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Quick summary

Advantages of using age and cohort as the primary variables of
analysing & forecasting mortality data:
— Cohort analysis applies to real people, with consequent advantages
— Age-cohort fits adult mortality data just as well as age period (if not better)
— Cohort effects appear stable across (adult) life

— Key: period-related randomness has declined in developed countries,
creating challenges for using it alone to forecast future mortality variation

Disadvantages: estimation difficulties for recent cohorts

Solution: use Bayesian maximum a posteriori estimation to jointly
estimate cohort mortality parameters given a prior about how they
change over time (that is, slowly)

Analysis: Apply approach to a variant of the Cairns-Blake-Dowd (2006)
model, estimate it on US M & F data

Findings: Approach seems to produce sensible estimates & reasonable
ranges for future cohort adult life expectancy

Evidence of a significant reduction aggregate mortality improvement for

those born in the 1950’s, but not as bad as L C C%&Eg‘;gfgﬁégﬁggslg



Some history

First demographers looked at the effect of age only on mortality
(e.g. Ulpian, ~150CE, Halley, 1693)

Next, added period: age-period combinations are the data produced
by mortality investigations (Lee & Carter, 1992; Cairns, Blake &
Dowd, 2006)

Next, looked at cohort data in the context of existing age-period
models (Willetts, 2003, Haberman & Renshaw, 2006 etc)

BUT:

— Age, period & cohort are collinear

— Including all three effects difficult and contentious (across the social
sciences, Yang et al (2008) w/ Luo (2013), Chauvel & Leist (2016) etc)

— Uncertainty in period-related fluctuations in mortality rates appears to
be dying away (in rich countries, at least)

— Real people have fixed cohorts

SO:
— What about using age and cohort as the first two variables, with period
as an afterthought? The University OfGGOI‘giam
TERRY COLLEGE OF BUSINESS



An ad-hoc investigation on US data (I)

. .
Age-period regressions AGR  Root mean
] squared square error
Age 0-9 0.9961 0.08454
o // Age 10-19 0.9410 0.18702
P Age 20-29 0.9660 0.05286
/ / Age 30-39 0.9856 0.04293
) / Age 40-49 0.9897 0.04083
/ // / Age 50-59 0.9932 0.03237
/ / Age 60-69 0.9948 0.02654
astasin Age 70-79 0.9944 0.02574
, , Age 80-89 0.9853 0.03558
log(a, ) =a+B'L +y'l +&, Age 90-99 0.9557 0.03815

- '

Age cohort regressions e
squared  square error
Age 0-9 0.9945 0.10044
T — Age 10-19 0.9385 0.19097
| \ ‘ Age 20-29 0.9176 0.08231
| ‘ Age 30-39 0.9565 0.07461
i \ Age 40-49 0.9831 0.05227
' ! Age 50-59 0.9952* 0.02728*
‘ ‘ !’ Age 60-69 0.9952* 0.02544*
il ' _— Age 70-79 0.9933 0.02837
Age 80-89 0.9898* 0.02962*
Age 90-99 0.9487 0.04103

log(a,.)=a+ 'L, +J'l +&,, The University of Georgia fTi
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An ad-hoc investigation on US data (ll)

Subsample

Age Age Age Age Age Age Age Age Age Age

Ag e - p e rl O d re g reSS I O n S 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99
Age 0-9 1.000

Period fixed effects b decade: US mal Age 10-19 0.656 1.000
i eriod fixed effects by age decade: US males Age 20-29 0.554 0.644 1.000

Age 30-39 0.537 0.629 0.826 1.000

. o Age40-49 0529 0588 0704 0770  1.000
e Age50-59 0454 0481 0646 0693 0752  1.000
i Age 60-69 0348 0461 0474 0539 0660 0.760  1.000
Age70-79 0288 0408 0351 0440 0612 0.697 0906  1.000
o AN Age80-89 0227 0309 0267 0349 0532 0606 0834 0922  1.000
A - Age90-99 0242 0308 0243 0310 0499 0598 0787 0877 0958  1.000

1920 1930 1940 1950 T966 1970 0 2010 2020

-0.5

corr(y; — 4,7 — 7)) [Hy:LC =1]

-1.5

_

- Age Age Age Age Age Age Age Age Age

Ag e CO h O rt re g reSS I O n S Age 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99
Age 0-9 1.000

Age 10-19 0.122  1.000
Age 20-29 -0.174  0.155 1.000

Cohort fixed effects: US males

15

1 Age 30-39 0.115 0.147 0.393 1.000
05 Age 40-49 0.169 0.530 0.338 0.345 1.000
0 ) Age 50-59 0.181 0.354 0.397 0.357 0.574 1.000
1820 1840 1860 1880 1900 1920 Q1980 1980 200 Age 60-69 0.092 0.391 0.460 0.389 0.508 0.684 1.000
> S~ Age 70-79 -0.269 0.019 0.193 0.083 0.384 0.536 0.703 1.000
. Age 80-89 -0.379 0.164 0.093 -0.226 0.107 0.539 0.498 0.513 1.000
15 Age 90-99 - 0.278 0.268 -0.014 -0.293 0.178 0.271 0.281 0.449 1.000
2 i i i £l . c _
25 COIT(ft G115t Cft—l) [H o LC = 1]
: The University of Georgia
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Is variance in period innovations declining?

« Evidence that the variance of random innovations in period effects are declining
comes from three sources
— 1. Ad-hoc investigation. Variance ratio tests of the equality of the variance of
differenced period coefficients in first and second halves of sample rejected in all

subsamples of the data except one (variance of differenced cohort effects, if anything,
may be increasing)

Statistc DF1 DF2 p-value  Statistic DF1 DF2 p-value
Age 0-9 - - - - 1.8086 39 39 0.034
Age 10-19 0.1290 8 79 0.002  2.2458 39 39 0.007
Age 20-29 0.6875 18 69 0.188  2.8957 39 39 0.001
Age 30-39 0.9978 28 59 0.513  1.7137 39 39 0.048
Age 40-49 0.3621 38 49 0.001  1.3869 39 39 0.156
Age 50-59 0.3962 48 39 0.001  2.8624 39 39 0.001
Age 60-69 0.7900 58 29 0.220  2.4701 39 39 0.003
Age 70-79 0.9873 68 19 0.459  2.7500 39 39 0.001
Age 80-89 0.7194 78 9 0.207 2.1874 39 39 0.008
Age 90-99 - - - - 2.0646 39 39 0.013

— 2. Estimates of Lee-Carter model clearly show the decline in variation in time
parameter (e.g. McCarthy & Miles 2014, *** 2017)

— 3. McCarthy and Wang (2017), presented in this conference, fit this model to ~30
countries, variance ratio tests within countries and XZ tests across them rejected

« Conclusion: cannot rely on variance in period effects to generate all mortality

uncertainty The University of Georgia m
TERRY COLLEGE OF BUSINESS



So what to do?

« Two main options:
— Cohort version of Lee-Carter (1992):
log(m,.)=a,+BKk. +5'l ., +¢&,
* (we're working on it)
— Cohort version of Cairns-Blake-Dowd (2006):
log(m, ) =a'l +B' 1. 52 +7 1 (522 +6" |, +&,,
* (this paper)

 Difficulty:
— How to fit model to recent cohorts where not much data is
available?

— We use Bayesian maximum a posteriori estimation (de Groot,
1970)

The University of Georgia m
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Model description

Modified version of CBD (2006)

log(m, ) =ar'l,+B'1 52+ 1 (52) +6 1, +
a, B,y constant for each cohort (thls is the |dent|fy|ng
assumption aka Fienberg and Mason (1978))

Model log of central rate of mortality (estimated log hazard rate)
to enable easy conversion to survival distribution

Add a quadratic term (only needed for US females)

Add period random effects to capture non-linear period-related
mortality shocks 6: &, ~ N(0,c;) (remember: (c+x=t); linear

C+X

changes in mortality captured by cohort parameters)

Make an appropriate assumption about error term, theory
suggests for perfect model:

&.~N©Ow,.) o.= *1 1
! ’ " m, E D

X,c —X,C X,C

12

for our |mperfect model we assume: The University of Georgia m
~N(0,0.0,,) TERRY COLLEGE OF BUSINESS



Bayesian maximum a posteriori estimation

Step 1
— Estimate a prior distribution for the parameters a, 5 [, ]
Step 2

— Calculate the posterior distribution of these parameters,
conditional on the data and the chosen prior

Step 3
— For point estimates, choose the mode of the posterior distribution

— For actual posterior distribution, can do Metropolis-Hastings, we
use an approximation due to Laplace

Step 4

— Point estimates for calculating fitted values, estimating random
effects J, measuring goodness-of-fit

— Post. dstbn & VAR for forecasting

The University of Georgia m
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Step 1: choosing the prior

« Assume that first differences of 6. = («, S, y), follow a first-order

VAR, with exogenous variables (also differenced), x to capture
known causes of mortality variation (e.g. smoking)

(AG), — 1= Ay (AB), =Ky (AX), =v,, v, ~N(0,%) iid

Hence, the prior distribution is:

p.(01& = f1,A,2,8) = [#((A0), — - A,(AD) , — K, (AX),,0,%)

all c
Values of fitted parameters estimated off VAR fitted to cohort-by-
cohort estimates of 6, =(a, B,y). obtained from regressions on
reasonably complete cohorts, fitted using standard ML

Prior then reflects how we believe the value of 6, =(a, £,7).
changes from cohort to cohort

The University of Georgia m
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Step 2: obtaining the posterior

« Bayes’ Theorem gives the posterior distribution as

(({m,;, 0, } 6. (05.07))p(0]¢)

p2 (0, (65163) | 5’{mx,cia)x,c}) — jg({mx’c;wx,c}| 9’ (Gg,o-gz)) pl(e | §)d6’

or.

pr (91 (G§ ! 652) | 51{mx,c’ a)x,c}) — K + \gg({mx,c’ a)x,c}l 61 (Gé%’ 0(92)2

Fisherian log-likelihood of data {m, .,@, .}

+  p(0]2)

logged priordistribution

(Hence, BMAP estimator is a penalized ML estimator)

The University of Georgia m
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Step 3: selecting estimates

« For point estimates choose the mode of the posterior dstbn:

(6,(63,67)) =argmax (p, (0, (55, 57) | £ AM, ¢, @,  })

9,((752,(75)

« To approximate the posterior distribution itself, use a result
from Laplace:

0,(0) ~ K(O)ox9| 5(0-0)' 19, (0)0-0)|

[Note: posterior is approximately MVN (property shared by all
modal estimators, including ML)]

(We are also using the Metropolis-Hastings algorithm to test

accuracy for marginals) - CThe UmverSItYé)f Georglam
ERRY CUOLLEGE OF DUSINESS .



Application

US male and female mortality data, 1933 — 2014, from
www.mortality.org, focus on adult mortality (age 35-100)

For exogenous variable, use cohort smoking prevalence data
collected from Forey et al (1997), updated by our own estimates
from US survey data (NHIS)

— Use proportion of the cohort that smoked (cigarettes) at age 30
(usu. ~peak smoking)

Smoking prevalence at age 30: US males & females

— Pattern similar across cohorts /
— Peaked for men born ~1910 \

- (Later for women) / \
— Rapid decline / s

* (Slower for women) / \

Q@ 30F

/

g /
,
/

— M & F proportion now similar

20 -

10

0 1 e 1 L 1 1 1 |
1820 1840 1860 1880 1900 1920 1940 1960 1980
Year of birth


http://www.mortality.org/

Step 1: choosing the prior

Cohort-by-cohort parameter estimates: US males

» Use standard ML to fit cohort-by- ’
cohort estimates to a, 5 [, y]

* Results shown for US males (earliest
and latest cohorts excluded)

e Cohorts born after 1870 and before

1942 are reasonably precise
« Fita VAR to first differences of these | A
estimates only .

1 1 1 1 1 1
1840 1860 1880 1900 1920 1940 1960 1980

* Include first differences of exogenous Year of birth
variables, but estimate smoking effect
using a SU-VAR on males and
female cohorts jointly

Value w/ 95% Cl's

The University of Georgia m
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Step 1: choosing the prior

VAR estimates

Quadratic
Females
D.Alpha: D.Alpha.L1 0.2779
(0.0670)
Change in
smoking 0.0036
prevalence
(0.0007)
Constant -0.0127
(0.0026)

RMSE 0.0196
R-squared -0.2632

D.Beta: D.Beta.L1 0.2713
(0.0811)
Change in
smoking 0.0037
prevalence
(0.0011)
Constant -0.0016
(0.0021)

RMSE 0.0169
R-squared 0.2736

D.Gamma: D.Gamma.L1 0.2870
(0.0626)
Change in
smoking 0.0000
prevalence
(0.0020)
Constant -0.0038
(0.0043)

RMSE 0.0354
R-squared 0.0636

Linear
Males
0.3863
(0.0763)

0.0036

(0.0007)
-0.0095
(0.0023)
0.0169
-0.1593

0.3398
(0.0870)

0.0010

(0.0010)
-0.0024
(0.0020)
0.0163
0.1161

Own first-order lags significant

Steady-state: decline in alpha, beta
and gamma

Increase in smoking prevalence
Increases cohort mortality at all ages,
but more at older ages

Change in log(m) for 1% point increase

g X 1073 in smoking prevalence at age 30
T T T T T
Linear

7k Quadratic

6
— 5 i
£
(o))
o 4r
£
5
c 3r
©
<
]

2 |

1 |-

0 |-

_1 1 1 1 1 1 1

30 40 50 60 70 80 90 100

Age



Step 2: obtaining the posterior

« Given the estimated parameters of the VAR, ¢, the logged posterior
pdf is easily calculated for any choice of parameters{é, (c;,57°)},
from Bayes’ Theorem:

pr (91 (G§ ! 652) | 51{mx,c’ a)x,c}) — K + \gg({mx,c’ a)x,c}l 61 (Gé%’ 0(92)2

Fisherian log-likelihood of data {m, .,@, .}

+  p(0]2)

logged priordistribution

 The log likelihood function of the data is penalized by the addition of
the prior information

The University of Georgia m
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Step 3: obtaining the estimates

- Use numerical software to obtain point estimates for {0, (c;,c°)}
by solving:
(0,(65.6,)) =argmax (p, (0, (c;,0,) | E{m, .. &, })

(9,(0'§,G§)

« Obtain confidence intervals & ellipses using:
A 1 A . .
p.(0) ~ K(@)exp| 3 (0-0)'19,.,(0)0-0)

Cohort-by-cohort estimates plotted 95% confidence ellipses for posterior o and 3
with joint estimates and 95% ClI's o4 US male cohorts born 1933-1979

6 T T T T T T B _

4 23+

2 -

22
2
O
X 0r
w0
2 ™21 F
2
g -2 1
© e
>
2
4 F’\ﬁ
191

6+

_8 Il 1 1 Il Il 1 1 18

1820 1840 1860 1880 1900 1920 1940 1960 1980 -4.8 -4.6 4.4 -4.2 -4 -3.8

Year of birth



Step 4A: goodness of fit

Model fits historical data extremely well

Using adjusted R-squared as a model selection criterion suggests
linear model for males & quadratic model for females, as does a
check of the residuals (not shown)

Estimated period effects highly correlated across M & F

Al pha (147 COhOTtS) X XM glles X X o1 ‘ Pel"iod effec‘:tS s US r‘nales an‘d female? 1933-2914
Beta (147 cohorts) X X X X | Females
Gamma (147 cohorts) X X - - 008 | Haies
Random period effects X X = 0.06 -
log(sigma?(epsilon)) 0.4947 0.5977 0.5219 0.6663

(0.0199) (0.0177) (0.0197) (0.0188) _004f
log(sigma?(delta)) -3.7114 - -3.5768 - 8 ‘

(0.1957) (0.1906) g [
R-squared 0.9989  0.9984 0.9989 0.9985 2 o |
Adjusted R-squared 0.9988 0.9983 0.9989 0.9984 E
N 5412 5412 5412 5412 £ 002

Females - ooal
Alpha (147 cohorts) X X X X
Beta (147 cohorts) X X X X -0.06 -
Gamma (147 cohorts) X X - -
Random period effects X - X - 0081
log(sigma?(epsilon)) 0.4500 0.5881 0.6137 1.3642 04 J ‘ ‘ ‘ ‘ ‘ ‘ ‘
, (0_0197) (0_0174) (0.0196) (0.0378) 1930 1940 1950 1960 (1:27|anar ;992(1 1990 2000 2010 2020

log(sigma?(delta)) -3.5289 - -1.8582 -

(0.1920) (0.1759)

R-squared 0.9993 0.9989 0.9918 0.9932

Adjusted R-squared 09992 09988 009913  0.9928 The University of Georgia m
N 5417 5412 5417 5412 TERRY COLLEGE OF BUSINESS LU,



Percentage of cohort

Step 4B: forecasting

80

Project what will happen to smoking rates (3% p.b.y. decline seems

to fit well)

Take random draws from posterior distribution of fitted parameters to

get starting point

Use fitted VAR to project these forward (including shocks & projected

changes in smoking behaviour)

Historical & projected smoking prevalence at age 30, US males
T T T T T T

70

60 [

50

40

30 -

20

10 -

0

— Historic
Projected

1800

1 Il Il Il
1850 1900 1950 2000 2050 2100 2150
Year of birth

Parameter values

Historical & projected o and 3: US males

|
1850

1 | 1 | 1
1900 1950 2000 2050 2100
Year of birth



Step 4B: forecasting

Use projected values of , 3, y, fitted values of {log(c?3),log(c*)}
to project future mortality hazard rates using:

log(m, ) =a'l,+ "1, & 1y 1 (BR)? 4571, +
Use these to estlmate future I|fe expectancy (or other quantities of
Interest, e.g. pension fund, annuity, SS liabilities)

Two options
Do lots of Monte-Carlo runs to obtain Cl’s for variables of interest

* Use (known) distribution of a, £, y & known VAR to obtain
computationally quicker but approximate theoretical distributions
using survival distribution theory

— Generate distributions of ‘pseudo-parameters’, use these &
known Bayesian results to generate approximate posterior

The University of Georgia m
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Step 4B: forecasting

« Use forecasts of mortality rates to generate
« Period life expectancy at 35 and 65, by calendar year
« Cohort life expectancy at 35 and 65, by year of birth

Cohort life expectancy at 35, with 99% Cl's: Period life expectancy at 35, with 99% Cl's:

65 US males and females o5 US males and females

60 r
55

50 -

Years
Years

45 -

40

35 ¢

30 L L L 1 L L L 1 30 L I I 1 1 L L 1
1900 1920 1940 1960 1980 2000 2020 2040 2060 1940 1960 1980 2000 2020 2040 2060 2080

Year of birth Calendar year

The University of Georgia m
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Step 4B: forecasting

Decadal cohort born 1950-1960 has lowest average rate of

Improvement in life expectancy at 35 of any such cohort in our
dataset

Change in cohort life expectancy at 35 relative to cohort born one year earlier, with 99% Cl: US males

0.8 [~

Years

| | | | | | | | | |
-0.6
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year of birth

Change in cohort life expectancy at 35 relative to cohort born one year earlier, with 99% CI: US females

Years

06 | | | | | | | | | | rgla
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year of birth ESS .



Step 4B: forecasting

» Fitted Lee-Carter model with parameter uncertainty to same data
using ML (shown for males)

» Cohort-based model predicts:

« Greater increases in life expectancy of cohorts starting in 1925
(largely due to projected decline in smoking rates)

« Greater improvement in LE of those born in 1960-1970 (cohort
effect)

* Models converge from ~2040 (not shown)

Change in cohort life expectancy at 35 relative to cohort born one year earlier, with 99% CI: US males
Lee-Carter (blue), cohort model (red)

0.8 —
0.6 -
0.4

0.2

Years

0+

0.2 —

-0.4 —

| | | | | | | | | |
-0.6
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year of birth



Conclusion

Proposed use of Bayesian maximum a posteriori estimation to jointly
estimate cohort mortality parameters given a prior about how they
change over time (that is, slowly)

Applied approach to a variant of the Cairns-Blake-Dowd (2006) model,
with period effects, estimated it on US M & F data

Findings: Approach seems to produce sensible estimates & reasonable
ranges for future cohort adult life expectancy

Evidence of a significant reduction aggregate mortality improvement for
those born in the 1950’s

— But projected mortality improvements appear to be better than the LC
model would predict

— Largely due to projected effect of reduced smoking rates on cohort
mortality

— (Models converge in differences after around 2040)

Future work
— Use this model to investigate international mortality patterns (w/ Wang)

— Estimate cohort-based LC using BMAP The University of Georgia m
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