A Two-Population Mortality Model with Transitory Jump Effects (Joint work with Johnny S.H. Li and Ken Seng Tan)

Rui Zhou

Department of Statistics and Actuarial Science University of Waterloo

Seventh International Longevity Risk and Capital Markets Solutions Conference

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivation

A Two-population Model without Jump Effects

Nonconcurrent Transitory Jumps

The Impact on Mortality Risk Securitization

Conclusion and Future Work

-Motivation

Motivation

Mortality jumps

- E.g. Spanish flu epidemic in 1918
- Important for mortality modeling and forecasting
- Important for pricing mortality-linked securities, especially those for hedging extreme mortality risk

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Modeling mortality jumps: Biffis (2005), Lin and Cox (2005), Chen and Cox (2009) and Cox et al. (2010)

Motivation

Motivation (cont'd)

Multi-population models

- Model the potential correlations across different populations
- Ensure biologically reasonable mortality forecast
- Allow evaluating population basis risk
- Two-population mortality models: Carter and Lee (1992), Li and Lee (2005), Li and Hardy (2011), Dowd et al. (2011) and Cairns et al. (2011)

- Motivation

Motivation (cont'd)

Our Work

 Introduce jump effects to a two-population mortality model with a Lee-Carter structure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 Investigate the impact of mortality jumps on the securitization of mortality risk A Two-population Model without Jump Effects

A Two-Population Model without Jump Effects

$$\ln(m_{x,t}^{(i)}) = \alpha_x^{(i)} + \beta_x^{(i)} \kappa_t^{(i)}$$
 $i = 1, 2$

- m⁽ⁱ⁾_{x,t}: central death rate for population i at age x and in year t
- $\kappa_t^{(i)}$: period effect index for population *i* in year *t*
- $\alpha_x^{(i)}$: average level of mortality for population *i* at age *x*

• $\beta_x^{(i)}$: sensitivity to $\kappa_t^{(i)}$ for population *i* at age *x*

A Two-population Model without Jump Effects

Non-divergence

Necessary conditions

1.
$$\beta_x^{(1)} = \beta_x^{(2)}$$
 for all *x*
2. $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$ do not diverge over the long run

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Two-population Model without Jump Effects

Non-divergence (cont'd)

Modeling $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$

$$\kappa_{t+1}^{(1)} = \kappa_t^{(1)} + \mu_{\kappa} + Z_{\kappa}(t+1)$$

$$\Delta_{\kappa}(t) = \kappa_t^{(1)} - \kappa_t^{(2)}$$

$$\Delta_{\kappa}(t+1) = \mu_{\Delta_{\kappa}} + \phi_{\Delta_{\kappa}}\Delta_{\kappa}(t) + Z_{\Delta_{\kappa}}(t+1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$|\phi_{\Delta_{\kappa}}| < 1$$

$$(Z_{\kappa}(t), Z_{\Delta_{\kappa}}(t))' \sim \mathsf{BVNorm}((0, 0)', V_Z)$$

A Two-population Model without Jump Effects

Model fitting

A two-stage approach

- 1. Estimate parameters $\alpha_x^{(1)}$, $\alpha_x^{(2)}$, β_x , $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$
- 2. Estimate the parameters in the time-series processes for $\kappa_t^{(1)}$ and $\Delta_\kappa(t)$

(日) (日) (日) (日) (日) (日) (日)

-Nonconcurrent Transitory Jumps

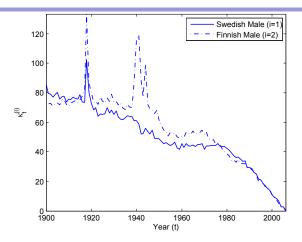


Figure: Estimates of the period effect indexes for Swedish male and Finnish male populations. (Data: sample period of 1900 to 2006 and sample age range of 25 to 84, obtained from Human Mortality Database (2011)) -Nonconcurrent Transitory Jumps

Modeling nonconcurrent transitory jumps

$$\begin{aligned}
\kappa_{t+1}^{(1)} &= \hat{\kappa}_{t+1}^{(1)} + N_{t+1}^{(1)} Y_{t+1}^{(1)} \\
\kappa_{t+1}^{(2)} &= \hat{\kappa}_{t+1}^{(2)} + N_{t+1}^{(2)} Y_{t+1}^{(2)} \\
\hat{\kappa}_{t+1}^{(1)} &= \hat{\kappa}_{t}^{(1)} + \mu_{\kappa} + Z_{\kappa}(t+1) \\
\hat{\Delta}_{\kappa}(t) &= \hat{\kappa}_{t}^{(1)} - \hat{\kappa}_{t}^{(2)} \\
\hat{\Delta}_{\kappa}(t+1) &= \mu_{\Delta_{\kappa}} + \phi_{\Delta_{\kappa}} \hat{\Delta}_{\kappa}(t) + Z_{\Delta_{\kappa}}(t+1)
\end{aligned}$$

• { $\hat{\kappa}_{t}^{(i)}$ }: unobserved period effect index that is free of jumps • ($Y_{t}^{(1)}, Y_{t}^{(2)}$)': jump severities ~ BVNorm(($\mu_{Y}^{(1)}, \mu_{Y}^{(2)}$), V_{Y}) • ($Z_{\kappa}(t), Z_{\Delta_{\kappa}}(t)$)': error terms ~ BVNorm((0,0), V_{Z})

-Nonconcurrent Transitory Jumps

Modeling nonconcurrent transitory jumps (cont'd)

►
$$N_t^{(i)}$$
: jump count for population *i*
► $P(N_t^{(1)} = 1, N_t^{(2)} = 1) = p_1$
► $P(N_t^{(1)} = 1, N_t^{(2)} = 0) = p_2$
► $P(N_t^{(1)} = 0, N_t^{(2)} = 1) = p_3$
► $P(N_t^{(1)} = 0, N_t^{(2)} = 0) = 1 - p_1 - p_2 - p_3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Nonconcurrent Transitory Jumps

Parameter estimates

Parameters	Nonconcurrent-jump	No-jump
μ_{κ}	-0.6372	-0.8057
$\mu_{\Delta_{\kappa}}$	-0.1269	-0.9803
$\phi_{\Delta_{\kappa}}$	0.9184	0.8486
$V_{Z}(1,1)$	4.1752	17.3162
$V_{Z}(1,2)$	1.0633	-11.0413
$V_{Z}(2,2)$	2.7786	38.1830
$\mu_{Y}^{(1)}$	3.5824	N/A
$\mu_{Y}^{(2)}$	12.4430	N/A
$V_{Y}(1,1)$	116.3952	N/A
$V_{Y}(1,2)$	184.9353	N/A
$V_{Y}(2,2)$	293.8356	N/A
<i>p</i> 1	0.0622	N/A
p_2	0	N/A
p_3	0.0496	N/A

-Nonconcurrent Transitory Jumps

Likelihood ratio test

Null model: no-jump model (log-likelihood $I_1 = -634.1980$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Alternative model: nonconcurrent-jump model (log-likelihood l₂ = -503.0726)
- Test statistics: $2(l_2 l_1) = 262.2508$
- Degree of freedom: 8
- P-value: 0

The Impact on Mortality Risk Securitization

An illustrative trade

- Agent A has life insurance liability $L_t = 5 \sum_{x=25}^{44} q_{x,t}^{(2)}$, where $q_{x,t}^{(2)} = 1 e^{-m_{x,t}^{(2)}}$
- Agent A issues mortality bond
 - 3 year maturity
 - a coupon at the end of each year at a rate of 4.5%
 - principal repayment linked to the index $I_t = \frac{1}{20} \sum_{x=25}^{44} m_{x,t}^{(1)}$
 - principal repayment = max $\left(1 \sum_{t=2007}^{2009} loss_t, 0\right)$
 - $loss_t = \frac{max(l_t 1.3l_{2006}, 0) max(l_t 1.4l_{2006}, 0)}{0.1l_{2006}}$
- Agent B invests in mortality bond

L The Impact on Mortality Risk Securitization

Pricing results

 Price the mortality bond by the economic pricing framework proposed by Zhou, Li and Tan (2010)

Model	Price	Quantity	
No-jump	1.0178	0.2249	
Nonconcurrent-jump	1.0087	0.1699	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Impact on Mortality Risk Securitization

Determinants of Supply and Demand

- v_L: the accumulated values of the insurance liabilities
- *v_H*: the accumulated values of the payouts from one unit of the bond

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Determinants

- µ_H: the expected value of v_H
- σ_H : the volatility of v_H
- σ_L: the volatility of v_L
- ρ : the correlation between v_L and v_H

L The Impact on Mortality Risk Securitization

Estimates of μ_H , σ_H , σ_L and ρ

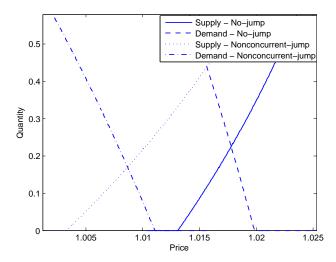
Model	μ_H	σ_H	σ_L	ρ
No-jump	1.0198	0.1258	0.1102	-0.3829
Nonconcurrent-jump	1.0110	0.1573	0.0677	-0.5832

	$\mu_H\downarrow$	σ_{H} \uparrow	$\sigma_L \uparrow$	$ ho \uparrow$
Supply	\uparrow	\downarrow	\uparrow	\uparrow
Demand	\downarrow	\downarrow	_	_

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

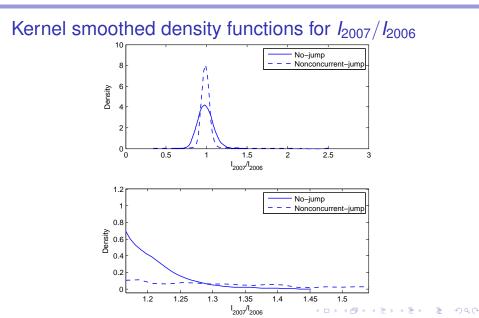
- The Impact on Mortality Risk Securitization

The Supply and Demand Curves



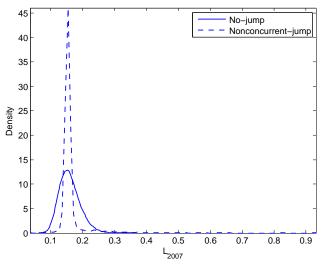
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- The Impact on Mortality Risk Securitization



- The Impact on Mortality Risk Securitization

Kernel smoothed density functions for L_{2007}



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Conclusion and Future Work

Conclusion

- Incorporating nonconcurrent transitory jumps significantly improves the fit
- It also has significant impacts on the estimated mortality bond price

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Future work

- Measure population basis risk
- Allow permanent jumps

Conclusion and Future Work

THANKS!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ