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Catastrophe bond and extreme insurance risk
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A 1 in 100 (?) year event

Source: https://coronavirus.jhu.edu/map.html
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US: 574,000 more deaths than normal since March 2020

Source: https:
//www.nytimes.com/interactive/2021/01/14/us/covid-19-death-toll.html
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Federal Reserve: emergency rate cut
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It is a common practice, but ...

It is commonly assumed, but rarely tested, that the interest rate and the
mortality rate are mutually independent.
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The affine jump-diffusion (AJD) model

Assume that the bivariate process {Yt = (rt, µt)
⊺}0≤t≤T follows an affine

jump-diffusion (AJD) process. Precisely, for 0 ≤ t ≤ T ,

dYt = Kt(θt − Yt)dt +Σt

√
StdWt +

m∑
i=1

dJi,t, (1)

where:

the elements of Kt,Σt, and θt are all deterministic functions of t;

Wt = (W1,t,W2,t)
⊺ is a standard Brownian motion;

St is a diagonal matrix, where [St]ii = αi,t + β⊺
i,tYt with αi,t and βi,t being

deterministic functions of t;

Ji,t =
∑Ni,t

k=1 Xi,k is a compound Poisson process with rate λi > 0 and jump
size distribution Gi.
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The pricing measure Q

Under the measure Q, we look at two types of risk embedded in our model

Systematic risk: {Wt}, the main driving force inherent in the market

dWQ
t = dWt − Γtdt, 0 ≤ t ≤ T,

Jump risk: For each i = 1, . . . ,m, {Ji,t}0≤t≤T is a compound Poisson
process with intensity λ∗

i and common jump size distribution G∗
i ;

{WQ
t }0≤t≤T and {Ji,t}0≤t≤T , i = 1, . . . ,m, are mutually independent.
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An important special case

The interest rate and mortality rate intensities are modeled by
drt = (m1 − d1rt)dt + σ1dW1,t + d

Nt∑
i=1

X1,i,

dµt = (m2 − d2µt)dt + σ2

(
ρ1dW1,t +

√
1 − ρ2

1dW2,t

)
+ d

Nt∑
i=1

X2,i,

where, under measure P,

mi ∈ R, di ̸= 0, σi > 0, for i = 1, 2, and ρ1 ∈ [−1, 1] are constants;

{(W1,t,W2,t)}0≤t≤T is a standard bivariate Brownian motion;

{Nt}0≤t≤T is a Poisson process with intensity λ > 0;

{Xj = (X1,j,X2,j)
⊺}j∈N and X ∼ N (ν1, ν2;ϕ1, ϕ2; ρ2);

{Nt}0≤t≤T and {Xj}j∈N are independent.
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An important special case

Under the Q measure, we consider

Market price of diffusion risk: Γt = (γ1, γ2)
⊺ ∈ R2, where

dWi,t = dWQ
i,t + γidt for i = 1, 2

We can then rewrite the dynamics as drt = (m∗
1 − d1rt)dt + σ1dWQ

1,t + d
∑Nt

i=1 X1,i,

dµt = (m∗
2 − d2µt) dt + σ2

(
ρ1dWQ

1,t +
√

1 − ρ2
1dWQ

2,t

)
+ d

∑Nt
i=1 X2,i,

with

m∗
1 = m1 + γ1σ1, m∗

2 = m2 + γ1σ2ρ1 + γ2σ2

√
1 − ρ2

1.
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An important special case

Under the Q measure, we also consider

Market price of jump-frequency risk

▶ {Nt}0≤t≤T is a Poisson process with intensity λ∗ > 0;

▶ χ = λ∗

λ > 0 reflects the market price of jump-frequency risk.

Market price of jump-size risk:

▶ Normalized multivariate exponential tilting to construct the common
distribution G∗ of {Xj}j∈N;

▶ X ∼ N (ν∗1 , ν
∗
2 ;ϕ1, ϕ2; ρ2) where ν∗1 = ν1 + ϕ1κ1 and ν∗2 = ν2 + ϕ2κ2.
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Data description

We consider the US weekly mortality and interest rate data for the period of
2017–2020, which are collected from three sources as follows:

CDC COVID-19 Data. We collect national-level weekly observed deaths
and the expected deaths for the period Jan 2017–Dec 2020.

U.S. Census Bureau. We collect population data for 2017–2020.

We define excess mortality as

µt =
dt − E(dt)

et
,

where dt is the observed number of deaths, and E(dt) and et are, respectively,
the expected number of deaths and the population exposure.
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Data description

Federal Reserve Economic Data (FRED). The weekly interest rate data
comes from the 3-month treasury bill rates, collected at the same
frequency and for the same period as the mortality data.
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Figure: U.S. weekly interest rate and excess mortality
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Model calibration: MCMC

Likelihood based inference using MCMC.

Evolution of the moment generating function is a Partial Differential
Equation (PDE).

This PDE is used to approximate the likelihood to a high degree of
accuracy.

Random Walk Metropolis Hastings used to explore the posterior.
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Calibration including the pandemic experience

The interest rate and mortality rate intensities are modeled by
drt = (0.005 − 0.126rt)dt + 0.002dW1,t + d

Nt∑
i=1

X1,i,

dµt = (0.002 − 2.301µt)dt + 0.124 (−0.038dW1,t + 0.99928dW2,t) + d
Nt∑

i=1
X2,i,

where, under P,

{(W1,t,W2,t)}0≤t≤T is a standard two-dimensional Brownian motion with
correlation coefficient equals to −0.038;

{Nt}0≤t≤T is a Poisson process with rate 4.865;

{Xj = (X1,j,X2,j)
⊺}j∈N is a sequence of i.i.d. bivariate random vectors such that

the generic vector X ∼ N (−0.001, 0.035; 0.002, 0.074;−0.479);
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Calibration excluding the pandemic experience

The interest rate and mortality rate intensities are modeled by
drt = (0.016 − 0.727rt)dt + 0.002dW1,t + d

Nt∑
i=1

X1,i,

dµt = (−0.217 − 16.368µt)dt + 0.095 (0.017dW1,t + 0.99986dW2,t) + d
Nt∑

i=1
X2,i,

where, under P,

{(W1,t,W2,t)}0≤t≤T is a standard two-dimensional Brownian motion with
correlation coefficient equals to −0.017;

{Nt}0≤t≤T is a Poisson process with rate 1.909;

{Xj = (X1,j,X2,j)
⊺}j∈N is a sequence of i.i.d. bivariate random vectors such that

the generic vector X ∼ N (0.000, 0.026; 0.001, 0.056;−0.479);
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Modeling mortality-linked securities
Launched by Atlas IX Capital Ltd in September 2013, the Atlas bond is the
first catastrophe bond from SCOR which covers extreme mortality risk.

Risk period: Jan 2013 – Dec 2018

Coupon payment: 3.25% above the three-month LIBOR rate

Underlying mortality: U.S. total population
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Market prices of risk
Baseline price: the Atlas bond market price throughout 2013–2018.
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Quarterly market-indicated spreads of 
the Atlas bond, published by Lane
Financial L.L.C.

Estimated quarterly excess 
mortality.



Three scenarios

Idea: Minimizing the difference between theoretical price and observed price.
Method: Limited-memory Broyden–Fletcher–Goldfarb–Shanno method.

We compute the MPRs for three different scenarios:

S1. Underlying risks ⇒ post-pandemic model

Bond trigger levels ⇒ post-pandemic model;

S2. Underlying risks ⇒ pre-pandemic model;

Bond trigger levels ⇒ pre-pandemic model;

S3. Underlying risks ⇒ post-pandemic model

Bond trigger levels ⇒ pre-pandemic model.
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Scenario one
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The MPR vector is obtained as

ζ1 = (γ1, γ2;κ1, κ2;χ) = (0.4161, 0.1897; 0.1119, 0.3889; 1.0918) .

Investors’ perceived parameter values under Q are all riskier than their P
measure counterparts.
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Scenario two
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The MPR vector is obtained as

ζ2 = (γ1, γ2;κ1, κ2;χ) = (0.1099, 0.0924; 0.1068, 0.0961; 1.3144) .

Investors’ perceived parameter values under Q are all riskier than their P
measure counterparts.
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Scenario three
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The MPR vector is obtained as

ζ3 = (γ1, γ2;κ1, κ2;χ) = (1.0944, −1.6196; 1.0743, −4.0847; 1.6419) .

Investors are receiving negative mortality risk premia although the interest
rate risk premia they receive are positive.
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Three scenarios

Scenario 1 Scenario 2 Scenario 3

Parameter Under P Under Q Under P Under Q Under P Under Q

m1 ↔ m∗
1 0.005 0.0058 0.016 0.0162 0.005 0.0072

m2 ↔ m∗
2 0.002 0.0235 −0.217 −0.2080 0.002 −0.2038

ν1 ↔ ν∗1 −0.001 −0.0008 0.000 0.0001 −0.001 0.0011

ν2 ↔ ν∗2 0.035 0.0638 0.026 0.0314 0.035 −0.2673

λ ↔ λ∗ 4.865 5.3118 1.909 2.5091 4.865 7.9877
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Sensitivity analysis
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Figure: Sensitivity analysis with respect to γ1 and γ2
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Sensitivity analysis
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Figure: Sensitivity analysis with respect to κ1 and κ2
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Sensitivity analysis
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Figure: Sensitivity analysis with respect to χ
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Concluding remarks

In this research, we ...

Propose a bivariate AJD structure to jointly model the interest rate and
excess mortality.

Show that the COVID-19 pandemic experience greatly intensifies the
negative instantaneous correlations.

Develop a risk-neutral pricing measure that accounts for both a diffusion
risk premium and a jump risk premium.

Solve for the market prices of risk based on mortality CAT bond prices.
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End of presentation

Thank you!
Any questions/ comments/ suggestions?

Contact email: han.li@unimelb.edu.au

(a) Han Li (b) Haibo Liu (c) Qihe Tang (d) Zhongyi Yuan
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Appendix

Figure: Convergence diagnostics for the MCMC sampler (including pandemic experience).
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Appendix

Figure: ACF of MCMC draws for each parameter in model (including pandemic experience).
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Appendix

Figure: Convergence diagnostics for the MCMC sampler (excluding pandemic experience).

Dr Han Li (The University of Melbourne) Pricing Extreme Mortality Risk 7–8 September 2023 32 / 33



Appendix

Figure: ACF of MCMC draws for each parameter in model (excluding pandemic experience).
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