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Motivation

1 Variable annuity (VA) liabilities are “mark-to-market".
2 Financial guarantees embedded in VAs financed through fee charges.
3 Constant fee rate leads to misalignment between insurer income streams and

the market value of liabilities.
4 VIX index negatively correlated with equity, i.e. leverage effect.

2 / 47



Motivation

1 Financial guarantees in VAs similar to put option: increases when volatility
increases.

2 VIX-linked fee structure: better alignment of VA guarantees with fees paid
by policyholders.

3 Adverse selection with constant fee: policyholders lapse when market is
stable, and refrain from lapsation when market is volatile.

4 VIX-linked fee: fee is low when market is stable, hence less incentive to lapse.
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Motivation

VIX-linked fee structure [Cui et al., 2017]:

ct = c + m VIX2
t

• Valuation of maturity benefit

• Better alignment between fee and net liability

• Impact on surrender incentives? See also MacKay et al. [2017]

• Other ways to link the fee to the VIX index?

I Continuous-time Markov chain (CTMC) approximation
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Plan of presentation

1 Overview of CTMC approximation method

2 Market model & variable annuity contract

3 Valuation of variable annuity contract via CTMC

4 Numerical examples
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CTMC approximation
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Selected literature on CTMC approximation

• Idea introduced in Kushner [1990]

• Approximation of one-dimensional Markov processes in Mijatović and
Pistorius [2013], Lo and Skindilias [2014], Cai et al. [2019]

• Analysis of convergence and approximation error in Li and Zhang
[2018],Zhang and Li [2019]

• Application to two-dimensional stochastic volatility models by Cai et al.
[2015],Cui et al. [2018], Cui et al. [2019], Cai et al. [2019]
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CTMC approximation in one dimension

• Let S = {St}0≤t≤T be a time homogeneous diffusion process defined as the
solution to

dSt = µ(St) dt + σ(St) dWt

with state-space S.

• Construct SN = {SN
t }0≤t≤T , a continuous time Markov chain with

finite support {s1, . . . , sN} ⊂ S, and
rate matrix (or generator) Q = (qij)1≤i ,j≤N .
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More about SN

• Elements of rate matrix Q satisfy

qi ,i ≤ 0, 1 ≤ i ≤ N ,

qi ,j ≥ 0, 1 ≤ i , j ≤ N , i 6= j ,
N∑
j=1

qi ,j = 0, 1 ≤ j ≤ N .

• Transition probability matrix is P(t) = (pi ,j(t))1≤i ,j≤N , where

P(t) = etQ =
∞∑
k=0

(tQ)k

k!
,

where pi ,j(t) = P(SN
t = sj |SN

0 = si), t > 0.
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Choosing the rate matrix Q

• We want SN ⇒ S as N →∞.
• Local consistency conditions (see Kushner [1990]):

E[SN
t+h − SN

t |Ft ] = E [St+h − St |Ft ] ≈ µ(St)h

E[(SN
t+h − SN

t )2|Ft ] = E [(St+h − St |Ft)
2] ≈ σ(St)h

• Resulting rate matrix is tridiagonal:

Q =


q11 q12 0 0 . . . 0 0
q21 q22 q23 0 . . . 0 0
0 q32 q33 q34 . . . 0 0
... . . . ...
0 0 0 0 . . . qN,N−1 qNN


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Approximation of vanilla option price

Price of an option with discounted payoff Φ : S 7→ R+ can be approximated by

E[Φ(ST )] ≈ E[Φ(SN
T )]

=
N∑
j=1

Φ(sj)P(SN
T = sj |SN

0 = si∗)

= e>i∗e
QTΦ(SN),

where S0 = SN
0 = si∗ , Φ(SN) = (Φ(s1), . . . ,Φ(sN))> and ei∗ is the i∗-th

canonical basis vector.
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CTMC approximation in two dimensions

Consider a (time-homogeneous) stochastic volatility model

dSt = µS(Vt)St dt + σS(Vt)St dW
(1)
t

dVt = µV (Vt) dt + σV (Vt) dW
(2)
t ,

with d〈W (1),W (2)〉t = ρ dt.

How can we construct a CTMC approximating (S ,V )?
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Main steps to approximating (S ,V ) via CTMC

1 Vm: CTMC approximation of V .

2 (S ,Vm): Regime-switching diffusion process, remove the correlation
between W (1) and W (2).

3 (Sm,N ,Vm): CTMC approximation of (S ,V ).

Remarks:
• (Sm,N ,Vm) has state-space {s1, . . . , sN} × {v1 . . . , vm} ⊂ R2.

• Can also consider the process Y mN taking value in {1, . . . ,mN} with same
generator as (Sm,N ,Vm).

• See Cui et al. [2018] for more details.
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Approximating the volatility process

• Let Vm = {Vm
t }0≤t≤T be a CTMC with support SV = {v1, . . . , vm} and

generator Qm.

• Choose Qm as in the one-dimensional case, so that Vm ⇒ V as m→∞.
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Constructing a regime-switching diffusion process

• Define X = {Xt}0≤t≤T by

Xt = ln(St)− ρf (Vt),

where f (x) =
∫ x

·
σS (u)
σV (u)

du.

• Then

dXt = µX (Vt) dt + σX (Vt) dW ∗(t),

where W ∗
t = W

(1)
t −ρW

(2)
t√

1−ρ2
is a Brownian motion independent of W (2).
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Constructing a regime-switching diffusion process (cont’d)

• Define Xm = {Xm
t }0≤t≤T as the solution of

dXm
t = µX (Vm

t ) dt + σX (Vm
t ) dW ∗(t).

• Let Sm = {Sm
t }0≤t≤T and

Sm
t = eX

m
t +ρf (Vm

t ).

Then Sm is the regime-switching diffusion process approximating S .
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CTMC approximation of (Sm,Vm)

• Let Xm,N = {Xm,N
t }0≤t≤T be the CTMC approximating Xm, with finite

support SX = {x1, . . . , xN}.
I Transition probability depends on the state of Vm!

• Construct m generators GN
k , 1 ≤ k ≤ m representing transition rates given

each value vk .
• (Xm,N ,Vm) has state-space SX × SV and transition rate matrix

Gm,N =


q11IN + GN

1 q12IN · · · q1mIN
q21IN q22IN + GN

2 · · · q2mIN
...

... . . . ...
qm1IN qm2IN · · · qmmIN + GN

m


• Define Sm,N

t = eX
m,N
t +ρf (Vm

t ) for 0 ≤ t ≤ T .
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Application to VAs
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Market model

(S ,V ) follows a stochastic volatility model

dSt = rStdt + σS(Vt)StdW
(1)
t ,

dVt = µV (Vt)dt + σV (Vt)dW
(2)
t ,

with r ≥ 0, S0 > 0, V0 > 0 and d〈W (1),W (2)〉t = ρ dt.

Ex. of models: Heston, 3/2, α-Hypergeometric, Hull-White.
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Variable annuity contract

• Contract maturity: T > 0.

• VA account process F = {Ft}0≤t≤T , with

dFt

Ft
=

dSt

St
− dC (t,Vt),

where C (t,Vt) is continuous or bounded.

• Maturity benefit: max(G ,FT ), G > 0.

• Early surrender payout g(t,Vt)Ft , with g : [0,T ]× SV 7→ [0, 1],
non-decreasing in t.
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Why call C (t,Vt) “VIX-linked”?

• Can write the VIX index as

VIX2
t = Et

[
1
τ

∫ t+τ

t

σ2
s (Vs) ds

]
= h(Vt),

with τ = 30/365 for some function h : R+ 7→ R+ (see Cui et al. [2024]).

• Heston model: VIX2
t = A + BVt , with A and B constants depending on the

model parameters (see Zhu and Zhang [2007]).

• Examples of fee functions:

C (t,Vt) = c + m VIX2
t

C (t,Vt) = min(c + m VIX2
t ,K )

C (t,Vt) = c + m VIXt
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Pricing the VA contract

• Optimal stopping problem because of early surrenders

• Reward function:

ϕ(t, x , y) =

{
g(t, y)x , t < T

max(G , x), t = T .

• Value of the contract at t, 0 ≤ t ≤ T :

sup
τ∈Tt,T

Et,x ,y [e−r(T−t)ϕ(τ, Fτ ,Vτ )], (1)

where Et,x ,y [·] = E[·|Ft = x ,Vt = y ].
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When are early surrenders suboptimal?

Proposition
If C (t, y) and g(t, y) satisfy

gt(t, y) + [ρσS(y)σV (y) + µV (y)]gy (t, y) +
σ2
V (y)

2
gyy (t, y)− C (t, y)g(t, y) ≥ 0,

for all (t, y) ∈ [0,T ]× SV , T is an optimal stopping time for (1).

• Then {e−rtFt}0≤t≤T is a submartingale.
• “Always better to wait.”
• Extends the result of MacKay et al. [2017].
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Pricing the VA contract with early surrenders

• Discretize [0,T ] in M subintervals of length h = T/M and use dynamic
programming.

• Price process of the (Bermudan) contract B = {Bi}i=0,...,M , with
Bi = B(ih,Fih,Vih) obtained by recursion:{

BM = ϕ(T ,FT ,VT )

Bi = max
(
ϕ(ih,Fih,Vih), e−rhEih,Fih,Vih

[Bi+1]
)
, i = 0, . . . ,M − 1.
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Approximating the price of the contract via CTMC

• Replace (F ,V ) by a CTMC approximation (Fm,N ,Vm) with state-space
{(f1, v1), . . . , (fmN , vmN)}.
• Define the vector-valued price process Bm,N via recursion{

Bm,N
M = Φ(1),

Bm,N
i = max{Φ(2)

i , e−rhehG
m,NBm,N

i+1 } i = 0, . . . ,M − 1,

where

Φ(1) = (max(G , fj))>j=1,...,mN

Φ
(2)
i = (g(ih, vj)fj)

>
j=1,...,mN , i = 0, . . . ,M − 1.

• Then B(0,F0,V0) ≈ ei∗B
m,N
0 , where (F0,V0) = (fi∗ , vi∗).

28 / 47



Approximating the price of the contract via CTMC

• Replace (F ,V ) by a CTMC approximation (Fm,N ,Vm) with state-space
{(f1, v1), . . . , (fmN , vmN)}.
• Define the vector-valued price process Bm,N via recursion{

Bm,N
M = Φ(1),

Bm,N
i = max{Φ(2)

i , e−rhehG
m,NBm,N

i+1 } i = 0, . . . ,M − 1,

where

Φ(1) = (max(G , fj))>j=1,...,mN

Φ
(2)
i = (g(ih, vj)fj)

>
j=1,...,mN , i = 0, . . . ,M − 1.

• Then B(0,F0,V0) ≈ ei∗B
m,N
0 , where (F0,V0) = (fi∗ , vi∗).

28 / 47



Approximating the price of the contract via CTMC

• Replace (F ,V ) by a CTMC approximation (Fm,N ,Vm) with state-space
{(f1, v1), . . . , (fmN , vmN)}.
• Define the vector-valued price process Bm,N via recursion{

Bm,N
M = Φ(1),

Bm,N
i = max{Φ(2)

i , e−rhehG
m,NBm,N

i+1 } i = 0, . . . ,M − 1,

where

Φ(1) = (max(G , fj))>j=1,...,mN

Φ
(2)
i = (g(ih, vj)fj)

>
j=1,...,mN , i = 0, . . . ,M − 1.

• Then B(0,F0,V0) ≈ ei∗B
m,N
0 , where (F0,V0) = (fi∗ , vi∗).

28 / 47



CTMC approximation of the optimal surrender strategy

• Continuation region:

Cm,N =
{

(i , fj , vj)
∣∣∣Bm,N

i (ih, fj , vj) > g(ih, vj)fj
}
,

with Bm,N
i (ih, fj , vj) = eiBmN

i .

• If applicable, the optimal surrender surface is defined as
{sm,N(ih, vj)}i=0...,M−1,j=1...,mN , with

sm,N(ih, vj) := inf
{
fj ∈ {f1, . . . , fmN}

∣∣∣Bm,N
i (ih, fj , vj) ≤ g(ih, vj)fj

}
.
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Numerical examples
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Market model & VA contract

• Heston model:
σS(y) =

√
y ;

µV (y) = κ(θ − y), σV (y) = σ
√
y ;

V0 = 0.03, κ = 2, θ = 0.04, σ = 0.2, ρ = −0.75, r = 0.03.

• VA contract:
T = 10;
G = F0 = 100;
g(t, y) = e−0.002(T−t).

• VIX-linked fee structures:
c(Vt) = c +mVIX2

t ;
c(Vt) = min(c +mVIX2

t ,K );
I Fee structure is “actuarially fair” if F0 = E[e−rT max(G ,FT )].
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CTMC parameters

• Non-uniform grid of Tavella and Randall [2000].
I Improved fit to transition density of V with fewer points.
I Non-uniform grid increase stability and improve convergence, less sensitive to

choice of boundary values (see Lo and Skindilias [2014],Leitao Rodriguez
et al. [2021]).

• Volatility process:
m = 50
v1 = V0/100, vm = 7V0

• Fund process
N = 2000
x1 = X0/106, xN = 1.95X0, with X0 = ln(S0)− V0ρ/σ

• Number of time steps M = 500T (for dynamic programming), i.e. 500 time
steps per year.
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Fair fee structures

m∗ = 0.000 0.1500 0.3000 0.4345
c∗ = 1.5338% 1.0036% 0.4741% 0.000%

Table: Fair fee vector (c∗,m∗), C (Vt) = c +mVIX2
t .

m∗ = 0.000 0.1500 0.3000 0.4927
c∗ = 1.5338% 1.0112% 0.5415% 0.000%

Table: Fair fee vector (c∗,m∗), C (Vt) = min(c +mVIX2
t ,K ), K = 2%.
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Value of early surrenders – Uncapped fee

m∗ 0.0000 0.1500 0.3000 0.4345
c∗ 1.5338% 1.0036% 0.4741% 0.000%

VA without ES 100.00 100.00 100.00 100.00
VA with ES 103.02 103.01 103.00 103.00
Value of ES 3.02 3.01 3.00 3.00

Table: Value of VA contract with and without early surrenders using CTMC
approximation.
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Value of early surrenders – Capped fee

m∗ 0.0000 0.1500 0.3000 0.4927
c∗ 1.5338% 1.0112% 0.5415% 0.000%

VA without ES 100.00 100.00 100.00 100.00
VA with ES 103.02 103.01 102.99 102.98
Value of ES 3.02 3.01 2.99 2.98

Table: Value of VA contract with and without early surrenders using CTMC
approximation, K = 2%.
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Concluding remarks

• CTMC approximations are fast and accurate.

• Interplay between fee rate and surrender charge can reduce surrender
incentives.

• VIX-linked fees can mitigate exposure to volatility and surrender risk.
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