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Introduction 

Uncertainty about the evolution of mortality 

Measure longevity risk in pension or annuity portfolios with stochastic mortality models 

Parametric mortality models: Lee-Carter model, Cairns-Blake-Dowd model, APC model, etc. 

Reduce the information about exposures and deaths to a few parameters: 

CBD: Two time dependent parameter processes (Cairns et al. (2006)): log
𝑞𝑥,𝑡

1−𝑞𝑥,𝑡
= 𝜅𝑡

1 + 𝜅𝑡
2 ∙ 𝑥 − 𝑥  

Parameter processes calibrated for English and Welsh males older than 65 years 

𝐿 𝜅𝑡
1, 𝜅𝑡

2 → 𝑚𝑎𝑥 with the assumption of 𝐷𝑥,𝑡~𝑃𝑜𝑖(𝐸𝑥,𝑡  ⋅ 𝑚 𝑥,𝑡) or 𝐷𝑥,𝑡~𝐵𝑖𝑛(𝐸𝑥,𝑡 , 𝑞 𝑥,𝑡) 
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Introduction 

Popular choice: a (multivariate) random walk with drift (RWD) for stochastic forecasts 

Backtesting in 1963 based on a 10-year calibration:  

Future observations far outside the 99% quantile 

Historic trend changed once in a while 

Only a piecewise linear trend 

Random changes in the trends slope 

Random fluctuation around the prevailing trend 

In principle, our approach can be applied to any parametric mortality model 

Extrapolating only the most recent trend, systematically underestimates future 

uncertainty, see e.g. Sweeting (2011), Li et al. (2011), Börger et al. (2014) 
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Stochastic Trend model 

Continuous piecewise linear trend, with random changes in the slope and random fluctuation 

around the prevailing trend 

Model the trend process with random noise   𝜅𝑡 = 𝜅 𝑡 + 𝜖𝑡;  𝜖𝑡~𝑓 

Extrapolate the most recent actual mortality trend  𝜅 𝑡 = 𝜅 𝑡−1 + 𝑑𝑡 

In every year, there is a possible change in the mortality trend with probability 𝑝 

In the case of a trend change  𝜆𝑡 = 𝑀𝑡 ⋅ 𝑆𝑡 

With absolute magnitude of the trend change 𝑀𝑡~ℎ 

Sign of the trend change 𝑆𝑡 bernoulli distributed with values -1, 1 each with probability 
1

2
 

 𝑑𝑡 = 𝑑𝑡−1 + 𝜆𝑡, where  𝜆𝑡 =
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

𝑀𝑡 ⋅ 𝑆𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
~𝑔 

In principle, also other distributions are possible (Pareto, Normal, t-distribution,…) 

We propose to use: 𝐟 = 𝒩 0, 𝜎𝜖,𝑡
2 ,  𝐡 = ℒ𝒩(𝜇, 𝜎2)  

 

 

 

 

Parameters to be estimated for projections starting in t=0 (typically latest 

observation, case: 𝐟 = 𝒩 0, 𝜎𝜖,𝑡
2 , 𝐡 = ℒ𝒩(𝜇, 𝜎2)):  

𝑝, 𝜎𝜖,𝑡
2 , 𝜇, 𝜎2, 𝑑0, 𝜅 0  
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Parameter estimation 

Alternative I 

Calibration based on historic trends 

Use historic trends/drifts to estimate parameters (see e.g. Hunt and Blake (2014), Sweeting 

(2011), Börger and Schupp (2015)). Choose optimal historic trends/drifts based on some 

optimizing criterion (OLS, Likelihood,…). Advantage: Intuitive historic curves 

Börger and Schupp (2015): For 𝑘 ∈ 0, … , 𝑚 find trend process 𝑑0, 𝜅 0, 𝜆−𝑁+2, … , 𝜆0 where exactly 𝑘 of 

𝜆−𝑁+2, … , 𝜆0  are unequal to zero (trend curve with 𝑘 trend changes). Update  𝜎𝜖
2 iteratively. 

Choose optimal trend process with AIC/BIC/MBIC. 

Example: Random Walk with changing drift (in the spirit of Hunt and Blake (2014)) 

 

 

 

 

 

 

 

 

 

 

 

 

Possible Problems: historic observations are unlikely to be generated with the drift 

change density (inconsistent prediction possible), only few observations. Outliers 

can have a huge influence 
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Parameter estimation 

Alternative II 

Calibration based on historic trends with a combined likelihood  

Include the distribution of the trend changes used for simulations in the optimization criterion 

Calibrate optimal historic trends based on  𝑓𝒩 𝜅−𝑁,…,0
𝑖  𝜎𝜖

2, 𝑑0, 𝜅 0, 𝜆−𝑁+2, … , 𝜆0 ⋅ 𝑔 𝜆−𝑁+2, … , 𝜆0 𝜇, 𝜎2, 𝑝  

For 𝑘 ∈ 1, … , 𝑚 find trend process 𝑑0, 𝜅 0, 𝜆−𝑁+2, … , 𝜆0 that maximizes  

 𝑓𝒩 𝜅−𝑁,…,0
𝑖  𝜎𝜖

2, 𝑑0, 𝜅 0, 𝜆−𝑁+2, … , 𝜆0 ⋅ 𝑔 𝜆−𝑁+2, … , 𝜆0 𝜇, 𝜎2, 𝑝 , where exactly 𝑘 of 𝜆−𝑁+2, … , 𝜆0  are unequal to 

zero (trend curve with 𝑘 trend changes). Update  𝜎𝜖
2, 𝑝, 𝜇, 𝜎2 iteratively. 

Based on optimal goodness of fit (𝑓𝒩 𝜅−𝑁,…,0
𝑖  𝜎𝜖

2, 𝑑0, 𝜅 0, 𝜆−𝑁+2, … , 𝜆0 ) choose optimal historic trend 

Advantages: Consistency between historic trends and stochastic simulation, avoid rather subjective 

selection with information criteria 

The parameters required for stochastic forecasts are part of the calibration: 𝑝, 𝜎𝜖
2 , 𝜇, 𝜎2, 𝑑0, 𝜅 0 
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Parameter estimation 

Alternative III  

Calibration based on MLE 

Stochastic forecasts require: 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0

𝑖 , 𝑑0. Not necessarily a historic trend required. The focus 

here will be solely on forecasts! 

Idea: Classic MLE: 𝐿 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0

𝑖 , 𝑑0 𝜅𝑖 → max 𝑖 = 1,2 

Example: Consider last three years and one index: 

 

 

 

Known trend in 0, unknown trend in -1 (possible trend change 𝜆0) 

𝐿 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅 0, 𝑑0 𝜅−2, 𝜅−1, 𝜅0   

= 𝑓𝒩 𝜅0 − 𝜅0 𝜎𝜖
2, 𝜅0  ⋅ 𝑓𝒩 𝜅−1 − (𝜅0 − 𝑑0) 𝜎𝜖

2, 𝜅0  , 𝑑0 ⋅ 𝑓𝒩 ∗ 𝑔 𝜅−2 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0 , 𝑑0  

= 𝑓𝒩 𝜖0 𝜎𝜖
2, 𝜅0 ⋅ 𝑓𝒩 𝜖−1 𝜎𝜖

2, 𝜅0 , 𝑑0 ⋅  𝑔 𝜆0|𝜇, 𝜎2, 𝑝 ⋅ 𝑓𝒩 𝜅−2 − 𝜅0 − 𝑑0 − 𝑑−1 |𝜎𝜖
2, 𝜅0 , 𝑑0 𝑑𝜆0ℝ

 → max  

= 𝑓𝒩 𝜖0 𝜎𝜖
2, 𝜅0 ⋅ 𝑓𝒩 𝜖−1 𝜎𝜖

2, 𝜅0 , 𝑑0 ⋅  𝑔 𝜆0|𝜇, 𝜎2, 𝑝 ⋅ 𝑓𝒩 𝜅−2 − 𝜅0 − 𝑑0 − (𝑑0 − 𝜆0 )|𝜎𝜖
2, 𝜅0 , 𝑑0 𝑑𝜆0ℝ

 → max  

Knowing 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0

𝑖 , 𝑑0, we can give a likelihood function for the historic data 
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−𝑑0 −𝑑−1 𝑑1 



Parameter estimation 

Alternatives III 

Consider the complete history: 

𝐿 𝜃 𝜅−𝑁,…,0
𝑖 → max   with  𝜃 ≔ 𝜇, 𝜎2, 𝑝, 𝜎𝜖

2, 𝜅 0, 𝑑0 

We can calculate the trend process recursively 𝜅−𝑠 = 𝜅0 − 𝑠𝑑0 +  𝑙 ⋅ 𝜆−(𝑠−1−𝑙)
𝑠−1
𝑙=1 ,  0 ≤ 𝑠 

𝐿 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0

𝑖 , 𝑑0 𝜅−𝑁,…,0
𝑖  = 𝑓𝒩 𝜖0 𝜎𝜖

2, 𝜅0  ⋅ 𝑓𝒩 𝜖−1 𝜎𝜖
2, 𝜅0 , 𝑑0  

⋅   𝑔 𝜆−(𝑠−2)|𝜃

𝑁

𝑠=2

⋅ 𝑓𝒩 𝜅−𝑠
𝑖 − (𝜅0 − 𝑠𝑑0 +  𝑙 ⋅ 𝜆− 𝑠−1−𝑙

𝑠−1

𝑙=1

)|𝜃 𝑑𝜆−𝑁+2,…,0
ℝ𝑁−1

→ 𝑚𝑎𝑥 

 

Challenge: In parameter calibration, we need to solve and optimize this N-1 dimensional integral  

 

 

𝑓𝒩 𝜅−𝑠
𝑖 − (𝜅0 − 𝑠𝑑0 +  𝑙 ⋅ 𝜆− 𝑠−1−𝑙

𝑠−1

𝑙=1

)|𝜃  → 𝑓𝒩 𝜅−𝑠
𝑖 − (𝜅−𝑠+1

𝑖 − 𝑑0 −  𝜆− 𝑠−1−𝑙

𝑠−1

𝑙=1

)|𝜃  
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Parameter estimation 

Alternatives III 

Likelihood of the trend model 

𝐿 𝜇, 𝜎2, 𝑝, 𝜎𝜖
2, 𝜅0

𝑖 , 𝑑0 𝜅−𝑁,…,0
𝑖  = 𝑓𝒩 𝜖0 𝜎𝜖

2, 𝜅0  ⋅ 𝑓𝒩 𝜖−1 𝜎𝜖
2, 𝜅0 , 𝑑0  

⋅   𝑔 𝜆−(𝑠−2)|𝜃

𝑁

𝑠=2

⋅ 𝑓𝒩 𝜅−𝑠
𝑖 − (𝜅0 − 𝑠𝑑0 +  𝑙 ⋅ 𝜆−(𝑠−1−𝑙)

𝑠−1

𝑙=1

|𝜃 𝑑𝜆−𝑁+2,…,0
ℝ𝑁−1

→ 𝑚𝑎𝑥 

Use Monte-Carlo integration to calculate and optimize the N-1 dimensional integral. Basic idea: 

I =  𝑓 𝑥 𝑔 𝑥 𝑑𝑥 

Simulate 𝑥1, … , 𝑥𝑚  with 𝑥𝑖~𝑔 

𝐼 =
1

𝑚
 𝑓(𝑥𝑖)𝑚

𝑖=1  

Here: Simulate 𝑥1, … , 𝑥𝑚 trends according to 𝑥𝑙 = 𝜆−𝑁+2, … , 𝜆0 𝑙   with 𝜆𝑗~𝑔 

Calculate 𝐼 =
1

𝑚
  𝑓𝒩(𝜖𝑗

𝑖|𝜃, 𝑥𝑙)0
𝑗=−𝑁

𝑚
𝑙=1 for 𝑖 = 1,2 

Starting in t = 0 we simulate historic trends. The estimated parameters can be used for 

projections directly. 
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Parameter estimation 

Alternatives III 

A first example: NLD-males (constant 

volatility) with 1.4 Mio trials 

𝜇 = −5, 𝜎2 = 0.7, 𝑝 = 0.0635, 𝜎𝜖
2 = 0.0005, 𝜅 0 =

− 2.266, 𝑑0 = −0.01977. Starting in 2012 we 

simulate historic paths 

Advantages: Maximum of consistency in 

forecasts, flexibility on distributional 

assumptions 

Disadvantages and open issues: 

No historic trends 

Trends 𝑥𝑙 with a high likelihood 

( 𝑓𝒩 𝜖𝑗
𝑖 𝜃, 𝑥𝑙0

𝑗=−𝑁 ) are extremely rare 

Huge number of simulations necessary 

Dominated by very few simulations 
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