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@ Variable annuity (VA) liabilities are “mark-to-market".
© Financial guarantees embedded in VAs financed through fee charges.

© Constant fee rate leads to misalignment between insurer income streams and
the market value of liabilities.

Q@ VIX index negatively correlated with equity, i.e. leverage effect.
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© Financial guarantees in VAs similar to put option: increases when volatility
increases.

© VIX-linked fee structure: better alignment of VA guarantees with fees paid
by policyholders.

© Adverse selection with constant fee: policyholders lapse when market is
stable, and refrain from lapsation when market is volatile.

@ VIX-linked fee: fee is low when market is stable, hence less incentive to lapse.
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SunAmerica Links VA Rider Fees to Volatility
Index

By Editor Test ~ Wed, Feb 3, 2010 SHARE ON:

Designed for the Polaris series of variable annuities, the two new guaranteed minimum
withdrawal benefits are called Income Plus 6% and Income Builder 8%.

SunAmerica, the AIG unit that bills itself as “The Retirement Specialist,” has
launched two new variable annuity living benefits whose rider fees fluctuate with the
VIX, the index of S&P 500 equity volatility at the Chicago Board Options Exchange.

By sharing some of the hedging risk with the contract owner, the insurer hopes to
maintain a relatively generous bonus during the accumulation stage and payout rate
during the distribution phase. SunAmerica has apparently not chosen to simplify or
strip down its variable annuities, but to offer benefits as rich as possible while still
“de-risking.”

Designed for the Polaris series of variable annuities, the two guaranteed minimum
withdrawal benefits are called Income Plus 6% and Income Builder 8%. They have

distinct but overlapping characteristics.

Both contracts encourage the contract owner to postpone withdrawals by promising
to double the guaranteed income base (the purchase premium, initially, and the

amount on which payouts will be based) if the contract is undisturbed fer 12 years.



-

$250,000 but less than $500,000. . .. .. ..o ie ittt it 250% 0.36%

$500,000 but less than $1,000,000. . . . . ... ...t e 200% 0.29%

$1,000,000 0P mMOPE. . . ot i e e e 1.25% 0.18%

The initial Premium Based Charge is determined by the sum of Premiums received during the first contract quarter and the Accumulated P:emnum
Breakpoint achieved by that amount. After the first contract Qua(oer Anniversary, the Premium Based Charge for each sub Premium is d ined
based on the sum of all Premi (including the Premium) and the Accumulated Premium Breakpoint achieved by the sum of Premiums as of

the Premium receipt date. Please see EXPENSES below.
Base Contract Expenses: If you do not elect any optional features, your total Base Contract Expense would be 0.95% annually.
Beneficiary Expenses if Extended Legacy Is Elected

If your Beneficiary elects to take the death benefit amount under the Extended Legacy Program, we will deduct an annual Base Contract Expense of 0.85%
which is deducted daily from the average daily ending net asset value allocated to the Variable Portfolios. Please see Extended Legacy Program under
DEATH BENEFITS.

The fee is calculated as a percentage of the Income Base which determines the basis of the guaranteed benefit. The annual fee is dedueted from your
contract value at the end of the first quarter following election and quarterly thereafter. For a complete description of how the Income Base is calculated,
please see OPTIONAL LIVING BENEFIT below.

The current Initial Annual Fee Rate is set forth in the Rate Sheet Supplement and guaranteed not to change for the first Benefit Year. Subsequently, the
fee rate may change quarterly subject to the parameters identified in the table below. Any fee adjustment is based on a non-discretionary formula tied to
the change in the Volatility Index (“VIX®"), an index of market volatility reported by the Chicago Board Options Exchange. In general, as the average
value of the VIX decreases or increases, your fee rate will decrease or increase accordingly, subject to the maximums identified in the Fee Table and the
minimums described below. Please see APPENDIX C — FORMULA AND EXAMPLES OF CALCULATIONS OF THE POLARIS INCOME
BUILDER DAILY FLEX FEE. If you purchased your contract prior to May 1, 2023, please see APPENDIX F - LIVING BENEFITS FOR
CONTRACTS ISSUED PRIOR TO MAY 1, 2023 for the Initial Annual Fee applicable to your contract.

Maximum Annualized
Fee Rate Decrease or
Minimum Annual Increase Each Benefit
Number of Covered Persons Fee Rate Quarter*
One Covered Person 0.60% 10.40%
Two Covered Persons 0.60% 10.40%

* The fee rate can increase or decrease no more than 0.10% each quarter (0.40%/ 4).



VIX-linked fee structure [Cui et al., 2017]:

¢ =c+mVIX2

Valuation of maturity benefit

Better alignment between fee and net liability

Impact on surrender incentives? See also MacKay et al. [2017]

Other ways to link the fee to the VIX index?
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VIX-linked fee structure [Cui et al., 2017]:

¢ =c+mVIX2

Valuation of maturity benefit

Better alignment between fee and net liability

Impact on surrender incentives? See also MacKay et al. [2017]

Other ways to link the fee to the VIX index?

» Continuous-time Markov chain (CTMC) approximation
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Plan of presentation

© Overview of CTMC approximation method
© Market model & variable annuity contract
© Valuation of variable annuity contract via CTMC

@ Numerical examples
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CTMC approximation



Selected literature on CTMC approximation

e |dea introduced in Kushner [1990]

e Approximation of one-dimensional Markov processes in Mijatovi¢ and
Pistorius [2013], Lo and Skindilias [2014], Cai et al. [2019]

e Analysis of convergence and approximation error in Li and Zhang
[2018],Zhang and Li [2019]

e Application to two-dimensional stochastic volatility models by Cai et al.
[2015],Cui et al. [2018], Cui et al. [2019], Cai et al. [2019]
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CTMC approximation in one dimension

o Let S = {S:}o<t<7 be a time homogeneous diffusion process defined as the
solution to

with state-space S.
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CTMC approximation in one dimension

o Let S = {S:}o<t<7 be a time homogeneous diffusion process defined as the
solution to

with state-space S.

e Construct SN = {SN}o<.<7, a continuous time Markov chain with

o finite support {s;,...,sy} C S, and
e rate matrix (or generator) Q = (gjj)i<ij<n.

11/47



e Elements of rate matrix Q satisfy

qii <0, 1<i<N,
4ij = 0, L<ij<Ni#],
N
> 4 =0, L<j<N.
Jj=1
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e Elements of rate matrix Q satisfy

qii <0, 1<i<N,
4ij = 0, L<ij<Ni#],
N
> 4 =0, L<j<N.
Jj=1

e Transition probability matrix is P(t) = (p;(t))1<ij<n, Where
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Choosing the rate matrix @

e We want SN = S as N — .

e Local consistency conditions (see Kushner [1990]):

E[Stl\-li-h - StN’]:t] = E[St1n — Se|Fi] = pu(Se)h
E[(Stl\—ll-h - SrN)2|]:t] = E[(St4n — 5t|]:t)2] ~ o(St)h

e Resulting rate matrix is tridiagonal:

gu qi2 O
q21 g2 Q23
0 g3 gs3

0 0 O

0 0 0
0o ... 0 0
qz4 ... 0 0
0 ... gnn-1 ann |
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Approximation of vanilla option price

Price of an option with discounted payoff ¢ : S +— R™ can be approximated by

E[®(ST)] ~ E[o(57)]
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E[®(ST)] ~ E[o(57)]

N
=) o(s)P(S7 = 513’ = siv)
Jj=1
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Approximation of vanilla option price

Price of an option with discounted payoff ¢ : S +— R™ can be approximated by
E[®(S7)] ~ E[o(S7)]
N
- ZdD(sj)P(5¥ = 5i|Sy = si-)
=1
= Je,IeQTq)(SN),

where So = S = s;, ®(SV) = (®(s1),...,P(sn))" and e« is the i*-th
canonical basis vector.
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CTMC approximation in two dimensions

Consider a (time-homogeneous) stochastic volatility model

dSt = [LS(Vt)St dt + US(Vt)St th(l)
dV, = uy(V,) dt + oy (Ve) dW,

with d(W®, W@y, — p de.
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CTMC approximation in two dimensions

Consider a (time-homogeneous) stochastic volatility model

dSt = [LS(Vt)St dt + US(Vt)St th(l)
dV, = uy(V,) dt + oy (Ve) dW,

with d(W®, W@y, — p de.

How can we construct a CTMC approximating (S, V)?
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Main steps to approximating (S, V') via CTMC

@ V™. CTMC approximation of V.

@ (S, V™): Regime-switching diffusion process, remove the correlation
between W) and W),

Q@ (S™N vm): CTMC approximation of (S, V).

Remarks:
° (5"7:’\’7 V™) has state-space {s1,...,sn} X {vi...,vpn} CR2
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Main steps to approximating (S, V') via CTMC

@ V™. CTMC approximation of V.

@ (S, V™): Regime-switching diffusion process, remove the correlation
between W) and W),

Q@ (S™N vm): CTMC approximation of (S, V).

Remarks:
° (5"7:’\’7 V™) has state-space {s1,...,sn} X {vi...,vpn} CR2

e Can also consider the process Y™V taking value in {1,..., mN} with same
generator as (S™N vm).

e See Cui et al. [2018] for more details.
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Approximating the volatility process

o Let V™ = {V"}o<i<7 be a CTMC with support Sy = {w,..., v} and
generator Q™.

e Choose Q™ as in the one-dimensional case, so that V™ = V as m — oc.
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Constructing a regime-switching diffusion process

e Define X = {X;}o<t<7 by

X =In(S:) — pf(Ve),

where f(x) = [z gy

ov(u)

e Then

W_, @
w—pw® . , o
where Wy = P+ —2%t_ is 3 Brownian motion independent of W),

\/ 1—p?
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Constructing a regime-switching diffusion process (cont'd)

e Define X = {X["}o<:t<7 as the solution of

dX" = pux(V{") dt + ox (V") dW*(t).

o Let S™ = {S{n}ogth and

Sm = X +rf (V)

Then S™ is the regime-switching diffusion process approximating S.
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CTMC approximation of (S™, V™)

o Let X™N = {X""} o<1 be the CTMC approximating X", with finite
support Sx = {x1,...,Xn}-
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CTMC approximation of (S™, V™)

o Let X™N = {X""}o_i<7 be the CTMC approximating X", with finite
support Sx = {x1,...,xn}-
» Transition probability depends on the state of V™!
e Construct m generators G}, 1 < k < m representing transition rates given
each value v.
o (X™N V™) has state-space Sx X Sy and transition rate matrix

quly + GV G2y " Gimln
cmN _ g1y g2lv+ Gy - Gomin
Gm1ln am2In o QGumIn + GV
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CTMC approximation of (S™, V™)

o Let X™N = {X""}o_i<7 be the CTMC approximating X", with finite
support Sx = {x1,...,xn}-
» Transition probability depends on the state of V™!
e Construct m generators G}, 1 < k < m representing transition rates given
each value v.
o (X™N V™) has state-space Sx X Sy and transition rate matrix

qulv + G qi2ln o Gimln
cmN _ G1ln Glv + G - Gomln
qnﬂIN anIN e qanN‘+’Cig

o Define SN = X" "of (V) for 0 < t < T.
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Application to VAs



Market model

(S, V) follows a stochastic volatility model

dS, = rSedt + os(V;)SedW, Y,
dV, = py(Ve)dt + oy (Ve)dW,
with r >0, Sy >0, Vo > 0 and d(W®, W?), = p dt.

Ex. of models: Heston, 3/2, a-Hypergeometric, Hull-White.
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Variable annuity contract

e Contract maturity: T > 0.

e VA account process F = {F;}o<t<T, With

dF; dS;
T4tV
Ft St ( 9 1.')7

where C(t, V;) is continuous or bounded.
e Maturity benefit: max(G, Fr), G > 0.

e Early surrender payout g(t, V;)F;, with g : [0, T] x Sy — [0, 1],
non-decreasing in t.
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Why call C(t, V) “VIX-linked"?

e Can write the VIX index as
1 t+71
VIX% =E, {_/ a?(Vs) ds] = h(V,),
t

n
with 7 = 30/365 for some function h: R* — R* (see Cui et al. [2024]).

o Heston model: VIX? = A+ BV,, with A and B constants depending on the
model parameters (see Zhu and Zhang [2007]).

e Examples of fee functions:

C(t,V;) = c+ mVIX?
C(t, V) = min(c + m VIX3, K)
C(t, Vi) = c+ m VIX;
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Pricing the VA contract

e Optimal stopping problem because of early surrenders
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Pricing the VA contract

e Optimal stopping problem because of early surrenders

e Reward function:

g(t,y)x, t<T
t —
#(t,x.y) {max(G,x), t=T.

e Value of the contract at t, 0 <t < T:

sup E, ., [e T 0(r, F,, Vi), (1)
T€T,T

where Eq ., [] = E[|F, = x. V, = y].
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When are early surrenders suboptimal?

Proposition
If C(t,y) and g(t, y) satisfy

(2.9) + os()ov () + ey (e.) + T 0g, (2.y) — C(e.e(e.y) > 0,

for all (t,y) € [0, T] x Sy, T is an optimal stopping time for (1).

e Then {e "F;}o<t<T1 is a submartingale.
e “Always better to wait."
e Extends the result of MacKay et al. [2017].
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Pricing the VA contract with early surrenders

e Discretize [0, T] in M subintervals of length h = T /M and use dynamic
programming.

e Price process of the (Bermudan) contract B = {B;};=o....m, with

B; = B(ih, Fi, Vi) obtained by recursion:

.....

Bu = o(T, Fr, V1)
B; = max (go(ih, Fin, Vin), e_rhEih,F;h,\/;h[BHl]) ; 1=0,...,M—-1
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Approximating the price of the contract via CTMC

e Replace (F, V) by a CTMC approximation (F™N V™) with state-space
{(fh V1)7 ) (me, VmN)}-
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Approximating the price of the contract via CTMC

e Replace (F, V) by a CTMC approximation (F™N V™) with state-space
{(fh V1)7 ) (me, VmN)}-
e Define the vector-valued price process B™N via recursion

By = oM,

BI.'"’N = max{q)gz), e_rheth’NB,-'i’{V i=0,...,M—1,
where

@(1) = (maX(G7 6))]—:1 ..... mN

@ = (g(ih, v)) 1, .o i=0,... . M-1

28 /47



Approximating the price of the contract via CTMC

e Replace (F, V) by a CTMC approximation (F™N V™) with state-space
{(fh V1)7 ) (me, VmN)}-
e Define the vector-valued price process B™N via recursion

BN = e,
BI.'"’N = max{q)gz) —rh thNB,'i{V i=0,...,M—1,
where
) = (max(G. )21
®®) = (g(ih, v)f), . i=0,...,M—1.
e Then B(0, o, Vo) = e-BJ"", where (Fy, Vo) = (fi+, vi-).
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CTMC approximation of the optimal surrender strategy

e Continuation region:

e = {(i. f.v)

B (ih, 6, v;) > glih, y)f }

with B™"(ih, £, v;) = ;BN

IR

e If applicable, the optimal surrender surface is defined as
{Sm’N("/% Vj)}i:O,..,M—l,jzl...,mN, with

s™N(ih, v;) = inf{fj € {f,.... fan} BMN(ih, £, v)) < gli, v,)f}.
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Numerical examples
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Market model & VA contract

o Heston model:

° as(y) =y:
o pv(y) =r(0—y), ov(y) = o/,
o V=003, k=2 0=0.04 06 =02 p=—0.75 r = 0.03.
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Market model & VA contract

o Heston model:

o os(y) = y:
o pv(y) =r(0—y), ov(y) = o/,
o V=003, k=2 0=0.04 06 =02 p=—0.75 r = 0.03.

e VA contract:

o T =10;
o G = Fy=100;
° g(t,y) — e—0.002(T—t).

e VIX-linked fee structures:
o c(Vy) = c+ mVIX?
o c(V4) = min(c + mVIX2, K);
» Fee structure is “actuarially fair” if Fp = E[e™"" max(G, F7)].
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CTMC parameters

e Non-uniform grid of Tavella and Randall [2000].
» Improved fit to transition density of V with fewer points.
» Non-uniform grid increase stability and improve convergence, less sensitive to
choice of boundary values (see Lo and Skindilias [2014],Leitao Rodriguez
et al. [2021]).
e Volatility process:
e m=50
o v = W/100, vp, =7Vp
e Fund process
e N =2000
e X1 = X0/106, xy = 1.95Xp, with Xy = |n(50) — Vop/O'
e Number of time steps M = 500T (for dynamic programming), i.e. 500 time
steps per year.
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Fair fee structures

m* = 0.000 0.1500  0.3000  0.4345
c* = 1.5338% 1.0036% 0.4741% 0.000%

Table: Fair fee vector (c*, m*), C(V;) = ¢ + mVIX2.

m* = 0.000 0.1500  0.3000  0.4927
c* = 15338% 1.0112% 0.5415% 0.000%

Table: Fair fee vector (c*, m*), C(V;) = min(c + mVIX2, K), K = 2%.
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Value of early surrenders — Uncapped fee

m* 0.0000 0.1500 0.3000 0.4345

c* 1.5338% 1.0036% 0.4741% 0.000%

VA without ES | 100.00 100.00 100.00 100.00

VA with ES 103.02 103.01 103.00 103.00
Value of ES 3.02 3.01 3.00 3.00

Table: Value of VA contract with and without early surrenders using CTMC
approximation.
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Value of early surrenders — Capped fee

m* 0.0000 0.1500 0.3000 0.4927
c* 1.5338% 1.0112% 0.5415% 0.000%
VA without ES | 100.00 100.00 100.00 100.00
VA with ES 103.02 103.01 102.99 102.98
Value of ES 3.02 3.01 2.99 2.98

Table: Value of VA contract with and without early surrenders using CTMC
approximation, K = 2%.

39/ 47



m*=0.15

m'=0

m* = 0.4927

m =03




Fund Value

3

3

3

120

100

sqrtly) = 0.087016
sqrtly) = 0.13882
———— sqrtiy) = 0.30434
sqrty) = 0.42772

8 9 10

Q¥



Fund Value

3

2

3

120

100

m* = 0.4927

—— sqri(y) = 0.087016
—— sqri(y) = 0.13882
— sqri(y)= 0.30434
——— sqri(y) = 0.42772

Q¥



Fund Value

g

m* =0
rt(v) = 0.087016 rt(v) = 0.13882 rt(v) = 0.30434 rt(v) = 0.42772 =015
(SO =00 T 220 Baty) =04 T 220 St} =03 T 230 L] =04 T -~ mr=03
m" =04927
1 200 1 200 1 200
. 180 g 180 190
® o °
E] s El
g g g
1 gz 1 3160 2 160
g 2 2
5 5 5
I fri fri
140 - 140 140 -
120 120 120 1
L . . — . . L . — . L . - . . . .
2 4 6 8 10 6 z 4 6 B 10 o 2z 4 & 8 10 0o 2 4 6 8 10
t t t t
o [ = = Q¥




Concluding remarks

e CTMC approximations are fast and accurate.

e Interplay between fee rate and surrender charge can reduce surrender
incentives.

e VIX-linked fees can mitigate exposure to volatility and surrender risk.
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