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Motivation and aim

Motivation

ML techniques have recently been considered as alternatives to traditional LR
models to predict default probabilities in the literature.

Aim

Empirically measure the model risk associated to the choice of a ML method to
predict individual defaults.
Three levels:

1 We compare different choices of a ML technique to estimate individual
default probabilities of a portfolio of obligors;

2 we studi its impact on exchangeable portfolios:
we study the impact of estimating p with different ML methods on the risk of an
exchangeable portfolio when the dependence structure is unspecified;
we study its impact on the VaR of the distribution of one exchangeable credit
portfolio.
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Framework

This presentation is partially based on the previous works:

Theoretical bounds for risk masures

Fontana, Roberto, Elisa Luciano, and Patrizia Semeraro. ”Model risk in credit
risk.” Mathematical Finance 31.1 (2021): 176-202.

Preliminary analysis on ML performance on credit cards data

M. Doria, E. Luciano and P. Semeraro.“Machine Learning techniques in joint
default assessment,” https://arxiv.org/abs/2205.01524, 3 May 2022.
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The model

Dependent defaults model

Y = (Y1, . . . ,Yd) random vector of default indicators, referring to d obligors
over a fix time horizon T .

The loss of portfolio P is given by

L =
∑d

i=1 wiYi , wi =
1
d i = 1, . . . , d,

where wi ∈ (0, 1],
∑d

i=1 wi = 1.

We assume exchangeability among defaults and we focus on the case of
homogeneous exposures wi =

1
d , i = 1, . . . , d, so that L = S

d . The number
of defaults is given by

S =
∑d

i=1 Yi

We have
Y ↔ S (1)
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The classes Ed(p), and Sd(p)

We call S(p) the classes of distributions of the number of defaults for
exchangeable vectors in E(p).

Let X ∈ Ed(p), i.e Y is a vector of Bernoulli B(p) exchangeable variables,
fp(y) = fp(σ(y)) for any σ ∈ Pd

Number of defaults

Let now Sd(p) be the class of distributions of Sd , where

S := Sd =
d∑

i=1

Xi ,

and ps = (p0, . . . , pd), with pj = P(Sd = j).

E(p)↔ Sd(p) (2)

Semeraro, P. Validation of Machine Learning techniques in joint default assessment



The model
Research methodology

Ongoing research

The class Sd(p)

Theorem

The following holds. Sd ∈ Sd(p) iff there exist λ1, . . . , λnp ≥ 0 summing up to 1
such that

pS =

np∑
i

λir i
S , (3)

where r i
S are the extremal densities and np is the number of extremal densities.

Extremal distributions

The extremal distributions of Sd(p) have support on at most two points and we
can find them analitically.
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The parametrical model

We represent Y and S through an exchangeable Bernoulli mixture model.

Definition

Given a random variable Q , the random vector Y = (Y1, . . . ,Yd)
T follows an

exchangeable Bernoulli mixture model with mixing variable Q with support on
[0, 1], if conditional on Q the default indicator Y is a vector of independent
Bernoulli random variables with P(Yi = 1|Q) = Q .

We assume that the mixing variable Q follows a beta distribution with parameters
a and b, i.e. Q ∼ β(a, b): the beta mixing-model.
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Model features

Exchangeable Bernoulli mixture model

The unconditional marginal default probability becomes

P(Yi = 1) =
∫ 1

0
qdG(q), (4)

where Q ∼ G(q), the unconditional probability mass function (pmf) pY (y) of Y
becomes:

pY (y) = P(Y = y) =
∫ 1

0
q

d∑
i=1

yi
(1 − q)

d−
d∑

i=1
yi

dG(q). (5)

Finally, the distribution pS(k) of the number of defaults S becomes:

pS(k) =
(
d
k

) ∫ 1

0
qk (1 − q)d−k dG(q). (6)

We consider Qh v β(a, b), so that S follows a βBin(d, a, b) distribution.
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Model features

Exchangeable Bernoulli mixture model

Cross moments of Y :

πk = E[Yi1 · · ·Yik ], {i1, . . . , ik } ⊂ {1, . . . , d} 1 ≤ k ≤ d

Relevant quantities:

π1 = E[Yi] = P(Yi = 1) := p marginal default probability

ρ = ρ(Yi ,Yj) =
π2−p2

p(1−p) i , j

The cross moments of Y are the moments of the mixing variable Qh , i.e.:

πk = E[Qk
h ]

in particular π1 = E[Qh ] = p.

S rv modelling the number of defaults, with distribution

P(S = k) =
d−k∑
i=0

(−1)i d!
i!k !(d − k − i)!

πk+i (7)
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Portfolio risk

Risk measures

Let S be a random variable representing the number of defaults with finite mean.
The VaRα at level α is defined by

VaRα(S) = inf{y ∈ R : P(S ≤ y) ≥ α}

Default probability p and default correlation ρ are the main factors
influencing the tails of S.

Aim

Model risk of exchangeable portfolios: effect of choosing a ML method to
estimate p on VaR -bounds.
Model risk associated to a single model: effect of choosing a ML method to
estimate the βBinomial distribution of defaults on the VaR.
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Effect of p on VaR and ES

Effect of p on S

We have analytical sharp bounds for the VaR and ES in the classes Ed(p).

Luciano Fontana and Semeraro (2020) proved That The sharp bounds for
VaR are on the extremal points.

ES is a convex riks of measure, its bounds are on the minimal convex sums
extremal points (unique in the exchangeable case) and on the upper Fréchet
bound.
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Extremal generators of fp ∈ Ed(p) and pS ∈ S(p)

Proposition

The extreme ray densities of Sd(p) are

pj1 ,j2(y) =


j2−pd
j2−j1

y = j1
pd−j1
j2−j1

y = j2
0 otherwise

, (8)

with j1 = 0, 1, . . . , jM1 , j2 = jm2 , j
m
2 + 1, . . . , d, jM1 is the largest integer less that pd

and jm2 is the smallest integer greater that pd. If pd is integer the extreme ray
densities contain also

ppd(y) =
{

1 y = pd
0 otherwise

. (9)

Corollary

1 If pd is not integer there are np = (jM1 + 1)(d − jM1 ) extreme ray densities.
2 If pd is integer there are np = d2p(1 − p) + 1 extreme ray densities.
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Effect of p on S: bounds

The VaR in Sd(p) is known in closed form.

Proposition-[Luciano, Fontana and Semeraro (2021)]

Let us consider the class Sd(p). Let jM1 be the largest integer smaller than pd, jm2
be the smallest integer greater than pd and jp1 =

(p−(1−α))d
α

.

1 If p < 1 − α, minS∈Sd (p) VaRα(S) = 0 and maxS∈Sd (p) VaRα(S) = [ pd
1−α ] if pd

1−α

is not integer and maxS∈Sd (p) VaRα(S) = pd
1−α − 1 if it is integer.

2 If 1 − α ≤ p ≤ 1 − α+ α
d jM1 , minS∈Sd (p) VaRα(S) = j∗1, where j∗1 is the smallest

integer greater or equal to jp1 and maxS∈Sd (p) VaRα(S) = d.
3 If p > 1 − α+ α

d jM1 , minS∈Sd (p) VaRα(S) = jm2 = jM1 + 1 and
maxS∈Sd (p) VaRα(S) = d. In this case, if pd is integer jM1 + 1 = pd.

Let ESα(Sd) be its expected shortfall. Then

min
S∈Sd (p)

VaRα(S) ≤ ESα(Sd) ≤ d.
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Individual default probability and random covariates

The risk of an homogeneous exchangeable portfolio of obligors is completely
determined by the distribution of Q , the random variable defining the common
defualt probability of the homogeneous portfolio. Different estimates of Q lead to
different risk valuations.

We assume that the mixing variable Q is a function h of random observable
covariates X = (X1, . . . ,Xn), representing the obligors characteristics. Formally,

Q = h(X).

The realizations of Q are functions of the realizations of X , q = h(x).

Using ML techinques, we obtain a sample of observation of Q from a sample of
obligors with observable characteristics. Obviously different ML tecniques gives
different estimates of the sample default probabilities and therefore of the
moments and parameters of Q .

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
Real data application

Research methodology-in vitro

In-vitro analysis

1 ML model risk on individual probabilities: synthetic sample of obligors from
random covariates using the logistic regression, then we estimate the
different ML models and measure the error in predicting single probabilities
and we estimate the α-quatile of the individual probability distribution.

2 ML model risk for exchangeable portfolios: we compute the VaR bounds for
the class of exchangeable portfolios with marginal deafult probability (and
equi-correlation) estimated using each ML model.

3 ML Model risk under a specific model: we calibrate a Bernoulli mixture model
using the real synthetc individual probailities and the estimates obtained
using the ML methods. We then compute the VaR and compare the results.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
Real data application

Research methodology-real data

Real data application

1 ML model risk on individual probabilities: we estimate the deafult
probabilities using LR and the two ML techiques.

2 ML model risk for exchangeable portfolios: we compute the VaR bounds
computation for each ML model of the exchangeable portfolio.

3 ML Model risk under a specific model: we calibrate a Bernoulli mixture
model using the sample individual probailities obtained with the LML
methods. We then compute the VaR and compare the results.
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In-vitro analysis
Real data application

In-vitro analysis - synthetic database

We calibrate the parameters in order to observe 20% of defaults (as in the real
dataset Kaggle).

uniform independent: It is generated through a logit model having two
covariates, X1, X2 i.i.d. U[0, 1],i.e., and β = [−0.2, 1.5,−5.0],
2 squared: It is generated through a logit model having two covariates X1,
X2, where X1 ∼ U[0, 1] and X2 = X2

1 + U[−0.05, 0.05] and
β = [−0.2, 0.7,−5.5],
normal copula: Logit model with two covariates: marginals areU[0, 1]
linked through a Normal copula which covariance matrix is[

0.5 −0.2
−0.2 0.5

]
. (10)

Moreover, we set β = [−0.2, 0.5,−3.2],
t copula: Logit model with the two marginals linked through a t copula with
2 degrees of freedom and β = [−0.2, 0.5,−3.2],
5 non linear :Logit model where the covariates are: X1,X2,X3 i.i.d. U[0, 1]
X1 · X2 +U[−0.05, 0.05], X1 · X3 +U[−0.05, 0.1], and
β = [−0.1,−1,−0.5,−0.5,−1,−1],

The choice of the uniform distribution between 0 and 1 represents the values of
the features after an opportune scaling.
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In-vitro analysis
Real data application

In-vitro analysis - imbalance

For each of the settings we generate 500, 1000, 5000, and 10000 records, and 5
datasets for each possible choice, resulting in a total of 5 × 4 × 5 = 100 datasets.
We try to apply different techniques for dealing with imbalanced datasets:

Imbalance method Average error [%]
ClusterCentroids 24.14 (3.36)

Identity (no imbalance 06.40 (5.01)
RandomOverSampler 24.50 (3.39)

RandomUnderSampler 24.81 (3.21)
SMOTE 24.12 (3.22)

SMOTETomek 23.85 (3.35)
TomekLinks 07.18 (4.65)

Table: Average absolute error on p for different imbalance techniques.

Despite the imbalance techniques are of paramount importance for the
classification problem, they do not improve the performance of the methods for
the default probability estimation.

We continue the experiments by not considering any imbalance algorithm.
Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis - results

The best results are obtained by the LogisticRegression and by the
MLPClassifier: these two methods do not have model errors.
The third best method is the Random Forest Classifier.

uniform ind 2 squared n copula t copula 5 n l

KNN 11.25(0.80) 12.63(0.89) 13.76(0.84) 13.76(1.17) 13.67(0.66)
LogisticRegression 2.05(1.61) 2.27(1.46) 1.91(1.62) 1.69(1.09) 1.43(0.96)

MLPClassifier 1.50(1.25) 2.53(1.54) 2.05(1.63) 1.66(0.99) 1.66(1.14)
RandomForestClassifier 6.51(0.63) 3.16(1.11) 3.93(0.94) 4.62(0.33) 3.10(0.76)

Table: Average percentage error for different ML techniques.

Due to the bad results, in the following, we do not consider KNeighborsClassifier.
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In-vitro analysis
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In-vitro analysis - results

id setting n data p rho p1 LR rho LR p1 RF rho RF
Uniform 500 0.18 0.22 0.19 0.14 0.20 0.13

1000 0.19 0.24 0.21 0.19 0.20 0.10
5000 0.20 0.23 0.21 0.21 0.21 0.09
10000 0.20 0.24 0.21 0.24 0.21 0.11

Normal 500 0.18 0.07 0.23 0.04 0.22 0.04
1000 0.21 0.09 0.24 0.12 0.23 0.10
5000 0.20 0.09 0.20 0.09 0.20 0.05
10000 0.20 0.09 0.21 0.08 0.21 0.04

5 non lin 500 0.20 0.06 0.19 0.03 0.19 0.04
1000 0.19 0.05 0.20 0.06 0.20 0.04
5000 0.19 0.06 0.18 0.06 0.18 0.04
10000 0.19 0.06 0.19 0.07 0.18 0.04

Table: Estimated moments

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
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In-vitro analysis - results

id setting n data a b a LR b LR a RF b RF
Uniform 500 0.61 2.85 1.16 4.95 1.32 5.37

1000 0.62 2.60 0.91 3.45 1.75 6.84
5000 0.67 2.60 0.80 3.06 2.03 7.74
10000 0.63 2.50 0.64 2.45 1.67 6.38

Normal 500 2.30 10.43 5.17 17.73 4.86 17.14
1000 2.07 7.57 1.80 5.79 2.13 7.22
5000 2.04 7.94 2.02 7.88 3.76 14.61
10000 2.14 8.37 2.33 9.04 4.49 17.29

5 non lin 500 3.36 13.44 5.69 23.99 5.16 22.28
1000 3.38 14.16 3.34 13.72 4.36 17.41
5000 2.90 12.58 2.74 12.08 4.11 18.23
10000 2.90 12.73 2.54 11.13 4.83 21.30

Table: Beta parameters

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis - results

id setting BetaTail BetaTailLR BetaTailRF
Uniform 112.00 118.00 117

218.00 235.00 228
1053.00 1073.00 1073
2081.00 2122.00 2133

Normal 113.00 134.00 133
218.00 242.00 236
1048.00 1045.00 1048
2074.00 2096.00 2104

5 non lin 104.00 101.00 101
202.00 205.00 207
966.00 949.00 951
1914.00 1914.00 1914

Table: Beta tail: 0.9-quantile
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In-vitro analysis
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In-vitro analysis - results

We do not report the upper bound since it is equal to N.

Setting n data minVar BetaBinVar BetaTail
Uniform 1000 104 485 218

10000 1135 5015 2081
Normal 1000 127 391 218

10000 1151 3689 2074
5 non lin 1000 103 319 202

10000 949 3164 1914

Table: Synthetic Portfolio VaR

Setting n data minVarLR BetaBinVarLR minVarRF BetaVarRF
Uniform 1000 119 466 115 388

10000 1183 5104 1193 3975
Normal 1000 152 443 141 410

10000 1169 3646 1178 3209
5 non lin 1000 106 325 111 315

10000 951 3258 944 2858

Table: Estimated VaR
Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Real data application

Individual probabilities and parameter estimates

For each choice of h = LR, RF, AB, KNN.
1 We estimate qh

i = h(x i), where x i is the m-dimensional vector of covariates
realizations, and find a sample of estimated conditional default probabilities
q̂h = (q̂h

1 , . . . , q̂
h
n);

2 we compute the marginal default probability p and the equicorrelation
among default indicators.

3 we estimate the parametrical beta-binomial distribution of the number of
default S by moments matching, using the first two moments of Qh , i.e. p
and π2;

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
Real data application

Real data application

1 we analyse the effect of p on the VaR, by using analytical bounds;

2 we analize the effect of the first two moments p and π2 on the risk of the
aggregate loss, by computing the VaR and ES of the beta-binomial
distribution of the loss;

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
Real data application

Real data application Data

Data description

Kaggle database on credit card defaulters in Taiwan, from April to
September 2005. Sample size of n = 30′000 obligors and m = 24
covariates.

The covariates consist of age, marital status, monthly repayment status, past
bill amounts and others.

From the label frequencies in the outcome variable Y , we see that the
dataset is unbalanced, but since the unbalancing is not extreme, we did not
correct it.

Figure: Unbalancing of the dataset. Default=1, non-default=0.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Results- Individual probabilities and parameter estimates

ML techniques and Evaluation metrics

Machine Learning techniques involved:
Random Forest
AdaBoost
K-Nearest Neighbours

Their performances are compared against the Logistic Regression model.
We consider four different evaluation metrics to do the comparison, giving
priority to the F1-score metric to select the best model.

Model Precision Recall F1-score AUC
LR 0.61 0.78 0.68 0.64
RF 0.79 0.81 0.78 0.77
AB 0.80 0.82 0.79 0.77
KNN 0.78 0.81 0.78 0.72

Table: Performance measure for each model.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Individual probabilities and parameter estimates

ML techniques and Evaluation metrics

Figure: Overlapped ROC curve for each model specification, with relative AUC score.
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In-vitro analysis
Real data application

Results- model parameters

The results on the real datasets are the following:

Beta parameters
a b p rho

LR 2.42 6.77 0.26 0.09
RF 0.69 2.41 0.22 0.24
AB 0.73 2.57 0.22 0.23

KNN 0.69 2.41 0.22 0.24

Table: Beta parameters, individual default probability and portfolio equicorrelation

LR overestimates the marginal default probability and underestimates the
second order moment, if compared with ML methods.

Default correlation is higher for ML models because they incorporate
linear and non linear dependencies among covariates.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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In-vitro analysis
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Results - distribution of individual default probability

Figure: Empirical vs beta distribution of individual defaults.
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In-vitro analysis
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Results-Portfolio risk

VaRα Boundα
α: 0.9 0.95 0.99 0.9 0.95 0.99
LR 2731 3110 3796 (1089, 6000) (1347, 6000) (1535, 6000)
RF 3205 3870 4885 (818, 6000) (1091, 6000) (1289, 6000)
AB 3155 3801 4806 (822, 6000) (1095, 6000) (1293, 6000)

KNN 3205 3870 4885 (818, 6000) (1091, 6000) (1289, 6000)

Table: Beta-binomial Var and Bounds

ML effect on exchangeable portfolios: the minimum VaR is slightly higher for LR,
while all the ML techniques perform similarly.
ML effect on the beta-binomial model: the VaR for the ML methods is similar and
higher if compared to LR.

ML estimates higher correlations: correlation affects the risk of the portfolio more
that individual deafult probability

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Figure: Beta-binomial and lower bound distributions across different training sets
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Ongoing research: the effect of ρ.

Let us consider the class Sd(p, ρ).
1 Ray densities and their VaRα are analytical: bounds are found by

computationally searching the maximum and the minimum VaRα among ray
densities.

2 We deal with E(p, ρ) in the three scenarios p = 0.3%, p = 1.7% and
p = 26.6% and provide bounds for VaRα for three levels of correlation:
ρ = 1

6 ;
1
2 ;

5
6 .

3 We also report the VaR corresponding to an exchangeable Bernoulli mixing
model from the credit risk literature: β-mixing model.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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The effect of ρ:VaR bounds

The class Ed(p, ρ)

We have similar results on the subclass Sd(p, ρ) and therefore on the subclass
Ed(p, ρ): analytical ray densities and bounds for VaR.

Figure: VAR bounds and β-mixing model VAR for p = 26.6%, d = 100 and different ρs

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Omgoing reserch: portfolio risk measures

Expected shortfall

Let S be a random variable representing the number of defaults with finite mean.
The ESαat level α is defined by

ESα(S) =
1

1 − α
(E[S;S ≥ VaR(Y)] + VaR(S)(1 − α − P(S ≥ VaR(S)))).

Expected shortfall is a convex measure of risk

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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ES bounds

Fontana and Semeraro (2020)

The minimum convex sums is on Sm,m+1, that is the extremal random variable in
Sp(dp) with support on the two integer around the mean pd, say m,m + 1.
Th maximum is on the Upper Fréchet bound

Consequence

We can explicitly find sharp bounds for the ES, since it is a convex measure of
risk.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Preliminary results - ongoing

ES Estimates- βBinomial model

We perform a preliminary analysis in Doria, Luciano and Semeraro on an
exchangeable portfolio comparing LR and AB.

α ES LR ES AB
0.99% 4099.6 5131.9
0.95% 3524.3 4395.1
0.90% 3213.0 3916.9

Table: Beta-binomial ES for large portfolios.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment
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Machine Learning techniques in joint default assessment

Conclusion

Our main result is that ML methods can model significantly higher default
correlations if compared with our benchmark LR,

Default correlation are the main factors influencing the VaR of the loss, and
higher correlations lead to heavier tails of the loss.

Ongoing and further research

Find the VaR bounds for p and ρ estimated with different ML methods

Find the bounds and the estimated ES for different ML methods

Consider partially exchangeable portfolios.

Consider more sophisticated ML techniques.

Semeraro, P. Validation of Machine Learning techniques in joint default assessment



The model
Research methodology

Ongoing research

Thank you,

patrizia.semeraro@polito.it
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