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Take-away message

▶ We calibrate neural stochastic differential equations (SDEs) jointly to S&P
500 (SPX) smiles, VIX futures, and VIX smiles.

▶ Drifts and volatilities are modeled as neural networks.

▶ Minimizing a suitable loss allows us to fit market data for multiple SPX
and VIX maturities.

▶ A one-factor Markovian stochastic local volatility (SLV) model is
shown to fit both smiles and VIX futures within bid-ask spreads.

▶ The joint calibration actually makes it a pure path-dependent volatility
(PDV) model, confirming the findings in [The VIX Future in Bergomi
Models: Fast Approximation Formulas and Joint Calibration with S&P 500
Skew, JG ’22].
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Motivation

▶ Joint SPX/VIX: important and difficult problem, especially for short
maturities

▶ “Holy Grail of volatility modeling”

▶ Parametric models have produced approximate fits
(Baldeaux Badran, Bardgett Gourier Leippold, Cont Kokholm, Fouque Saporito,

Guyon Lekeufack, Kokholm Stisen, Pacati Pompa Renò, Papanicolaou Sircar,

Gatheral Jusselin Rosenbaum, Rosenbaum Zhang, etc.)
▶ First exact solution: the nonparametric discrete-time model of JG ’20.

▶ Minimum-entropy calibration technique ←→ nonlinear optimal transport
approach

▶ Later extended to continuous time to produce exactly and jointly calibrating
nonparametric diffusive models (Guo Loeper Obloj Wang, JG ’21)
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Motivation

▶ In this work, we also consider overparametrized diffusive models to solve
the joint calibration problem, using neural SDEs (Tzen Raginsky, Jia

Benson, Hodgkinson et al, Gierjatowicz et al, Cuchiero et al, Kidger et al, etc.).

▶ Drift and diffusion coefficients are modeled as neural networks

▶ Potentially many more parameters than options and futures to calibrate to.

▶ By the universal approximation theorem for neural networks, neural SDEs
have the potential of approximating any SDE.

▶ Minimizing a loss function over the many parameters, we build a diffusive
model that solves the joint calibration problem within bid-ask spreads.

▶ Here we only consider two-dimensional Markovian neural SDEs.

▶ X = log-spot, Y drives the instantaneous volatility together with X.

▶ Main benefit of overparametrization: it offers a lot of flexibility

▶ Main drawback: lack of interpretability of parameters and Y
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Comparison with other nonparametric/overparametrized SDE approaches

▶ Guo et al use an (n+ 1)-dimensional SDE, where n is the number of
calibrated VIX expiries.

▶ The Schrödinger bridge approach of JG ’21 requires fine-tuning the
vol-of-vol coefficient, which is not optimized upon.

▶ Our main contribution: we show that the joint calibration problem can
be solved with a 2-dimensional Markovian SDE, whatever the number
of calibrated VIX expiries, without bothering about choosing the vol-of-vol.

▶ Similar in spirit to Abi Jaber Illand Li, who optimize a 2-dimensional SDE
(with Y an O-U process) over 6-8 parameters and an input variance curve.

▶ More generally Cuchiero et al model the volatility as a linear function of
the (time extended) signature of a primary polynomial diffusion.

▶ Interestingly, the joint calibration actually forces the SLV model to be a
pure path-dependent volatility (PDV) model, confirming the findings in
JG ’22: the “spot-vol” correlation is pushed to its lower bound −1.

▶ PDV models have recently been shown to be good candidates for
approximately solving the joint calibration problem (Gatheral Jusselin
Rosenbaum, Guyon Lekeufack).
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The model (M)

{
dXt = − 1

2
σX(t,Xt, Yt)

2dt+ σX(t,Xt, Yt)dB
1
t ,

dYt = µY (t,Xt, Yt)dt+ σY (t,Xt, Yt)
(
ρ(t,Xt, Yt)dB

1
t +

√
1− ρ(t,Xt, Yt)2dB

2
t

)
▶ General one-factor Markovian SLV model

▶ ft,u := St exp
(∫ u

t
(rs − qs)ds

)
is the SPX u-forward at time t

▶ Xt := logSt/f0,t

▶ (B1
t )t≥0 and (B2

t )t≥0 are two independent Brownian motions

▶ X0 = Y0 = 0

Objective: build σX , µY , σY and ρ to jointly calibrate the SPX smiles at
(T s

j )1≤j≤Ns
T

and the VIX futures and the VIX smiles at (T v
j )1≤j≤Nv

T
.

Julien Guyon Ecole des Ponts ParisTech

Neural joint S&P 500/VIX smile calibration



Motivation The model Neural calibration Numerical results

The VIX in Model (M)

▶ In this Markov model (τ = 30 days),

VIX2
t := − 2

τ
E
[
log

St+τ

ft,t+τ

∣∣∣∣Ft

]
= − 2

τ
E [Xt+τ −Xt| Ft] = E [Rt|Xt, Yt] =: v(t,Xt, Yt)

where Rt is the realized variance over 30 days,

Rt :=
1

τ

∫ t+τ

t

σX(s,Xs, Ys)
2ds (1)

▶ The VIX is defined by VIXt =
√

VIX2
t

Julien Guyon Ecole des Ponts ParisTech

Neural joint S&P 500/VIX smile calibration



Motivation The model Neural calibration Numerical results

Neural calibration

We look for σX , µY , σY , ρ ∈ argminL(σX , µY , σY , ρ) where the loss L is
defined by

L(σX , µY , σY , ρ) = wfVIX
1

Nv
T

Nv
T∑

j=1

(
fVIXm(T v

j )

fVIX(T v
j )
− 1

)2

+ wSPX
1

Ns
T

Ns
T∑

j=1

1

|DSPX|
j

∑
k∈KSPX

j

∆SPX(T s
j , k)

(
ISPX
m (T s

j , k)

ISPX(T s
j , k)

− 1

)2

+ wVIX
1

Nv
T

Nv
T∑

j=1

1

|DVIX|
j

∑
k∈KVIX

j , k>fVIXm(Tv
j )

∆VIX(T v
j , k)

(
CVIX

m (T v
j , k)

CVIX(T v
j , k)

− 1

)2

+ wVIX
1

Nv
T

Nv
T∑

j=1

1

|DVIX|
j

∑
k∈KVIX

j , k≤fVIXm(Tv
j )

∆VIX(T v
j , k)

(
PVIX
m (T v

j , k)

PVIX(T v
j , k)

− 1

)2
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Neural calibration

▶ Positive weights w = (wfVIX, wSPX, wVIX)

▶ Small bid-ask spreads are given more importance:

∆SPX(T s
j , k) =

δSPX(t, k)∑
l∈KSPX

j
δSPX(t, l)

, ∆VIX(T v
j , k) =

δVIX(t, k)∑
l∈KVIX

j
δVIX(t, l)

where δSPX(t, k) (resp. δVIX(t, k)) denotes the inverse of the bid-ask
spread of the OTM implied volatility ISPX(t, k) (resp. IVIX(t, k))

▶ We calibrate the VIX call/put prices instead of the VIX implied volatilities
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Loss approximation

▶ Time discretization (Euler-Maruyama) at dates tn

▶ N Monte Carlo paths:

ĈSPX
m (tn, k) :=

1

N

N∑
i=1

(Si
tn − k)+ −→ ÎSPX

m (tn, k)

▶ VIX2
tn,i := VIX2(tn, X

i
tn , Y

i
tn) := E

[
Ri

tn

∣∣Xi
tn , Y

i
tn

]
where

Ri
tn =

∆t

τ

∑
tn≤tm<tn+τ

σX(tm, Xi
tm , Y i

tm)2

For V̂IX2
tn,i an estimator of VIX2

tn,i, denote V̂IXtn,i :=

√
V̂IX2

tn,i.

ĈVIX
m (tn, k) :=

1

N

N∑
i=1

(
V̂IXtn,i − k

)
+
, f̂VIXm(tn) :=

1

N

N∑
i=1

V̂IXtn,i

▶ L→ L̂
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Neural parametrization

▶ We parametrize (σX , µY , σY , ρ) as neural networks

▶ Let Φθ : R3 → R4 be a neural network with r hidden layers of size l and
weights θ:

Φθ :

t
x
y

 ∈ R3 7−→


Φ1

θ(t, x, y)
Φ2

θ(t, x, y)
Φ3

θ(t, x, y)
Φ4

θ(t, x, y)

 ∈ R4.

▶ The activation functions for the hidden layers are hyperbolic tangents. No
activation function for the output layer.

▶ We choose

σX = 1 + tanh(Φ1
θ) ∈ (0, 2)

σY = 1 + tanh(Φ2
θ) ∈ (0, 2)

µY = Φ3
θ

ρ = tanh(Φ4
θ) ∈ (−1, 1)
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Minimization of L̂

▶ In order to apply a gradient descent algorithm, we need to compute the
gradients ∂θL̂.

∂θ Î
SPX
m (t, k) = ∂cÎ

SPX
m (t, k)

[
1

N

N∑
i=1

∂θX
i
tS

i
t1Si

t≥k

]

∂θĈ
VIX
m (t, k) =

1

N

N∑
i=1

∂θV̂IXt,i1V̂IXt,i≥k (same for VIX puts)

∂θ f̂VIXm(t) =
1

N

N∑
i=1

∂θV̂IXt,i

▶ We must compute the gradients ∂cÎ
SPX
m (t, k), ∂θX

i
t , and ∂θV̂IXt,i.

▶ ∂cI
SPX
m (t, k) is computed by using the inverse function rule.

▶ We use backpropagation to compute ∂θX
i
t .

▶ Computation of V̂IXt,i and the gradients ∂θV̂IXt,i?
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Differentiable VIX2 estimator, VIX2
t,i = E

[
Ri

t|Xi
t , Y

i
t

]
▶ Kernel regression. For W : R→ R+ a kernel and hX , hY > 0 two

bandwidths, a VIX2 estimator is given by

V̂IX2
t,i =

∑N
j=1 R

j
tWij∑N

j=1 Wij

, Wij := W ((Xi
t−Xj

t )
2/hX+(Y i

t −Y j
t )

2/hY )).

Optimal bandwidths are typically chosen by cross-validation to ensure the
best tradeoff between bias and variance.

▶ Linear least squares. Let Rd[X,Y ] = {[XkY l]0≤k+l≤d · α : α ∈ Rm} for
d ∈ N, where [XkY l]0≤k+l≤d · α :=

∑
k+l≤d αk,lX

kY l.

V̂IX2
t,i = [(Xi

t)
k(Y i

t )
l]0≤k+l≤d · α∗,

where

α∗ ∈ argminα∈Rm

1

N

N∑
i=1

(
Ri

t − [(Xi
t)

k(Y i
t )

l] · α
)2

solves the normal equation ATAα = ATR where R = (Ri
t)1≤i≤N and

A = [(Xi
t)

k(Y i
t )

l]1≤i≤N,0≤k+l≤d ∈ RN×m.
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Differentiable VIX2 estimator
▶ Nested Monte Carlo. Let M ∈ N∗. The nested Monte Carlo estimator is

V̂IX2
t,i =

1

M

M∑
j=1

Rj
t (X

i
t , Y

i
t )

where (Rj
t (x, y))1≤j≤M are M independent samples of the realized

variance given that (Xt, Yt) = (x, y). Computationally intensive.

▶ Partial differential equation.

VIX2
t (x, y) = −

2

τ
(E [Xt+τ |Xt = x, Yt = y]− x) .

E [Xt+τ |Xt = x, Yt = y] solves the PDE{
∂tu+ 1

2
σ2
X∂2

xxu+ 1
2
σ2
Y ∂2

yyu+ 2ρσXσY ∂2
xyu− 1

2
σ2
X∂xu+ µY ∂yu = 0

u(t+ τ, x, y) = x

Can be solved numerically by alternating direction implicit (ADI) method
for example. Accurate but computationally intensive and requires the
crucial selection of the discretization grid and boundary conditions.
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Differentiable VIX2 estimator

▶ We find that a good compromise between accuracy and memory usage is
to choose the least squares method.

▶ Once our model has been calibrated, in order to check the accuracy of
the least squares method, we compare the VIX and VIX smile obtained
with the least squares method with those estimated with the (slow)
nested Monte Carlo algorithm.
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Algorithms

Algorithm Differentiable VIX least squares estimator

function computeVIX(Xt, ∂θXt, Yt, ∂θYt, Rt, ∂θRt, d)
A← [Xik

t Y il
t ]1≤i≤N,0≤k+l≤d

Q, ∂AQ,S, ∂AS ← DecompositionQR(A)
α∗, ∂Sα

∗, ∂QTRα
∗ ← SolveTriangular(S,QTRt)

∂θα
∗ ← ∂θA

[
∂AS∂Sα

∗ + ∂AQ
TRt∂QTRα

∗]
VIX2 ← α∗ ·A
∂θVIX2 ← α∗∂θA+ ∂θα

∗A

VIX, ∂θVIX←
√
VIX2, ∂θVIX2

2
√
VIX2

return VIX, ∂θVIX
end function
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Algorithms

Algorithm Training step

function Train(θ,N,∆t, w, d, lr,∆B1,∆B2)
(Xtn , ∂θXtn , Ytn , ∂θYtn , Rtn , ∂θRtn)0≤tn≤T ← Euler(∆t, T, 0, 0, θ,

∆B1,∆B2).
for j ← 1 to Nv

T do
V̂IXTv

j
, ∂θV̂IXTv

j
← ComputeVIX(XTv

j
, ∂θXTv

j
, YTv

j
, ∂θYTv

j
, RTv

j
, ∂θRTv

j
, d)

end for
L, ∂θL← ComputeL(T, (Xtn , ∂θXtn)0≤tn≤T , (V̂IXTv

j
, ∂θV̂IXTv

j
)1≤j≤Nv

T
, w).

θ ← GradientDescent(θ, ∂θL, lr)
return θ

end function
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Numerical implementation and data

▶ Number of Monte Carlo paths: N = 150, 000

▶ Time step: ∆t = 0.5/365 (half a day)

▶ Φθ is a feedforward NN with r = 1 hidden layers of width l = 16

▶ We use the Adam algorithm to perform the gradient descent, with learning

rate lr = 0.001.

▶ The loss weights are taken as (wfVIX, wSPX, wVIX) = (30, 2, 3).

▶ The degree of the polynomials for the VIX2 regression is d = 8.

▶ The nested MC VIX2 estimator uses M = 15, 000 nested paths and the

MC estimators of VIX payoffs are computed with N ′ = 20, 000 trajectories.
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Figure: Calibration of the VIX futures and VIX smiles as of October 1, 2021.
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Figure: Calibration of the VIX futures and VIX smiles as of October 1, 2021.
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Figure: Plots of the optimal σX , σY at time t = October 13, 2022, as of October 1,
2021.
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Figure: Plots of the optimal µY , ρ at time t = October 13, 2021, as of October 1,
2021.
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Figure: Plots of the optimal σX , σY at time t = January 13, 2021, as of October 1,
2021.
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Figure: Plots of the optimal µY , ρ at time t = January 13, 2022, as of October 1,
2021.
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Results

▶ σX is mostly an increasing funct. of Y , so Y ∼ σX , but also depends on X

▶ σY depends on both X and Y , and tends to take small values for small Y ,
and large values for large Y , so as to produce positive VIX skews.

▶ We deliberately capped σY to 2 to control the variance of MC estimators.

▶ The correlation ρ is thus −1 everywhere, so as to match the large negative
SPX market skews =⇒ the model is purely path-dependent.

▶ This confirms the findings of Guyon ’22, and that PDV models are natural
candidates for solving the joint calibration problem.

▶ The drift µY is mostly negative for positive Y and positive for negative Y :
our neural SDE procedure learns that the “volatility” Y is mean-reverting.

▶ Since our NN takes directly (t, x, y) as input and only uses smooth activa-
tion functions, the surfaces are smooth and vary smoothly over time.

▶ Calibration time: 36 hours (resp. 3 hour) when we initialize the NN with
random weights (resp. the previous business day’s weights).
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Conclusion

▶ A one-factor SLV model can jointly calibrate SPX and VIX smiles and
VIX futures for many maturities, provided enough flexibility is allowed
on the SDE coefficients, which we model as neural networks.

▶ The calibrated model is actually a one-factor PDV model with a
mean-reverting path-dependent factor Y which depends only on past
SPX returns.

▶ Our work thus illustrates the expressiveness of neural SDEs by exactly
solving the joint calibration problem for multiple maturities, and provides
yet extra reasons to use PDV models for pricing, hedging, and
risk-managing derivatives.
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