A Spatial Cluster Modification of the Lee-Carter Model

Authors: Yin-Yee Leong

and Jack C. Yue

National Chengchi University

Email: csyue@nccu.edu.tw

Outline

- Prolonging Life
- Stochastic Mortality Models
- Spatial Analysis & Mortality Models
- Empirical Studies
- Discussions and Conclusions

Prolonging Life Expectancy

- The life expectancies of all countries have being extended about 0.25 year annually since the end of World War II.
- →Using static life tables to calculate annuity products would under-estimate the values and 30% of under-price is not too much.
- →Stochastic mortality models (e.g., Lee-Carter model) are a popular choice for dealing with the longevity risk.

Impact of using different mortality bases on pension projections

value of deferred RPI-linked annuity

mortality basis	relative to PMA80c2010-
DM4400 0040 4	4000/

No future improvements 100%

CMI projection 117%

Cohort projection 127%

Revised cohort projection 141%

Calculations are for a male, retirement age 65, payments monthly in advance, guaranteed 5 years, 3.5% expense loading, vesting year 2030, 3% real interest

資料來源: Richard Willets – "Mortality Update"

Lee-Carter Model

■ Lee and Carter (1992) proposed the following mortality model for U.S.,

$$\ln(m_{xt}) = \alpha_x + \beta_x \kappa_t + \varepsilon_{xt}$$

where

 $m_{xt} \rightarrow$ Central Death Rate of age x, at time t

 $K_t \rightarrow \text{Intensity of Mortality at time } t \text{ (linear!)}$

 $\alpha_x \rightarrow$ Average Mortality of age x

 $\beta_x \rightarrow$ Tendency of Mortality change for age x

Empirical Evidence for LC Model

LC Model provides fairly accuracy forecasts for the countries such as the U.S. and Japan.

Fitting Error of the LC model (Ages 0-99)

MAPE	Japan	France	USA	Taiwan
Male	5.48%	5.47%	4.09%	7.73%
Female	7.34%	4.89%	3.26%	7.96%

Source: Table 2 from Yang et al. (2010)

Some Concerns in using LC Model

- However, the parameters α_x and β_x are found to change over time, and the parameter κ_t is also not linear in time.
- Several modifications have been proposed:
- →2 or more period effects: Bell (1997), Yang et al. (2010)
- → Cohort effect: Renshaw and Haberman (2006)
- →Functional Analysis: Cairns et al. (2006), Hyndman et al. (2006).

β_x Estimate in Japan

Japan Female

4

β_x Estimate in France

Residual Analysis of LC Model

- The residual diagnoses of LC model show that the assumption of normality, independence, and constant variance of the errors are questionable.
- → Debón et al. (2008) used geo-statistical analysis and found the errors are correlated spatially (i.e., variogram).
- →We found that the errors are auto-correlated as well, and Moran's I and Geary's C both are significant.

LC model -- Residual Analysis

Note: There may exist cohort effects (diagonal).

Spatial Analysis with LC Model

- Spatial in-homogeneity can be handled in two ways
- → Mean sift for different "locations"
- → Applying spatial covariance
- We shall adapt the first approach and apply the cluster detection technique. In other words, the cohort effect can be treated as "cluster."

What are clusters?

• A bounded group of occurrences*related to each other through some social or biological mechanism, or having a common relationship some other event or circumstance.

- SaTScan (Kulldorff & Nagarwalla, 1995)
- →recommended by National Cancer Institute and proved to be very effective

Application to National Health Insurance

Number of out-patient visits in Taiwan

Significant increase

Significant decrease

Spatial LC Model

Extend the LC model to incorporate cluster effect:

$$\log(m_{xt}) = \alpha_x + \beta_x k_t + \sum_{r=1}^{s} c_r d_{r,xt} + \varepsilon_{xt}$$

$$d_{r,xt} = \begin{cases} 1, & \text{if cluster } r \text{ is at location } (x,t) \\ 0, & \text{otherwise} \end{cases}$$

→In other words, we add a mean shift on particular locations.

Simulation Study

• We use simulation to evaluate the spatial LC model, assuming that there is a mean shift (i.e., cluster) or cohort effect.

Slope Distortion for Different Periods

The estimates of age parameter β_x will be quite different, if the data are separated into two periods.

Slope Distortion

Bias rate of \hat{m}_{xt} (LC)

→ Residuals show obvious sign of cluster!

Better Estimate in Age Parameters α_x & β_x

Better Estimate in time Parameters κ_t as well!

Sampling distribution of Residuals

→ The normality test also supports the Spatial LC model.

Empirical Study

We use the data from the Human Mortality
 Database to evaluate the proposed approach.

Country	Japan	France	USA	Taiwan
Data	1950~	1950~	1950~	1970~
Period	2009	2004	2004	2009

Evaluation Criteria

- Two error criteria are used:
- → Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|m_{xt} - \hat{m}_{xt}|}{m_{xt}} \times 100\%$$

→ Bayesian Information Criterion (BIC)

$$BIC = l(\hat{\phi}_r) - \frac{1}{2}v_r \log(n)$$

Note: BIC is designed to avoid over-parameterization.

Empirical Study (conti.)

• The proposed approach has smaller fitting errors (MAPE).

	Male		Female	
	LC	SLC	LC	SLC
Japan	5.70%	3.72%	8.35%	4.15%
France	5.12%	4.05%	4.42%	3.34%
USA	3.74%	3.22%	3.08%	2.31%
Taiwan	5.76%	5.20%	4.18%	3.64%

Empirical Study (conti.)

 The proposed approach also has larger (better) results with respect to.

	Male		Female	
	LC	SLC	LC	SLC
Japan	1370.59	1456.85	1388.01	1546.61
France	1211.51	1276.48	1389.56	1459.84
USA	1287.12	1330.19	1467.74	1522.20
Taiwan	847.08	868.16	974.65	1007.03

Normal Quantile Plot of Japan Mortality Data

Conclusions

- We propose a spatial modification of the Lee-Carter model. Simulation and empirical studies show positive evidence for the method.
- →Cluster effect is another way to interpret the cohort effect.
- →Spatial modification can be applied to other stochastic mortality models (e.g., PCA).
- We suggest checking the autocorrelation first and then apply the spatial modification.

Discussions

- Cluster detection techniques can be used to improve the estimation of mortality rates.
- → They are not designed for forecasting mortality.
- Empirically, it is difficult to distinguish clusters and clustering (autocorrelation).
- SaTScan tends to have larger false positive error.
- → We can choose other detection methods.
- → Multiple testing!

Thank you!!