Downside Risk Management of a Defined Benefit Plan Considering Longevity Basis Risk

Yijia Lin University of Nebraska - Lincoln Ken Seng Tan University of Waterloo Ruilin Tian North Dakota State University Jifeng Yu University of Nebraska - Lincoln

8th Int'l Longevity Risk and Capital Markets Solutions Conference Waterloo, Canada September 7, 2012

Downside Risk Management of a Defined Benefit Plan

Existing Literature on Pension Downside Risk Management

- Capital market risk and longevity risk in defined benefit plans
- Control total pension cost
 - Delong et al. (2008); Josa-Fombellida and Rincon-Zapatero (2004); Cox et al. (2011); and others
 - Downside risk management: Maurer et al. (2009)
- Control pension underfunding
 - Haberman (1997); Haberman et al. (2000); Owadally and Habermana (2004); Habermana and Sung (2005); Chang et al. (2003); Kouwenberg (2001); and others
 - Downside risk management: Bogentoft et al. (2001)

These papers do not control downside risk arising from extreme underfunding and excessive total pension cost at the same time.

・ロト ・回ト ・ヨト ・ヨト

Outline

- We propose an optimization model by imposing two conditional value at risk (CVaR) constraints to control tail risk related to pension funding status and total pension cost.
- We investigate optimal longevity risk hedge ratios with basis risk.
 - Basis risk arises from the mismatch between a plan's actual longevity risk and the risk of a reference population underlying a hedging instrument.
 - Two longevity risk hedging strategies: the ground-up hedging strategy and the excess-risk hedging strategy.
 - The excess-risk hedging strategy is much more vulnerable to longevity basis risk.

・ロト ・回ト ・ヨト ・ヨト

Basic Framework

► The pension underfunding/surplus at time *t*, *UL_t*:

$$UL_t = PBO_t - PA_t - C \tag{1}$$

Total underfunding liability TUL before retirement T

$$TUL = \sum_{t=1}^{T} \frac{UL_t}{(1+\rho)^t}$$

► Total pension cost TPC (Maurer, Mitchell and Rogalla, 2009)

$$TPC = \sum_{t=1}^{T} \frac{C + SC_t(1 + \psi_1) - W_t(1 - \psi_2)}{(1 + \rho)^t},$$

where ρ is the valuation rate. The constants ψ_1 and ψ_2 are penalty factors on supplementary contributions SC_t and withdrawals W_t respectively.

Two-Population Mortality Model

Li and Lee (2005)'s Two-Population Mortality Model

$$\ln q(x,t) = s(x) + B(x)K(t) + b(x)k(t) + \epsilon(x,t) \ln q'(x,t) = s'(x) + B(x)K(t) + b'(x)k'(t) + \epsilon'(x,t).$$
(2)

The mortality common risk factor:

$$K(t) = g + K(t-1) + \sigma_K e(t), e(t) \sim N(0,1).$$
 (3)

The country-specific mortality risk factors:

$$k(t) = r_0 + r_1 k(t-1) + \sigma_k e_1(t), \quad e_1(t) \sim N(0,1)$$

$$k'(t) = r'_0 + r'_1 k'(t-1) + \sigma'_k e_2(t), \quad e_2(t) \sim N(0,1).$$
(4)

向下 イヨト イヨト

Objective Function and Optimization Problem

$$\begin{array}{ll} \text{Minimize} & \text{E}\left[\sum_{t=1}^{T}\left(\frac{UL_t}{(1+\rho)^t}\right)^2\right]\\ \text{subject to} & \text{E}(TUL) = 0\\ & \text{CVaR}_{\alpha_{\text{TPC}}}(TPC) \leq \tau\\ & \text{CVaR}_{\alpha_{\text{TUL}}}(TUL) \leq \zeta & (5)\\ & 0 \leq w_i \leq 1, \qquad i = 1, 2, ..., n\\ & \sum_{i=1}^{n} w_i = 1\\ & C \geq 0, \end{array}$$

where the constants ζ and τ are the pre-specified parameters reflecting the plan's downside risk tolerance.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Example Assumptions

- A US cohort joins the plan at age $x_0 = 45$ at t = 0.
- They will retire at T = 20 at age x = 65.
- The initial pension fund M =\$5 million at t = 0
- Annual retirement benefit of B =10 million
- The pension funds are invested equally in three assets:
 - S&P 500 index;
 - Merrill Lynch corporate bond index;
 - 3-month T-bill.
- The plan now makes a normal contribution of C = \$2.5 million annually.
- Pension valuation rate $\rho = 0.08$
- ▶ Penalty factors on supplementary contributions and withdrawals are both equal to ψ₁ = ψ₂ = 0.2

Optimization Results without Hedging—Example 1

Table: Initial and Optimal Pension Strategies without Hedging Given $\zeta=45.86$ and $\tau=34.56$

						CVaR _{95%}	CVaR _{95%}
	W_1	W ₂	W3	С	J	(TUL)	(TPC)
Initial	1/3	1/3	1/3	2.50	1119	45.86	34.56
Optimal	0.14	0.56	0.30	2.65	1019	36.63	34.56

J is the value of the objective function without hedging.

伺下 イヨト イヨト

Optimization Results without Hedging—Example 2

$\zeta = z_1 imes$ CVaR _{95%} (<i>TUL</i>) $_0 = z_1 imes$ 45.86	
$ au = z_2 imes CVaR_{95\%}(\mathit{TPC})_0 = z_2 imes 34.56$	

 $\zeta = 44.71$ and $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$)

w ₁	W ₂	W3	С	J	CVaR _{95%} (<i>TUL</i>)	$CVaR_{95\%}(TPC)$
0.20	0.62	0.18	2.46	1081	42.91	33.70

J is the value of the objective function without hedging.

向下 イヨト イヨト

Two Pension Longevity Risk Hedging Strategies

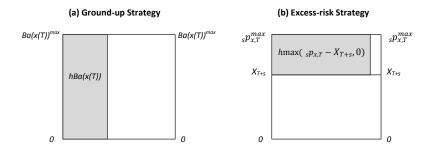


Figure: Two pension longevity risk hedging strategies: the ground-up hedging strategy (on the left) and the excess-risk hedging strategy with s = 1, 2, ... (on the right)

Ground-Up Hedging Strategy with Basis Risk

- The ground-up hedging strategy is subject to a transaction cost factor δ^G and a basis risk penalty factor γ^G
- The US DB plan hedges with a longevity security whose payoffs are based on the UK population mortality experience.
- The upper limits of the two CVaR constraints:

$$\zeta = z_1 \times \text{CVaR}_{95\%}(TUL)_0 = 0.975 \times 45.86 = 44.71,$$

$$\tau = z_2 \times \text{CVaR}_{95\%}(TPC)_0 = 0.975 \times 34.56 = 33.70.$$
(6)

(4月) イヨト イヨト

Table: Optimal Ground-up Hedging Strategies with Longevity Basis Risk Given $\zeta = 44.71$ and $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$)

δ^{G}	0		0.05			0.07		
γ^{G}	0	0.1		0	0.1		0	0.1
CG	2.68	2.68		2.58	2.58		2.49	2.48
w_1^G	0.13	0.13		0.15	0.15		0.18	0.18
w_2^G	0.55	0.54		0.64	0.64		0.64	0.64
w ₁ ^G w ₂ ^G w ₃ ^G h ^G	0.32	0.33		0.21	0.21		0.18	0.18
	18.5%	18.5%		17.6%	17.6%		6.0%	5.7%
JG	993	993		1057	1057		1079	1079

 h^G is the longevity risk hedging ratio and J^G is the value of the objective function with the ground-up strategy.

Table: Optimal Ground-up Hedging Strategies with Longevity Basis Risk Given $\zeta = 44.71$ and $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$)

δ^{G}	0		0.05			0.07		
γ^{G}	0	0.1		0	0.1		0	0.1
CG	2.68	2.68		2.58	2.58		2.49	2.48
w_1^G	0.13	0.13		0.15	0.15		0.18	0.18
w_2^G	0.55	0.54		0.64	0.64		0.64	0.64
w ₁ ^G w ₂ ^G w ₃ ^G h ^G	0.32	0.33		0.21	0.21		0.18	0.18
	18.5%	18.5%		17.6%	17.6%		6.0%	5.7%
ſĠ	993	993		1057	1057		1079	1079

 h^G is the longevity risk hedging ratio and J^G is the value of the objective function with the ground-up strategy.

Table: Optimal Ground-up Hedging Strategies with Longevity Basis Risk Given $\zeta = 44.71$ and $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$)

δ^{G}	0		0.05			0.07		
γ^{G}	0	0.1	0	0.1		0	0.1	
CG	2.68	2.68	2.58	2.58		2.49	2.48	
w_1^G	0.13	0.13	0.15	0.15		0.18	0.18	
w_2^G	0.55	0.54	0.64	0.64		0.64	0.64	
w ₁ ^G w ₂ ^G w ₃ ^G h ^G	0.32	0.33	0.21	0.21		0.18	0.18	
	18.5%	18.5%	17.6%	17.6%		6.0%	5.7%	
JG	993	993	1057	1057		1079	1079	

 h^G is the longevity risk hedging ratio and J^G is the value of the objective function with the ground-up strategy.

Excess-Risk Hedging Strategy with Basis Risk

The US DB plan hedges with a longevity security whose payoffs are based on the UK population mortality experience.

► A series of exercise prices
$${}_{s}\bar{p}'_{x,T} + \sigma_{p'_{x,T}}$$
 at time $T + s, s = 1, 2,$

- The excess-risk hedging strategy is subject to a transaction cost factor δ^E and a basis risk penalty factor γ^E
- ► The upper limits of the two CVaR constraints:

$$\zeta = z_1 \times \text{CVaR}_{95\%}(TUL)_0 = 0.975 \times 45.86 = 44.71,$$

$$\tau = z_2 \times \text{CVaR}_{95\%}(TPC)_0 = 0.975 \times 34.56 = 33.70.$$
(7)

・ 同 ト ・ ヨ ト ・ ヨ ト

Table: Optimal Excess-risk Hedging Strategies with Longevity Basis Risk Given $\zeta = 44.71$, $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$) and Strike Level ${}_s \bar{p}'_{x,T} + \sigma_{p'_{x,T}}$

δ^E	0	0		0.05			0.1		
γ^E	0	0.1		0	0.1		0	0.1	
C^E	2.46	2.46		2.46	2.46		2.46	2.46	
w_1^E	0.17	0.17		0.16	0.17		0.17	0.18	
w ₁ ^E w ₂ ^E w ₃ ^E h ^E	0.67	0.67		0.68	0.67		0.66	0.65	
w_3^E	0.16	0.16		0.16	0.16		0.17	0.17	
	84.8%	4.2%		54.9%	1.1%		39.1%	0.7%	
JE	1078	1079		1078	1079		1079	1079	

 h^E is the longevity risk hedging ratio and J^E is the value of the objective function with the excess-risk strategy.

Downside Risk Management of a Defined Benefit Plan

Table: Optimal Excess-risk Hedging Strategies with Longevity Basis Risk Given $\zeta = 44.71$, $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$) and Strike Level ${}_s \bar{p}'_{x,T} + \sigma_{p'_{x,T}}$

δ^E	0	0		0.05			0.1		
γ^E	0	0.1		0	0.1		0	0.1	
C^E	2.46	2.46		2.46	2.46		2.46	2.46	
w_1^E	0.17	0.17		0.16	0.17		0.17	0.18	
w ₁ ^E w ₂ ^E w ₃ ^E h ^E	0.67	0.67		0.68	0.67		0.66	0.65	
w_3^E	0.16	0.16		0.16	0.16		0.17	0.17	
	84.8%	4.2%		54.9%	1.1%		39.1%	0.7%	
JE	1078	1079		1078	1079		1079	1079	

 h^E is the longevity risk hedging ratio and J^E is the value of the objective function with the excess-risk strategy.

Downside Risk Management of a Defined Benefit Plan

Table: Optimal Ground-up Hedging Ratios Given $\zeta = 44.71$, $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$) and $\gamma^G = 0$

δ^{G}	0	0.05	0.07	0.1
No Basis Risk <i>h^G</i>	18.5%	17.6%	6.4%	0.0%
Basis Risk <i>h^G</i>	18.5%	17.6%	6.0%	0.0%

 h^{G} is the longevity risk hedging ratio with the ground-up strategy.

(4月) イヨト イヨト

Table: Optimal Excess-risk Hedging Ratios Given $\zeta = 44.71$, $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$), Strike Level ${}_s\bar{p}'_{x,T} + \sigma_{p'_{x,T}}$ and $\gamma^E = 0$

δ^E	0	0.05	0.1	0.15
No Basis Risk <i>h^E</i>	100%	100%	99.9%	96.3%
Basis Risk <i>h^E</i>	84.8%	54.9%	39.1%	20.1%

 h^E is the longevity risk hedging ratio with the excess-risk strategy.

向下 イヨト イヨト

Table: Optimal Excess-risk Hedging Ratios Given $\zeta = 44.71$, $\tau = 33.70$ (i.e. $z_1 = z_2 = 0.975$), Strike Level ${}_s\bar{p}'_{x,T} + \sigma_{p'_{x,T}}$ and $\gamma^E = 0$

δ^E	0	0.05	0.1	0.15
No Basis Risk <i>h^E</i>	100%	100%	99.9%	96.3%
Basis Risk <i>h^E</i>	84.8%	54.9%	39.1%	20.1%

 h^E is the longevity risk hedging ratio with the excess-risk strategy.

向下 イヨト イヨト

Why the Excess-risk Hedging Strategy is So Sensitive to Basis Risk?

- A good hedging strategy: a contract whose mortality dynamic is highly correlated with that to be hedged.
- Effectiveness of excess-risk hedging

$$\operatorname{Corr}\left(\sum_{s=1}^{\infty} v^{s} \max\left[{}_{s} p_{x,T} - ({}_{s} \bar{p}_{x,T} + \sigma_{p_{x,T}}), 0\right], \\ \sum_{s=1}^{\infty} v^{s} \max\left[{}_{s} p_{x,T}' - ({}_{s} \bar{p}_{x,T}' + \sigma_{p_{x,T}'}), 0\right]\right) = 0.02$$

Effectiveness of ground-up hedging

$$Corr(a(x(T)), a'(x(T))) = 0.97$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- This paper proposes a model to identify the optimal contribution, asset allocation and longevity risk hedging strategies subject to two CVaR constraints on underfunding and total pension cost for a DB pension plan.
- We investigate how sensitive a hedging strategy is to longevity basis risk.
 - We compare two longevity risk hedging strategies—the ground-up hedging strategies and the excess-risk hedging strategy.
 - The excess-risk hedging strategy is much more sensitive to longevity basis risk than the ground-up hedging strategy.

イロン イヨン イヨン イヨン