Pricing extreme mortality risk in the wake of the COVID-19 pandemic

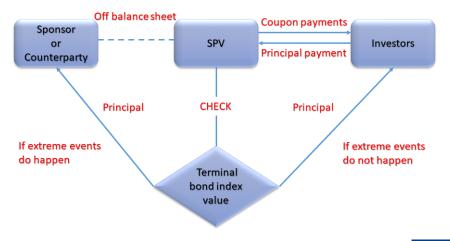
Han Li^[a], Haibo Liu^[b], Qihe Tang^[c], and Zhongyi Yuan^[d]

[a] Centre for Actuarial Studies, Department of Economics, The University of Melbourne
 [b] Department of Statistics and Department of Mathematics, Purdue University
 [c] School of Risk and Actuarial Studies, UNSW Sydney
 [d] Smeal College of Business, The Pennsylvania State University

L18: The Eighteenth International Longevity Risk and Capital Markets Solutions Conference Bayes Business School

7-8 September 2023

Catastrophe bond and extreme insurance risk

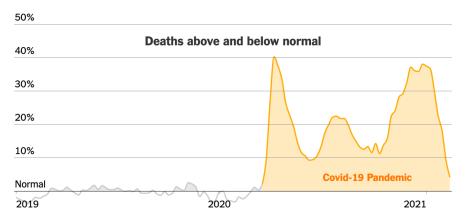


A 1 in 100 (?) year event

Source: https://coronavirus.jhu.edu/map.html

Dr Han Li (The University of Melbourne)

US: 574,000 more deaths than normal since March 2020



Source: https:

//www.nytimes.com/interactive/2021/01/14/us/covid-19-death-toll.html

Federal Reserve: emergency rate cut

Fed rate moves 6% Regular meeting Credit market turmoil Unscheduled decision 50 basis pt discount rate cut Effective federal funds rate (daily) 5% 4% Stock market drop Coronavirus outbreak 75 basis pt fed funds rate cut 3% March 3, 2020 Global central bank action 2% 50 basis pt 50 basis pt fed funds rate cut fed funds cut 1% Mar. 15, 2020 100 basis pt fed funds rate cut 0% 2008 2013 2018 2023 SOURCE: Federal Reserve, New York Fed, St. Louis Fed

It is a common practice, but ...

It is **commonly assumed**, but **rarely tested**, that the interest rate and the mortality rate are *mutually independent*.

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

Mark Twain

Outline of the talk

- Background and motivation
- The affine jump-diffusion (AJD) model
 - Dynamics under P
 - ► The pricing measure Q
- Modeling mortality-linked securities
 - Model calibration
 - Atlas IX Capital Ltd. bond 2013
- Implied market prices of risk
 - Numerical analysis
 - Sensitivity test
- Onclusion remarks

Assume that the bivariate process $\{\mathbf{Y}_t = (r_t, \mu_t)^{\mathsf{T}}\}_{0 \le t \le T}$ follows an affine jump-diffusion (AJD) process. Precisely, for $0 \le t \le T$,

$$d\mathbf{Y}_{t} = \mathbf{K}_{t}(\boldsymbol{\theta}_{t} - \mathbf{Y}_{t})dt + \boldsymbol{\Sigma}_{t}\sqrt{\mathbf{S}_{t}}d\mathbf{W}_{t} + \sum_{i=1}^{m}d\mathbf{J}_{i,t},$$
(1)

Assume that the bivariate process $\{\mathbf{Y}_t = (r_t, \mu_t)^{\mathsf{T}}\}_{0 \le t \le T}$ follows an affine jump-diffusion (AJD) process. Precisely, for $0 \le t \le T$,

$$d\mathbf{Y}_{t} = \mathbf{K}_{t}(\boldsymbol{\theta}_{t} - \mathbf{Y}_{t})dt + \boldsymbol{\Sigma}_{t}\sqrt{\mathbf{S}_{t}}d\mathbf{W}_{t} + \sum_{i=1}^{m}d\mathbf{J}_{i,t},$$
(1)

where:

• the elements of \mathbf{K}_t , Σ_t , and $\boldsymbol{\theta}_t$ are all deterministic functions of t;

Assume that the bivariate process $\{\mathbf{Y}_t = (r_t, \mu_t)^{\mathsf{T}}\}_{0 \le t \le T}$ follows an affine jump-diffusion (AJD) process. Precisely, for $0 \le t \le T$,

$$d\mathbf{Y}_{t} = \mathbf{K}_{t}(\boldsymbol{\theta}_{t} - \mathbf{Y}_{t})dt + \boldsymbol{\Sigma}_{t}\sqrt{\mathbf{S}_{t}}d\mathbf{W}_{t} + \sum_{i=1}^{m}d\mathbf{J}_{i,t},$$
(1)

- the elements of \mathbf{K}_t , Σ_t , and $\boldsymbol{\theta}_t$ are all deterministic functions of t;
- $\mathbf{W}_t = (W_{1,t}, W_{2,t})^{\mathsf{T}}$ is a standard **Brownian motion**;

Assume that the bivariate process $\{\mathbf{Y}_t = (r_t, \mu_t)^{\mathsf{T}}\}_{0 \le t \le T}$ follows an affine jump-diffusion (AJD) process. Precisely, for $0 \le t \le T$,

$$d\mathbf{Y}_{t} = \mathbf{K}_{t}(\boldsymbol{\theta}_{t} - \mathbf{Y}_{t})dt + \boldsymbol{\Sigma}_{t}\sqrt{\mathbf{S}_{t}}d\mathbf{W}_{t} + \sum_{i=1}^{m}d\mathbf{J}_{i,t},$$
(1)

- the elements of \mathbf{K}_t , Σ_t , and $\boldsymbol{\theta}_t$ are all deterministic functions of t;
- $\mathbf{W}_t = (W_{1,t}, W_{2,t})^{\mathsf{T}}$ is a standard **Brownian motion**;
- \mathbf{S}_t is a diagonal matrix, where $[\mathbf{S}_t]_{ii} = \alpha_{i,t} + \boldsymbol{\beta}_{i,t}^\mathsf{T} \mathbf{Y}_t$ with $\alpha_{i,t}$ and $\boldsymbol{\beta}_{i,t}$ being deterministic functions of t;

Assume that the bivariate process $\{\mathbf{Y}_t = (r_t, \mu_t)^{\mathsf{T}}\}_{0 \le t \le T}$ follows an affine jump-diffusion (AJD) process. Precisely, for $0 \le t \le T$,

$$d\mathbf{Y}_{t} = \mathbf{K}_{t}(\boldsymbol{\theta}_{t} - \mathbf{Y}_{t})dt + \boldsymbol{\Sigma}_{t}\sqrt{\mathbf{S}_{t}}d\mathbf{W}_{t} + \sum_{i=1}^{m}d\mathbf{J}_{i,t},$$
(1)

- the elements of \mathbf{K}_t , Σ_t , and $\boldsymbol{\theta}_t$ are all deterministic functions of t;
- $\mathbf{W}_t = (W_{1,t}, W_{2,t})^{\mathsf{T}}$ is a standard **Brownian motion**;
- \mathbf{S}_t is a diagonal matrix, where $[\mathbf{S}_t]_{ii} = \alpha_{i,t} + \boldsymbol{\beta}_{i,t}^\mathsf{T} \mathbf{Y}_t$ with $\alpha_{i,t}$ and $\boldsymbol{\beta}_{i,t}$ being deterministic functions of t;
- $\mathbf{J}_{i,t} = \sum_{k=1}^{N_{i,t}} \mathbf{X}_{i,k}$ is a **compound Poisson process** with rate $\lambda_i > 0$ and jump size distribution G_i .

The pricing measure Q

Under the measure Q, we look at two types of risk embedded in our model

• Systematic risk: $\{\mathbf{W}_t\}$, the main driving force inherent in the market

$$d\mathbf{W}_t^Q = d\mathbf{W}_t - \mathbf{\Gamma}_t dt, \qquad 0 \le t \le T,$$

Jump risk: For each *i* = 1,..., *m*, {J_{i,t}}_{0≤t≤T} is a compound Poisson process with intensity λ^{*}_i and common jump size distribution G^{*}_i;

 $\{\mathbf{W}_{t}^{Q}\}_{0 \le t \le T}$ and $\{\mathbf{J}_{i,t}\}_{0 \le t \le T}$, i = 1, ..., m, are mutually independent.

The interest rate and mortality rate intensities are modeled by

$$\begin{cases} dr_t = (m_1 - d_1 r_t) dt + \sigma_1 dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (m_2 - d_2 \mu_t) dt + \sigma_2 \left(\rho_1 dW_{1,t} + \sqrt{1 - \rho_1^2} dW_{2,t} \right) + d\sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

The interest rate and mortality rate intensities are modeled by

$$\begin{cases} dr_t = (m_1 - d_1 r_t) dt + \sigma_1 dW_{1,t} + d \sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (m_2 - d_2 \mu_t) dt + \sigma_2 \left(\rho_1 dW_{1,t} + \sqrt{1 - \rho_1^2} dW_{2,t} \right) + d \sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

where, under measure P,

• $m_i \in \mathbb{R}$, $d_i \neq 0$, $\sigma_i > 0$, for i = 1, 2, and $\rho_1 \in [-1, 1]$ are constants;

The interest rate and mortality rate intensities are modeled by

$$\begin{cases} dr_t = (m_1 - d_1 r_t) dt + \sigma_1 dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (m_2 - d_2 \mu_t) dt + \sigma_2 \left(\rho_1 dW_{1,t} + \sqrt{1 - \rho_1^2} dW_{2,t} \right) + d\sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

- $m_i \in \mathbb{R}, d_i \neq 0, \sigma_i > 0$, for i = 1, 2, and $\rho_1 \in [-1, 1]$ are constants;
- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard bivariate Brownian motion;

The interest rate and mortality rate intensities are modeled by

$$\int_{a}^{b} dr_{t} = (m_{1} - d_{1}r_{t})dt + \sigma_{1}dW_{1,t} + d\sum_{i=1}^{N_{t}} X_{1,i},$$

$$d\mu_{t} = (m_{2} - d_{2}\mu_{t})dt + \sigma_{2}\left(\rho_{1}dW_{1,t} + \sqrt{1 - \rho_{1}^{2}}dW_{2,t}\right) + d\sum_{i=1}^{N_{t}} X_{2,i},$$

- $m_i \in \mathbb{R}, d_i \neq 0, \sigma_i > 0$, for i = 1, 2, and $\rho_1 \in [-1, 1]$ are constants;
- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard bivariate Brownian motion;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with intensity $\lambda > 0$;

The interest rate and mortality rate intensities are modeled by

$$\int_{a}^{b} dr_{t} = (m_{1} - d_{1}r_{t})dt + \sigma_{1}dW_{1,t} + d\sum_{i=1}^{N_{t}} X_{1,i},$$

$$d\mu_{t} = (m_{2} - d_{2}\mu_{t})dt + \sigma_{2}\left(\rho_{1}dW_{1,t} + \sqrt{1 - \rho_{1}^{2}}dW_{2,t}\right) + d\sum_{i=1}^{N_{t}} X_{2,i},$$

- $m_i \in \mathbb{R}, d_i \neq 0, \sigma_i > 0$, for i = 1, 2, and $\rho_1 \in [-1, 1]$ are constants;
- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard bivariate Brownian motion;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with intensity $\lambda > 0$;
- $\{\mathbf{X}_{j} = (\mathbf{X}_{1,j}, \mathbf{X}_{2,j})^{\mathsf{T}}\}_{j \in \mathbb{N}} \text{ and } \mathbf{X} \sim N(\nu_{1}, \nu_{2}; \phi_{1}, \phi_{2}; \rho_{2});$

The interest rate and mortality rate intensities are modeled by

$$\int_{a}^{b} dr_{t} = (m_{1} - d_{1}r_{t})dt + \sigma_{1}dW_{1,t} + d\sum_{i=1}^{N_{t}} X_{1,i},$$

$$d\mu_{t} = (m_{2} - d_{2}\mu_{t})dt + \sigma_{2}\left(\rho_{1}dW_{1,t} + \sqrt{1 - \rho_{1}^{2}}dW_{2,t}\right) + d\sum_{i=1}^{N_{t}} X_{2,i},$$

- $m_i \in \mathbb{R}, d_i \neq 0, \sigma_i > 0$, for i = 1, 2, and $\rho_1 \in [-1, 1]$ are constants;
- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard bivariate Brownian motion;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with intensity $\lambda > 0$;
- $\{\mathbf{X}_{j} = (\mathbf{X}_{1,j}, \mathbf{X}_{2,j})^{\mathsf{T}}\}_{j \in \mathbb{N}} \text{ and } \mathbf{X} \sim N(\nu_{1}, \nu_{2}; \phi_{1}, \phi_{2}; \rho_{2});$
- $\{N_t\}_{0 \le t \le T}$ and $\{\mathbf{X}_j\}_{j \in \mathbb{N}}$ are independent.

Under the Q measure, we consider

• Market price of diffusion risk: $\Gamma_t = (\gamma_1, \gamma_2)^{\mathsf{T}} \in \mathbb{R}^2$, where

$$dW_{i,t} = dW_{i,t}^Q + \gamma_i dt$$
 for $i = 1, 2$

We can then rewrite the dynamics as

$$\begin{cases} dr_t = (m_1^* - d_1 r_t) dt + \sigma_1 dW_{1,t}^Q + d\sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (m_2^* - d_2 \mu_t) dt + \sigma_2 \left(\rho_1 dW_{1,t}^Q + \sqrt{1 - \rho_1^2} dW_{2,t}^Q \right) + d\sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

with

$$m_1^* = m_1 + \gamma_1 \sigma_1, \qquad m_2^* = m_2 + \gamma_1 \sigma_2 \rho_1 + \gamma_2 \sigma_2 \sqrt{1 - \rho_1^2}.$$

Under the Q measure, we also consider

- Market price of jump-frequency risk
 - $\{N_t\}_{0 \le t \le T}$ is a Poisson process with intensity $\lambda^* > 0$;
 - $\chi = \frac{\lambda^*}{\lambda} > 0$ reflects the market price of jump-frequency risk.
- Market price of jump-size risk:
 - ► Normalized multivariate exponential tilting to construct the common distribution G* of {X_j}_{j∈ℕ};

•
$$\mathbf{X} \sim N(\nu_1^*, \nu_2^*; \phi_1, \phi_2; \rho_2)$$
 where $\nu_1^* = \nu_1 + \phi_1 \kappa_1$ and $\nu_2^* = \nu_2 + \phi_2 \kappa_2$.

Data description

We consider the US weekly mortality and interest rate data for the period of 2017–2020, which are collected from three sources as follows:

- *CDC COVID-19 Data*. We collect national-level weekly observed deaths and the expected deaths for the period Jan 2017–Dec 2020.
- U.S. Census Bureau. We collect population data for 2017–2020.

We define excess mortality as

$$\mu_t = \frac{d_t - E(d_t)}{e_t},$$

where d_t is the observed number of deaths, and $E(d_t)$ and e_t are, respectively, the expected number of deaths and the population exposure.

Data description

• *Federal Reserve Economic Data (FRED)*. The weekly interest rate data comes from the 3-month treasury bill rates, collected at the same frequency and for the same period as the mortality data.

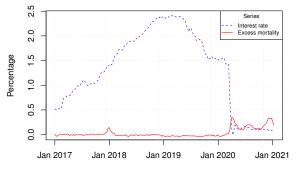


Figure: U.S. weekly interest rate and excess mortality

Model calibration: MCMC

- Likelihood based inference using MCMC.
- Evolution of the moment generating function is a Partial Differential Equation (PDE).
- This PDE is used to approximate the likelihood to a high degree of accuracy.
- Random Walk Metropolis Hastings used to explore the posterior.

The interest rate and mortality rate intensities are modeled by

$$\begin{cases} dr_t = (0.005 - 0.126r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (0.002 - 2.301\mu_t)dt + 0.124(-0.038dW_{1,t} + 0.99928dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

The interest rate and mortality rate intensities are modeled by

$$dr_t = (0.005 - 0.126r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i},$$

$$d\mu_t = (0.002 - 2.301\mu_t)dt + 0.124(-0.038dW_{1,t} + 0.99928dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i},$$

where, under P,

• $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.038;

The interest rate and mortality rate intensities are modeled by

$$dr_t = (0.005 - 0.126r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i},$$

$$d\mu_t = (0.002 - 2.301\mu_t)dt + 0.124(-0.038dW_{1,t} + 0.99928dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i},$$

- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.038;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with rate **4.865**;

The interest rate and mortality rate intensities are modeled by

$$\int dr_t = (0.005 - 0.126r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i},$$

$$d\mu_t = (0.002 - 2.301\mu_t)dt + 0.124(-0.038dW_{1,t} + 0.99928dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i},$$

- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.038;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with rate **4.865**;
- { $\mathbf{X}_j = (X_{1,j}, X_{2,j})^{\mathsf{T}}$ } is a sequence of i.i.d. bivariate random vectors such that the generic vector $\mathbf{X} \sim N(-0.001, 0.035; 0.002, 0.074; -0.479)$;

The interest rate and mortality rate intensities are modeled by

$$\begin{cases} dr_t = (0.016 - 0.727r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i}, \\ d\mu_t = (-0.217 - 16.368\mu_t)dt + 0.095 (0.017dW_{1,t} + 0.99986dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i}, \end{cases}$$

The interest rate and mortality rate intensities are modeled by

$$\int dr_t = (0.016 - 0.727r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i},$$

$$d\mu_t = (-0.217 - 16.368\mu_t)dt + 0.095 (0.017dW_{1,t} + 0.99986dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i},$$

where, under P,

• $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.017;

The interest rate and mortality rate intensities are modeled by

$$\int dr_t = (0.016 - 0.727r_t)dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_t} X_{1,i},$$

$$d\mu_t = (-0.217 - 16.368\mu_t)dt + 0.095 (0.017dW_{1,t} + 0.99986dW_{2,t}) + d\sum_{i=1}^{N_t} X_{2,i},$$

- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.017;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with rate **1.909**;

The interest rate and mortality rate intensities are modeled by

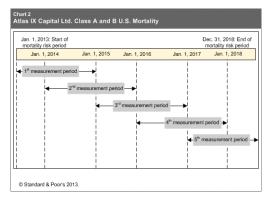
$$dr_{t} = (0.016 - 0.727r_{t})dt + 0.002dW_{1,t} + d\sum_{i=1}^{N_{t}} X_{1,i},$$

$$d\mu_{t} = (-0.217 - 16.368\mu_{t})dt + 0.095(0.017dW_{1,t} + 0.99986dW_{2,t}) + d\sum_{i=1}^{N_{t}} X_{2,i},$$

- $\{(W_{1,t}, W_{2,t})\}_{0 \le t \le T}$ is a standard two-dimensional Brownian motion with correlation coefficient equals to -0.017;
- $\{N_t\}_{0 \le t \le T}$ is a Poisson process with rate **1.909**;
- { $\mathbf{X}_j = (X_{1,j}, X_{2,j})^{\mathsf{T}}$ } is a sequence of i.i.d. bivariate random vectors such that the generic vector $\mathbf{X} \sim N(0.000, 0.026; 0.001, 0.056; -0.479)$;

Modeling mortality-linked securities

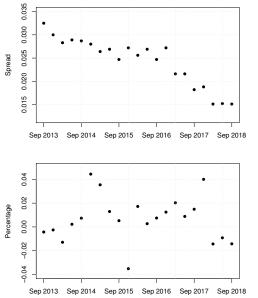
Launched by Atlas IX Capital Ltd in September 2013, the Atlas bond is the first catastrophe bond from SCOR which covers extreme mortality risk.



- Risk period: Jan 2013 Dec 2018
- Coupon payment: 3.25% above the three-month LIBOR rate
- Underlying mortality: U.S. total population

Market prices of risk

Baseline price: the Atlas bond market price throughout 2013–2018.



Quarterly market-indicated spreads of the Atlas bond, published by Lane Financial L.L.C.

Estimated quarterly excess mortality.

Dr Han Li (The University of Melbourne)

19/33

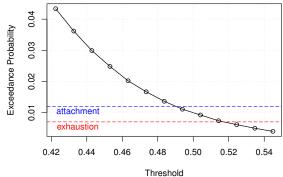
Three scenarios

Idea: Minimizing the difference between theoretical price and observed price. *Method*: Limited-memory Broyden–Fletcher–Goldfarb–Shanno method.

We compute the MPRs for three different scenarios:

- **S1**. Underlying risks \Rightarrow post-pandemic model Bond trigger levels \Rightarrow post-pandemic model;
- S2. Underlying risks ⇒ pre-pandemic model;
 Bond trigger levels ⇒ pre-pandemic model;
- **S3**. Underlying risks \Rightarrow post-pandemic model Bond trigger levels \Rightarrow pre-pandemic model.

Scenario one

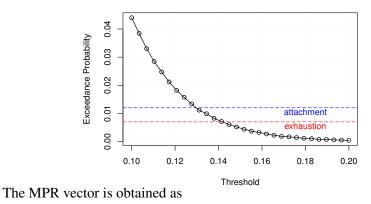


The MPR vector is obtained as

 $\boldsymbol{\zeta}_1 = (\gamma_1, \gamma_2; \kappa_1, \kappa_2; \chi) = (0.4161, \ 0.1897; \ 0.1119, \ 0.3889; \ 1.0918)$.

Investors' perceived parameter values under Q are all riskier than their P measure counterparts.

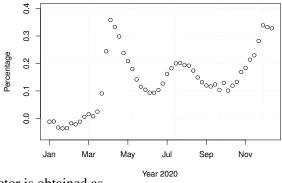
Scenario two



 $\boldsymbol{\zeta}_2 = (\gamma_1, \gamma_2; \kappa_1, \kappa_2; \chi) = (0.1099, 0.0924; 0.1068, 0.0961; 1.3144).$

Investors' perceived parameter values under Q are all riskier than their P measure counterparts.

Scenario three



The MPR vector is obtained as

 $\boldsymbol{\zeta}_3 = (\gamma_1, \gamma_2; \kappa_1, \kappa_2; \chi) = (1.0944, -1.6196; 1.0743, -4.0847; 1.6419).$

Investors are receiving negative mortality risk premia although the interest rate risk premia they receive are positive.

Three scenarios

	Scenario 1		Scenario 2			Scenario 3		
Parameter	Under P	Under Q	Under P	Under Q	U	nder P	Under Q	
$m_1 \leftrightarrow m_1^*$	0.005	0.0058	0.016	0.0162		0.005	0.0072	
$m_2 \leftrightarrow m_2^*$	0.002	0.0235	-0.217	-0.2080		0.002	-0.2038	
$ u_1 \leftrightarrow \nu_1^* $	-0.001	-0.0008	0.000	0.0001	_	0.001	0.0011	
$\nu_2 \leftrightarrow \nu_2^*$	0.035	0.0638	0.026	0.0314		0.035	-0.2673	
$\lambda \leftrightarrow \lambda^*$	4.865	5.3118	1.909	2.5091		4.865	7.9877	

Sensitivity analysis

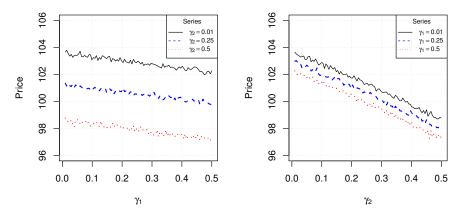


Figure: Sensitivity analysis with respect to γ_1 and γ_2

Sensitivity analysis

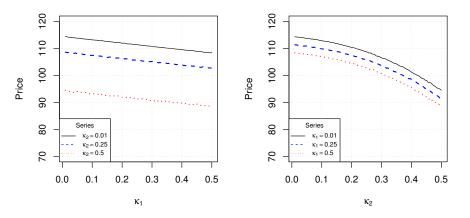


Figure: Sensitivity analysis with respect to κ_1 and κ_2

Sensitivity analysis

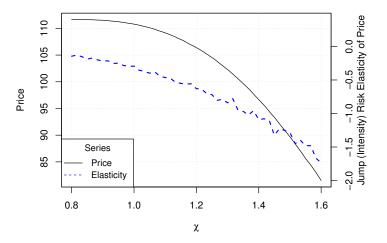


Figure: Sensitivity analysis with respect to χ

Concluding remarks

In this research, we ...

- Propose a bivariate AJD structure to jointly model the interest rate and excess mortality.
- Show that the COVID-19 pandemic experience greatly intensifies the negative instantaneous correlations.
- Develop a risk-neutral pricing measure that accounts for both a diffusion risk premium and a jump risk premium.
- Solve for the market prices of risk based on mortality CAT bond prices.

End of presentation

Thank you! Any questions/ comments/ suggestions?

Contact email: han.li@unimelb.edu.au

(a) Han Li

(b) Haibo Liu

(c) Qihe Tang

(d) Zhongyi Yuan

Appendix

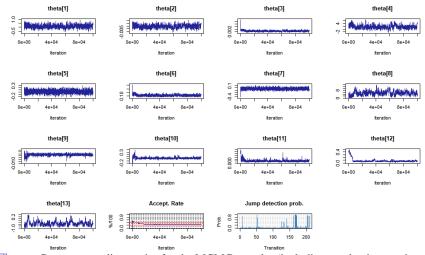


Figure: Convergence diagnostics for the MCMC sampler (including pandemic experience).

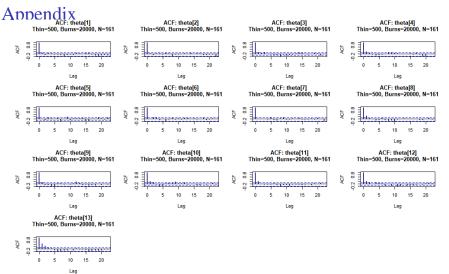


Figure: ACF of MCMC draws for each parameter in model (including pandemic experience).

31/33

Appendix

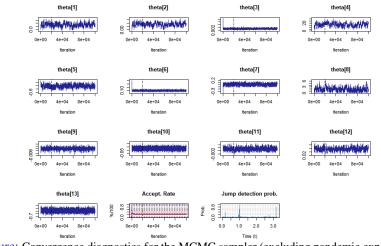


Figure: Convergence diagnostics for the MCMC sampler (excluding pandemic experience).

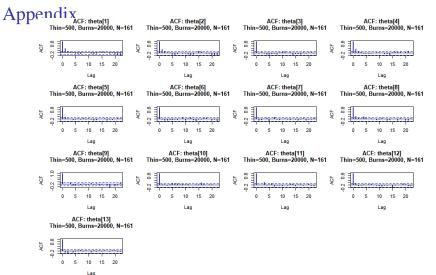


Figure: ACF of MCMC draws for each parameter in model (excluding pandemic experience).

