Informed intermediation of longevity exposures

Enrico Biffis Imperial College London Pensions Institute

David Blake Pensions Institute Cass Business School

Longevity 7, Frankfurt September 8, 2011

Outline

Motivation

3 ILS market

Dynamic setting

Motivation Buyout market ILS market Dynamic setting Conclusion 2 / 23

Motivation

The pensions buyout market

- took off in the UK in 2006 (Paternoster)
- GBP 30bn of business written so far
- buy-outs, buy-ins, longevity swaps

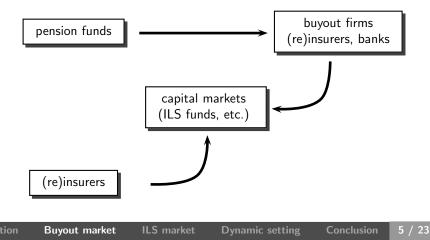
Important role of buyout firms

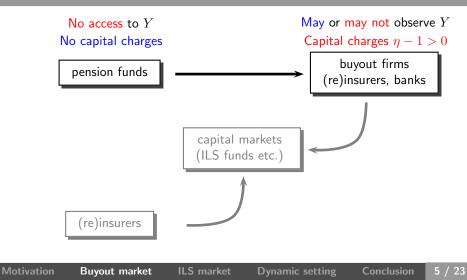
- aggregators of longevity exposures
- limited capacity of insurance market: DB schemes / annuity providers have longevity exposures roughly 30x larger than exposure to increase in mortality
- longevity space attractive to investors (ILS funds, endowments, etc.)

Questions

- explaining buyout prices (role of information and capital requirements)
- how can regulation affect buyouts / ILS market

Outline





Motivation Buyout market ILS market Dynamic setting Conclusion 4 / 23

The pensions buyout market

Role of information & capital requirements

Equilibrium buyout prices

- Risk-neutral agents, zero interest rate.
- ${\ensuremath{\, \bullet }}$ Exogenous supply of longevity exposure $S\geq 0$ from uninformed pension funds

•
$$S = p(Y) + \varepsilon$$
, with $p(Y) := E[S|Y]$.

• Insurance regulatory framework: hold $\eta E[S]$ or $\eta p(y)$, with $\eta > 1$.

Equilibrium buyout prices

- Risk-neutral agents, zero interest rate.
- ${\ensuremath{\, \bullet }}$ Exogenous supply of longevity exposure $S\geq 0$ from uninformed pension funds

• $S = p(Y) + \varepsilon$, with p(Y) := E[S|Y].

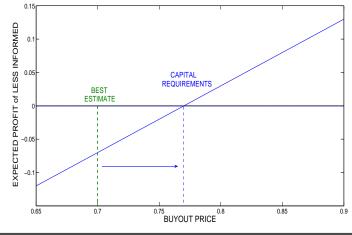
- Insurance regulatory framework: hold $\eta E[S]$ or $\eta p(y)$, with $\eta > 1$.
- 'More informed' agents
 - ${\, \bullet \, }$ capital $c \geq 0,$ participate in a fraction β of transactions
 - if price π , they purchase S on $\{p(Y) \leq x^*\}$

$$x^* := \max \{ x \ge 0 : \pi \ge x, c + \pi - \eta x \ge 0 \}$$

Equilibrium buyout prices

- Risk-neutral agents, zero interest rate.
- ${\ensuremath{\, \bullet \, }}$ Exogenous supply of longevity exposure $S\geq 0$ from uninformed pension funds

• $S = p(Y) + \varepsilon$, with p(Y) := E[S|Y].


- Insurance regulatory framework: hold $\eta E[S]$ or $\eta p(y)$, with $\eta > 1$.
- 'More informed' agents
 - capital $c \ge 0$, participate in a fraction β of transactions
 - if price π , they purchase S on $\{p(Y) \leq x^*\}$

$$x^* := \max \{ x \ge 0 : \pi \ge x, c + \pi - \eta x \ge 0 \}$$

• 'Less informed' buyers (say uninformed) cannot offer less than

$$\pi^* := \min\left\{\pi \ge 0 : E\left[(\pi - \eta S)(1 - \beta \mathbf{1}_{\{p(Y) \le x^*)\}})\right] \ge 0\right\} > \eta E[S]$$

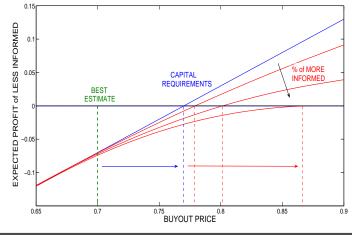
Transferring a survival rate, $S=rac{1}{m}\sum_{i=1}^m 1_{ au^i>T}$

Motivation

Buyout market

ILS market

et Dynamic setting


setting Concl

Buyout market

ILS market

Dynamic setting

Buyout market

Pension funds perspective

How to mitigate adverse selection?

- transparency \Rightarrow liquidity
- info disclosure can reinforce adverse equilibrium pricing (Milgrom/Weber, 1982; Dang/Gorton/Holmstrom, 2009)

Pension funds perspective

How to mitigate adverse selection?

- transparency \Rightarrow liquidity
- info disclosure can reinforce adverse equilibrium pricing (Milgrom/Weber, 1982; Dang/Gorton/Holmstrom, 2009)

Pooling prevents cherry picking

Sequence S^1, \ldots, S^n, \ldots , with $S^i := p^i(Y) + \varepsilon^i$ where $p^i(Y), \varepsilon^i$ i.i.d.

Motivation Buyout market ILS market Dynamic setting Conclusion 8 / 23

Pension funds perspective

How to mitigate adverse selection?

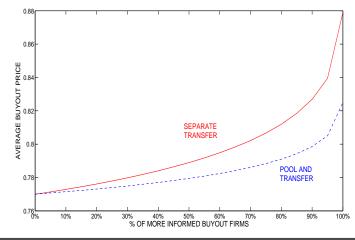
- transparency \Rightarrow liquidity
- info disclosure can reinforce adverse equilibrium pricing (Milgrom/Weber, 1982; Dang/Gorton/Holmstrom, 2009)

Pooling prevents cherry picking

Sequence S^1, \ldots, S^n, \ldots , with $S^i := p^i(Y) + \varepsilon^i$ where $p^i(Y), \varepsilon^i$ i.i.d. Then, the buyout price per exposure π_n^* converges to $\eta E[S]$ as $n \to \infty$.

Pension funds perspective

How to mitigate adverse selection?


- transparency \Rightarrow liquidity
- info disclosure can reinforce adverse equilibrium pricing (Milgrom/Weber, 1982; Dang/Gorton/Holmstrom, 2009)

Pooling prevents cherry picking

Sequence S^1, \ldots, S^n, \ldots , with $S^i := p^i(Y) + \varepsilon^i$ where $p^i(Y), \varepsilon^i$ i.i.d. Then, the buyout price per exposure π_n^* converges to $\eta E[S]$ as $n \to \infty$.

- transfer different age ranges / cohorts, longevity risk and other risks (bulk buyouts)
- capital charges still there: premium for 'insurance guarantee'

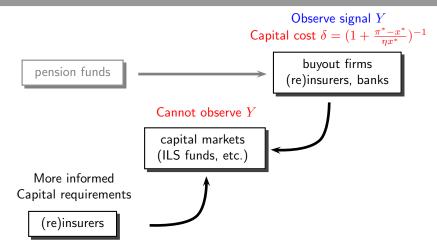
Partial vs. bulk buyouts

Motivation

Buyout market ||

Outline

Motivation



Motivation Buyout market ILS market Dynamic setting Conclusion 10 / 23

The ILS market

Optimal security issuance

Transferring \boldsymbol{S} to the capital markets

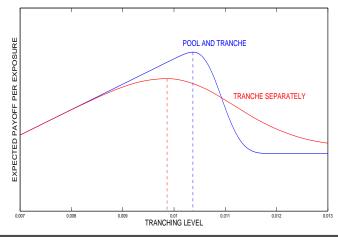
- retain part of exposure to 'signal' its quality to investors (quota-share reins.)
- do it for each individual exposure: pooling destroys private info advantage!

Optimal security issuance

Transferring \boldsymbol{S} to the capital markets

- retain part of exposure to 'signal' its quality to investors (quota-share reins.)
- do it for each individual exposure: pooling destroys private info advantage!

Write a contract on the exposure S (say survival rate)

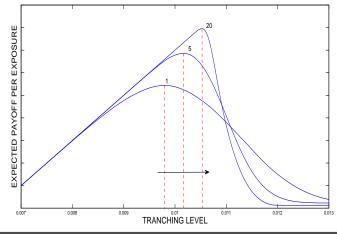

- assume full collateralization: write $C = \phi(1 S)$, with $\phi(\cdot)$ non decreasing
- optimal contract design

$$C^* = \min(q^*, 1 - S) = q^* - \max(0, S - p^*)$$

• higher $q^* = 1 - p^*$, higher longevity risk protection

• may be optimal doing it for a pool, not on individual basis!

Pool and tranche

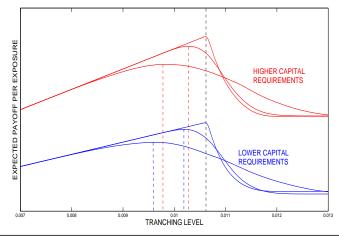

Motivation

ILS market

Dynamic setting

Conclusion

Pool size


Motivation

ILS market

Dynamic setting

Conclusion

Capital requirements

Motivation

Buyout market

ILS market

Dynamic setting

onclusion

Outline

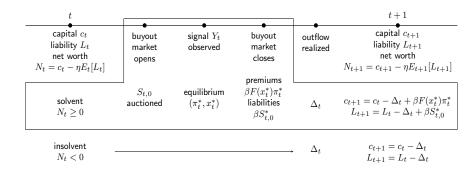
Motivation

Wrapping it all up

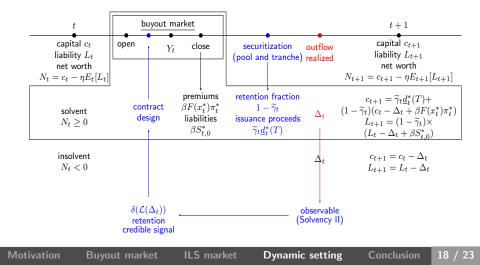
• Uninformed pension funds pool and transfer their liabilities.

Wrapping it all up

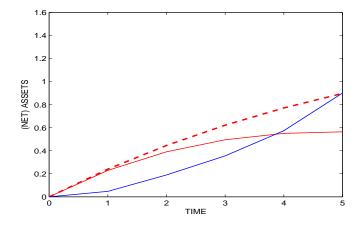
- Uninformed pension funds pool and transfer their liabilities.
- Informed buyout firms access the buyout market in order to:
 - (i) acquire exposures at a discount (cherry picking).
 - (ii) finance mark-to-market losses from 'old' liabilities (\rightarrow moral hazard).

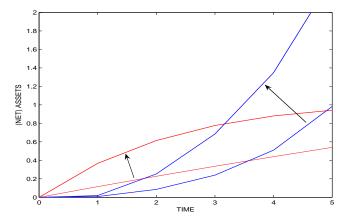

Wrapping it all up

- Uninformed pension funds pool and transfer their liabilities.
- Informed buyout firms access the buyout market in order to:
 - (i) acquire exposures at a discount (cherry picking).
 - (ii) finance mark-to-market losses from 'old' liabilities (\rightarrow moral hazard).
- Incentives to securitization
 - raising extra cash to operate in the buyout market in the next time period.
 - capital requirements and risk of being excluded from buyout market make retention of buyout liabilities a credible signal (only if MH dealt with in (ii)).


Wrapping it all up

- Uninformed pension funds pool and transfer their liabilities.
- Informed buyout firms access the buyout market in order to:
 - (i) acquire exposures at a discount (cherry picking).
 - (ii) finance mark-to-market losses from 'old' liabilities (\rightarrow moral hazard).
- Incentives to securitization
 - raising extra cash to operate in the buyout market in the next time period.
 - capital requirements and risk of being excluded from buyout market make retention of buyout liabilities a credible signal (only if MH dealt with in (ii)).
- Securitization channel
 - can improve market capacity and drive down buyout prices if role of information (and regulation) is properly understood.


Timeline (buyouts)


Timeline (buyouts & securitization)

Growth through securitization

Different levels of β

Outline

Conclusion

The buyout market

- fundamental origination market (sheer size of DB schemes exposures)
- buyout firms as aggregators of longevity exposures (pooling)
- can bridge the gap between DB schemes and capital markets (intermediation)

Role of transparency & regulation

- lenient regulation on pension funds side reduces adverse selection in buyout mkt...
- ...but different capital requirements materialize in premium for 'insurance guarantee'
- aggregation can reduce adverse selection in the ILS market (pool and tranche), but transparency (e.g. Solvency II regulatory info) essential to deal with moral hazard

THANK YOU

Motivation Buyout market ILS market Dynamic setting Conclusion 23 / 23