusions

Forecasting with univariate ARIMA model

Shifting parameter s forecast with 80% C.I.:
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Forecasting with multivariate VAR model

Compression/expansion bL and bU forecast with 80% C.I.:

Sweden

Years

1980 1990 2000 2010 2020 2030 2040

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

bL

bU

●

●

●

●
●●●

●
●

●●

●
●

●
●●●●

●●●
●●●●

●
●

●
●

●
●

●
●

●
●

● bL
bU

France

Years

1980 1990 2000 2010 2020 2030 2040

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

bL

bU

●

●

●

●●
●

●
●●

●●●
●●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●
●●

●●
●

● bL
bU

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 16



Introduction
Model
Results

Conclusions

Forecasting with multivariate VAR model

Compression/expansion bL and bU forecast with 80% C.I.:

Sweden

Years

1980 1990 2000 2010 2020 2030 2040

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

bL

bU

●

●

●

●
●●●

●
●

●●

●
●

●
●●●●

●●●
●●●●

●
●

●
●

●
●

●
●

●
●

● bL
bU

France

Years

1980 1990 2000 2010 2020 2030 2040

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

bL

bU

●

●

●

●●
●

●
●●

●●●
●●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●
●●

●●
●

● bL
bU

Taipei, September 2017 Basellini & Camarda Modeling and Forecasting Age-at-death Distributions 16



Introduction
Model
Results

Conclusions

Forecasting - e 30

Remaining female life expectancy with 80% CI - Sweden:
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Forecasting - e 30

Remaining female life expectancy with 80% CI - France:
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Forecasting - mx
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Summary

I One of the very first attempts of modeling and forecasting
mortality from age-at-death distributions

I Segmented linear transformation of the ages allows to capture
mortality development very parsimoniously

I Good performance of the model in terms of goodness-of-fit

I Forecast remaining life expectancy reflects well the past linear
increase and it is more optimistic than the Lee-Carter model
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Future work

I Extension to the entire age range

I Application to longevity risk products & pricing comparison
against other models

I Application to cause-specific mortality
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Thanks for your attention.

Comments and/or questions?
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