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Quick summary

• Advantages of using age and cohort as the primary variables of 

analysing & forecasting mortality data:

– Cohort analysis applies to real people, with consequent advantages

– Age-cohort fits adult mortality data just as well as age period (if not better)

– Cohort effects appear stable across (adult) life

– Key: period-related randomness has declined in developed countries, 

creating challenges for using it alone to forecast future mortality variation

• Disadvantages: estimation difficulties for recent cohorts 

• Solution: use Bayesian maximum a posteriori estimation to jointly 

estimate cohort mortality parameters given a prior about how they 

change over time (that is, slowly) 

• Analysis: Apply approach to a variant of the Cairns-Blake-Dowd (2006) 

model, estimate it on US M & F data

• Findings: Approach seems to produce sensible estimates & reasonable 

ranges for future cohort adult life expectancy

• Evidence of a significant reduction aggregate mortality improvement for 

those born in the 1950’s, but not as bad as LC



Some history

• First demographers looked at the effect of age only on mortality 

(e.g. Ulpian, ~150CE, Halley, 1693)

• Next, added period: age-period combinations are the data produced 

by mortality investigations (Lee & Carter, 1992; Cairns, Blake & 

Dowd, 2006)

• Next, looked at cohort data in the context of existing age-period 

models (Willetts, 2003, Haberman & Renshaw, 2006 etc)

• BUT:

– Age, period & cohort are collinear

– Including all three effects difficult and contentious (across the social 

sciences, Yang et al (2008) w/ Luo (2013), Chauvel & Leist (2016) etc)

– Uncertainty in period-related fluctuations in mortality rates appears to 

be dying away (in rich countries, at least)

– Real people have fixed cohorts 

• SO:

– What about using age and cohort as the first two variables, with period 

as an afterthought?



An ad-hoc investigation on US data (I)

Age-period regressions

Age-cohort regressions
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Subsample Males

Adj-R 

squared

Root mean 

square error

Age 0-9 0.9961 0.08454

Age 10-19 0.9410 0.18702

Age 20-29 0.9660 0.05286

Age 30-39 0.9856 0.04293

Age 40-49 0.9897 0.04083

Age 50-59 0.9932 0.03237

Age 60-69 0.9948 0.02654

Age 70-79 0.9944 0.02574

Age 80-89 0.9853 0.03558

Age 90-99 0.9557 0.03815

Subsample Males

Adj-R 

squared

Root mean 

square error

Age 0-9 0.9945 0.10044

Age 10-19 0.9385 0.19097

Age 20-29 0.9176 0.08231

Age 30-39 0.9565 0.07461

Age 40-49 0.9831 0.05227

Age 50-59 0.9952* 0.02728*

Age 60-69 0.9952* 0.02544*

Age 70-79 0.9933 0.02837

Age 80-89 0.9898* 0.02962*

Age 90-99 0.9487 0.04103



An ad-hoc investigation on US data (II)

Age-period regressions

Age-cohort regressions
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Cohort fixed effects: US males

Age 0-9 Age 10-19 Age 20-29 Age 30-39 Age 40-49

Age 50-59 Age 60-69 Age 70-79 Age 80-89 Age 90-99

Subsample

Age 0-9
Age 

10-19

Age 

20-29

Age 

30-39

Age 

40-49

Age 

50-59

Age 

60-69

Age 

70-79

Age 

80-89

Age 

90-99

Age 0-9 1.000

Age 10-19 0.122 1.000

Age 20-29 -0.174 0.155 1.000

Age 30-39 0.115 0.147 0.393 1.000

Age 40-49 0.169 0.530 0.338 0.345 1.000

Age 50-59 0.181 0.354 0.397 0.357 0.574 1.000

Age 60-69 0.092 0.391 0.460 0.389 0.508 0.684 1.000

Age 70-79 -0.269 0.019 0.193 0.083 0.384 0.536 0.703 1.000

Age 80-89 -0.379 0.164 0.093 -0.226 0.107 0.539 0.498 0.513 1.000

Age 90-99 - 0.278 0.268 -0.014 -0.293 0.178 0.271 0.281 0.449 1.000

Subsample

Age   

0-9

Age 

10-19

Age 

20-29

Age 

30-39

Age 

40-49

Age 

50-59

Age 

60-69

Age 

70-79

Age 

80-89

Age 

90-99

Age 0-9 1.000

Age 10-19 0.656 1.000

Age 20-29 0.554 0.644 1.000

Age 30-39 0.537 0.629 0.826 1.000

Age 40-49 0.529 0.588 0.704 0.770 1.000

Age 50-59 0.454 0.481 0.646 0.693 0.752 1.000

Age 60-69 0.348 0.461 0.474 0.539 0.660 0.760 1.000

Age 70-79 0.288 0.408 0.351 0.440 0.612 0.697 0.906 1.000

Age 80-89 0.227 0.309 0.267 0.349 0.532 0.606 0.834 0.922 1.000

Age 90-99 0.242 0.308 0.243 0.310 0.499 0.598 0.787 0.877 0.958 1.000

1 1 0( , )    [ : 1]i i j j

t t t tcorr H LC      

1 1 0( , )    [ : 1]i i j j C

t t t tcorr H LC      



Is variance in period innovations declining?

• Evidence that the variance of random innovations in period effects are declining 

comes from three sources

– 1.  Ad-hoc investigation.  Variance ratio tests of the equality of the variance of 

differenced period coefficients in first and second halves of sample rejected in all 

subsamples of the data except one (variance of differenced cohort effects, if anything, 

may be increasing)

– 2.  Estimates of Lee-Carter model clearly show the decline in variation in time 

parameter (e.g. McCarthy & Miles 2014, *** 2017)

– 3.  McCarthy and Wang (2017), presented in this conference, fit this model to ~30 

countries, variance ratio tests within countries and χ2 tests across them rejected

• Conclusion: cannot rely on variance in period effects to generate all mortality 

uncertainty

Cohort effects Period effects

Statistic DF1 DF2 p-value Statistic DF1 DF2 p-value

Age 0-9 - - - - 1.8086 39 39 0.034

Age 10-19 0.1290 8 79 0.002 2.2458 39 39 0.007

Age 20-29 0.6875 18 69 0.188 2.8957 39 39 0.001

Age 30-39 0.9978 28 59 0.513 1.7137 39 39 0.048

Age 40-49 0.3621 38 49 0.001 1.3869 39 39 0.156

Age 50-59 0.3962 48 39 0.001 2.8624 39 39 0.001

Age 60-69 0.7900 58 29 0.220 2.4701 39 39 0.003

Age 70-79 0.9873 68 19 0.459 2.7500 39 39 0.001

Age 80-89 0.7194 78 9 0.207 2.1874 39 39 0.008

Age 90-99 - - - - 2.0646 39 39 0.013



So what to do?

• Two main options:

– Cohort version of Lee-Carter (1992):

• (we’re working on it)

– Cohort version of Cairns-Blake-Dowd (2006):

• (this paper)

• Difficulty:

– How to fit model to recent cohorts where not much data is 

available?

– We use Bayesian maximum a posteriori estimation (de Groot, 

1970)
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Model description

• Modified version of CBD (2006)

– α, β, γ constant for each cohort (this is the identifying 

assumption aka Fienberg and Mason (1978))

– Model log of central rate of mortality (estimated log hazard rate) 

to enable easy conversion to survival distribution

– Add a quadratic term (only needed for US females)

– Add period random effects to capture non-linear period-related 

mortality shocks δ: (remember: (c+x=t); linear 

changes in mortality captured by cohort parameters)

– Make an appropriate assumption about error term, theory 

suggests for perfect model:

for our imperfect model we assume:
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Bayesian maximum a posteriori estimation

• Step 1

– Estimate a prior distribution for the parameters α, β [, γ]

• Step 2

– Calculate the posterior distribution of these parameters, 

conditional on the data and the chosen prior

• Step 3

– For point estimates, choose the mode of the posterior distribution

– For actual posterior distribution, can do Metropolis-Hastings, we 

use an approximation due to Laplace

• Step 4

– Point estimates for calculating fitted values, estimating random 

effects δ, measuring goodness-of-fit

– Post. dstbn & VAR for forecasting



Step 1: choosing the prior

• Assume that first differences of                      follow a first-order 

VAR, with exogenous variables (also differenced), x to capture 

known causes of mortality variation (e.g. smoking)

• Hence, the prior distribution is:

• Values of fitted parameters estimated off VAR fitted to cohort-by-

cohort estimates of                      obtained from regressions on 

reasonably complete cohorts, fitted using standard ML

• Prior then reflects how we believe the value of                         

changes from cohort to cohort
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Step 2: obtaining the posterior

• Bayes’ Theorem gives the posterior distribution as

or:

(Hence, BMAP estimator is a penalized ML estimator)

2 2

, , 12 2

2 , , 2 2

, , 1

({ , }| , ( , )) ( | )
( , ( , ) | ,{ , })

({ , }| , ( , )) ( | )

x c x c

x c x c

x c x c

m p
p m

m p d

 

 

 

     
    

      




, ,

2 2 2 2

2 , , , ,

Fisherian log-likelihood of data { , }

1

logged prio

( , ( , ) | ,{ , }) ({ , } | , ( , ))

                                                                 ( | )

x c x c

x c x c x c x c

m

p m K m

p

   



        

 

 



r distribution 



Step 3: selecting estimates

• For point estimates choose the mode of the posterior dstbn:

• To approximate the posterior distribution itself, use a result 

from Laplace:

[Note: posterior is approximately MVN (property shared by all 

modal estimators, including ML)]

(We are also using the Metropolis-Hastings algorithm to test 

accuracy for marginals)
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Application

• US male and female mortality data, 1933 – 2014, from 

www.mortality.org, focus on adult mortality (age 35-100)

• For exogenous variable, use cohort smoking prevalence data 

collected from Forey et al (1997), updated by our own estimates 

from US survey data (NHIS)

– Use proportion of the cohort that smoked (cigarettes) at age 30 

(usu. ~peak smoking)

– Pattern similar across cohorts 

– Peaked for men born ~1910

• (Later for women)

– Rapid decline

• (Slower for women)

– M & F proportion now similar

http://www.mortality.org/


Step 1: choosing the prior

• Use standard ML to fit cohort-by-

cohort estimates to α, β [, γ]

• Results shown for US males (earliest 

and latest cohorts excluded)

• Cohorts born after 1870 and before 

1942 are reasonably precise

• Fit a VAR to first differences of these 

estimates only

• Include first differences of exogenous 

variables, but estimate smoking effect 

using a SU-VAR on males and 

female cohorts jointly



Step 1: choosing the prior

• Own first-order lags significant

• Steady-state: decline in alpha, beta 

and gamma

• Increase in smoking prevalence 

increases cohort mortality at all ages, 

but more at older ages

VAR estimates
Quadratic Linear

Females Males

D.Alpha: D.Alpha.L1 0.2779 0.3863

(0.0670) (0.0763)
Change in 

smoking 
prevalence

0.0036 0.0036

(0.0007) (0.0007)

Constant -0.0127 -0.0095

(0.0026) (0.0023)

RMSE 0.0196 0.0169

R-squared -0.2632 -0.1593

D.Beta: D.Beta.L1 0.2713 0.3398

(0.0811) (0.0870)
Change in 

smoking 
prevalence

0.0037 0.0010

(0.0011) (0.0010)

Constant -0.0016 -0.0024

(0.0021) (0.0020)

RMSE 0.0169 0.0163

R-squared 0.2736 0.1161

D.Gamma: D.Gamma.L1 0.2870

(0.0626)
Change in 

smoking 
prevalence

0.0000

(0.0020)

Constant -0.0038

(0.0043)

RMSE 0.0354

R-squared 0.0636



Step 2: obtaining the posterior

• Given the estimated parameters of the VAR, ξ, the logged posterior 

pdf is easily calculated for any choice of parameters                , 

from Bayes’ Theorem:

• The log likelihood function of the data is penalized by the addition of 

the prior information
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Step 3: obtaining the estimates

• Use numerical software to obtain point estimates for            

by solving:

• Obtain confidence intervals & ellipses using:
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Step 4A: goodness of fit

Males

Alpha (147 cohorts) X X X X

Beta (147 cohorts) X X X X

Gamma (147 cohorts) X X - -

Random period effects X - X -

log(sigma2(epsilon)) 0.4947 0.5977 0.5219 0.6663

(0.0199) (0.0177) (0.0197) (0.0188)

log(sigma2(delta)) -3.7114 - -3.5768 -

(0.1957) (0.1906)

R-squared 0.9989 0.9984 0.9989 0.9985

Adjusted R-squared 0.9988 0.9983 0.9989 0.9984

N 5412 5412 5412 5412

Females

Alpha (147 cohorts) X X X X

Beta (147 cohorts) X X X X

Gamma (147 cohorts) X X - -

Random period effects X - X -

log(sigma2(epsilon)) 0.4500 0.5881 0.6137 1.3642

(0.0197) (0.0174) (0.0196) (0.0378)

log(sigma2(delta)) -3.5289 - -1.8582 -

(0.1920) (0.1759)

R-squared 0.9993 0.9989 0.9918 0.9932

Adjusted R-squared 0.9992 0.9988 0.9913 0.9928

N 5412 5412 5412 5412

• Model fits historical data extremely well

• Using adjusted R-squared as a model selection criterion suggests 

linear model for males & quadratic model for females, as does a 

check of the residuals (not shown)

• Estimated period effects highly correlated across M & F



Step 4B: forecasting

• Project what will happen to smoking rates (3% p.b.y. decline seems 

to fit well)

• Take random draws from posterior distribution of fitted parameters to 

get starting point

• Use fitted VAR to project these forward (including shocks & projected 

changes in smoking behaviour)



Step 4B: forecasting

• Use projected values of α, β, γ , fitted values of                                       

to project future mortality hazard rates using:

• Use these to estimate future life expectancy (or other quantities of 

interest, e.g. pension fund, annuity, SS liabilities)

• Two options

• Do lots of Monte-Carlo runs to obtain CI’s for variables of interest

• Use (known) distribution of α, β, γ & known VAR to obtain 

computationally quicker but approximate theoretical distributions 

using survival distribution theory

– Generate distributions of ‘pseudo-parameters’, use these & 

known Bayesian results to generate approximate posterior
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Step 4B: forecasting

• Use forecasts of mortality rates to generate

• Period life expectancy at 35 and 65, by calendar year

• Cohort life expectancy at 35 and 65, by year of birth



Step 4B: forecasting

• Decadal cohort born 1950-1960 has lowest average rate of 

improvement in life expectancy at 35 of any such cohort in our 

dataset



Step 4B: forecasting

• Fitted Lee-Carter model with parameter uncertainty to same data 

using ML (shown for males)

• Cohort-based model predicts:

• Greater increases in life expectancy of cohorts starting in 1925 

(largely due to projected decline in smoking rates)

• Greater improvement in LE of those born in 1960-1970 (cohort 

effect)

• Models converge from ~2040 (not shown)



Conclusion
• Proposed use of Bayesian maximum a posteriori estimation to jointly 

estimate cohort mortality parameters given a prior about how they 

change over time (that is, slowly) 

• Applied approach to a variant of the Cairns-Blake-Dowd (2006) model, 

with period effects, estimated it on US M & F data

• Findings: Approach seems to produce sensible estimates & reasonable 

ranges for future cohort adult life expectancy

• Evidence of a significant reduction aggregate mortality improvement for 

those born in the 1950’s

– But projected mortality improvements appear to be better than the LC 

model would predict

– Largely due to projected effect of reduced smoking rates on cohort 

mortality

– (Models converge in differences after around 2040)

• Future work

– Use this model to investigate international mortality patterns (w/ Wang)

– Estimate cohort-based LC using BMAP


