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Motivation

Motivation

Mortality jumps

I E.g. Spanish flu epidemic in 1918
I Important for mortality modeling and forecasting
I Important for pricing mortality-linked securities, especially

those for hedging extreme mortality risk
I Modeling mortality jumps: Biffis (2005), Lin and Cox

(2005), Chen and Cox (2009) and Cox et al. (2010)
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Motivation

Motivation (cont’d)

Multi-population models

I Model the potential correlations across different
populations

I Ensure biologically reasonable mortality forecast
I Allow evaluating population basis risk
I Two-population mortality models: Carter and Lee (1992),

Li and Lee (2005), Li and Hardy (2011), Dowd et al. (2011)
and Cairns et al. (2011)
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Motivation

Motivation (cont’d)

Our Work
I Introduce jump effects to a two-population mortality model

with a Lee-Carter structure
I Investigate the impact of mortality jumps on the

securitization of mortality risk
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A Two-population Model without Jump Effects

A Two-Population Model without Jump Effects

ln(m(i)
x ,t ) = α

(i)
x + β

(i)
x κ

(i)
t i = 1,2

I m(i)
x ,t : central death rate for population i at age x and in

year t
I κ

(i)
t : period effect index for population i in year t

I α
(i)
x : average level of mortality for population i at age x

I β
(i)
x : sensitivity to κ(i)

t for population i at age x
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A Two-population Model without Jump Effects

Non-divergence

Necessary conditions

1. β(1)
x = β

(2)
x for all x

2. κ(1)
t and κ(2)

t do not diverge over the long run
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A Two-population Model without Jump Effects

Non-divergence (cont’d)

Modeling κ(1)
t and κ(2)

t

κ
(1)
t+1 = κ

(1)
t + µκ + Zκ(t + 1)

∆κ(t) = κ
(1)
t − κ

(2)
t

∆κ(t + 1) = µ∆κ + φ∆κ∆κ(t) + Z∆κ(t + 1)

I |φ∆κ | < 1
I (Zκ(t),Z∆κ(t))′ ∼ BVNorm((0,0)′,VZ )
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A Two-population Model without Jump Effects

Model fitting

A two-stage approach

1. Estimate parameters α(1)
x , α(2)

x , βx , κ(1)
t and κ(2)

t

2. Estimate the parameters in the time-series processes for
κ

(1)
t and ∆κ(t)
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Nonconcurrent Transitory Jumps

1900 1920 1940 1960 1980 2000
0

20

40

60

80

100

120

Year (t)

κ t(i)

 

 
Swedish Male (i=1)
Finnish Male (i=2)

Figure: Estimates of the period effect indexes for Swedish male and
Finnish male populations. (Data: sample period of 1900 to 2006 and
sample age range of 25 to 84, obtained from Human Mortality
Database (2011))
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Nonconcurrent Transitory Jumps

Modeling nonconcurrent transitory jumps

κ
(1)
t+1 = κ̂

(1)
t+1 + N(1)

t+1Y (1)
t+1

κ
(2)
t+1 = κ̂

(2)
t+1 + N(2)

t+1Y (2)
t+1

κ̂
(1)
t+1 = κ̂

(1)
t + µκ + Zκ(t + 1)

∆̂κ(t) = κ̂
(1)
t − κ̂

(2)
t

∆̂κ(t + 1) = µ∆κ + φ∆κ∆̂κ(t) + Z∆κ(t + 1)

I {κ̂(i)
t }: unobserved period effect index that is free of jumps

I (Y (1)
t ,Y (2)

t )′: jump severities ∼ BVNorm((µ
(1)
Y , µ

(2)
Y ),VY )

I (Zκ(t),Z∆κ(t))′: error terms ∼ BVNorm((0,0),VZ )
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Nonconcurrent Transitory Jumps

Modeling nonconcurrent transitory jumps (cont’d)

I N(i)
t : jump count for population i
I P(N(1)

t = 1,N(2)
t = 1) = p1

I P(N(1)
t = 1,N(2)

t = 0) = p2

I P(N(1)
t = 0,N(2)

t = 1) = p3

I P(N(1)
t = 0,N(2)

t = 0) = 1− p1 − p2 − p3
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Nonconcurrent Transitory Jumps

Parameter estimates
Parameters Nonconcurrent-jump No-jump

µκ −0.6372 −0.8057
µ∆κ

−0.1269 −0.9803
φ∆κ

0.9184 0.8486
VZ (1,1) 4.1752 17.3162
VZ (1,2) 1.0633 −11.0413
VZ (2,2) 2.7786 38.1830
µ

(1)
Y 3.5824 N/A
µ

(2)
Y 12.4430 N/A

VY (1,1) 116.3952 N/A
VY (1,2) 184.9353 N/A
VY (2,2) 293.8356 N/A

p1 0.0622 N/A
p2 0 N/A
p3 0.0496 N/A
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Nonconcurrent Transitory Jumps

Likelihood ratio test

I Null model: no-jump model (log-likelihood l1 = −634.1980)
I Alternative model: nonconcurrent-jump model

(log-likelihood l2 = −503.0726)
I Test statistics: 2(l2 − l1) = 262.2508
I Degree of freedom: 8
I P-value: 0
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The Impact on Mortality Risk Securitization

An illustrative trade

I Agent A has life insurance liability Lt = 5
∑44

x=25 q(2)
x ,t , where

q(2)
x ,t = 1− e−m(2)

x,t

I Agent A issues mortality bond
I 3 year maturity
I a coupon at the end of each year at a rate of 4.5%
I principal repayment linked to the index It = 1

20

∑44
x=25 m(1)

x,t

I principal repayment = max
(

1−
∑2009

t=2007 losst ,0
)

I losst = max(It−1.3I2006,0)−max(It−1.4I2006,0)
0.1I2006

I Agent B invests in mortality bond
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The Impact on Mortality Risk Securitization

Pricing results

I Price the mortality bond by the economic pricing
framework proposed by Zhou, Li and Tan (2010)

Model Price Quantity
No-jump 1.0178 0.2249

Nonconcurrent-jump 1.0087 0.1699
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The Impact on Mortality Risk Securitization

Determinants of Supply and Demand

I vL: the accumulated values of the insurance liabilities
I vH : the accumulated values of the payouts from one unit of

the bond

Determinants
I µH : the expected value of vH

I σH : the volatility of vH

I σL: the volatility of vL

I ρ: the correlation between vL and vH
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The Impact on Mortality Risk Securitization

Estimates of µH , σH , σL and ρ

Model µH σH σL ρ

No-jump 1.0198 0.1258 0.1102 −0.3829
Nonconcurrent-jump 1.0110 0.1573 0.0677 −0.5832

µH ↓ σH ↑ σL ↑ |ρ| ↑
Supply ↑ ↓ ↑ ↑

Demand ↓ ↓ − −
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The Impact on Mortality Risk Securitization

The Supply and Demand Curves
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The Impact on Mortality Risk Securitization

Kernel smoothed density functions for I2007/I2006
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The Impact on Mortality Risk Securitization

Kernel smoothed density functions for L2007
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Conclusion and Future Work

Conclusion
I Incorporating nonconcurrent transitory jumps significantly

improves the fit
I It also has significant impacts on the estimated mortality

bond price

Future work
I Measure population basis risk
I Allow permanent jumps
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Conclusion and Future Work

THANKS!
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