Covid-19: The Proportionality Hypothesis Revisited

Andrew J.G. Cairns

Heriot-Watt University, Edinburgh

Joint work with David Blake, Amy Kessler, Rohit Mathur and Marsha Kessler

Longevity 18, London, 7-8 September 2023

E > < E >

Outline

- What is the link between Covid-19 death rates and all-cause mortality?
- The three phases of Covid-19: initial pandemic/pre-vaccination phase; vaccination phase; endemic phase
- The Proportionality Hypothesis
- Testing the Proportionality Hypothesis
- Non-Covid excess deaths in the endemic phase

Covid-19 Death Rates, Waves 1 and 2 (up to January 2021)

- Death rates are on a logarithmic scale
- All cause: with and without external causes
- Wave 1: March to August 2020
 - Wave 2: September 2020 to February 2021
- Waves 1, 2 and 2018-all-cause are almost parallel!
- Waves 1 & 2: very similar age profile
- Conclusion: Covid death rates by age are approximately proportional to all-cause mortality (excluding external causes)...

Weekly Covid-19 Death Rates: 2020-23 by English Region

- Considerable variation between regions
- Wave 1: synchronised
 - London leads, but similar timing
 - Very different magnitudes
- Wave 2: not synchronised
 - Wave 2A more focused in the northern regions
 - Wave 2B stronger in the south
- Endemic phase: synchronised

Covid Deaths in 2020 and 2021 as a Percentage of All Deaths in 2018

- Data: Annual Covid deaths for 6791 medium-sized neighbourhoods grouped by
- 9 regions $(r) \times 10$ deprivation deciles $(i) \times 4$ urban-rural classes (u)
- Compare Covid-19 deaths in 2020/2021 with deaths from all causes in 2018
- *D*(covid, *r*, *i*, *u*, year)/*D*(all, *r*, *i*, *u*, 2018)
- Covid-19 deaths: 3% to 27% of 2018 deaths
- Moderate correlation between 2020 and 2021
- Rural (*r*, *i*, *u*) subgroups have much lower Covid death rates than urban
- Implication: we also need to take account of infection rates

A.J.G. Cairns Covid-19 Mortality

5/24

The Subgroup Proportionality Hypothesis: Phase 1 of the pandemic

Covid mortality in the pre-vaccination phase depends on: age; socio-economic group; and other factors.

Covid Death $Rate(i, x) \equiv All$ -cause death $rate(i, x) \times infection rate(i, x) \times relative frailty(i, x)$

 $m_{C}(i,x) = m_{A}(i,x)IR(i,x)RF(i,x)$

E.g. $i \Rightarrow$ region; urban/rural; neighbourhood deprivation; ethnic group etc.

Subgroup Proportionality Hypothesis: relative frailty(i, x) does not vary much by age or sub-group

E > < E >

The Subgroup Proportionality Hypothesis: Phase 1 of the pandemic

Related concept: the chances of dying from Covid-19 given infected

Infection Fatality Rate(i, x) = All-cause death rate $(i, x) \times$ relative frailty(i, x)

 $IFR(i,x) = m_A(i,x)RF(i,x)$

Subgroup Proportionality Hypothesis \Rightarrow For each subgroup *i*: *IFR*(*i*, *x*) is approx. proportional to $m_A(i, x)$

Support for the hypothesis:

- \bullet Covid mortality by age almost parallel to all-cause mortality by age \Rightarrow hypothesis holds across ages
- Antibody survey data for Wave 1
- ONS data for deprivation deciles and 9 regions
 - \Rightarrow hypothesis holds across (deprivation) subgroups

< E > < E >

The Aggregate Proportionality Hypothesis

• Whole of England; no subgroups

$$m_C(x) = m_A(x) IR(x) RF(x)$$

$$IFR(x) = m_A(x)RF(x)$$

• Aggregate Proportionality Hypothesis:

- IFR(x) is approximately proportional to $m_A(x)$; equivalently
- log IFR(x) is approximately parallel to log $m_A(x)$
- *RF*(x) does not depend much on age (compared to the dependence of m_A(x) on age)

Phase 2: The impact of vaccination and new variants

- Data for 2021: much more complex
- \bullet Vaccination: oldest ages in December 2020 \rightarrow teenagers in October/November 2021; then boosters
- New variants in the UK: Alpha; Delta; Omicron different levels of severity and lethality
- More variation in behaviour than 2020 as rules relaxed
- What have been the impacts at different ages on:
 - Infection rates?
 - Hospital admissions?
 - Deaths?

Vaccination and antibody status: Ages 18-24 and 65-69

- Older groups: higher vaccine uptake; antibody decline more rapid
- Younger groups: clinically vulnerable vaccinated early + main wave of vaccinations
- All groups: by the middle of 2022, very high % either infected or vaccinated

(E)

Proportionality Hypothesis

Generalise:

$$m_{C}(i, x, \theta, t) = m_{A}(i, x) IR(i, x, \theta, t) RF(i, x, \theta, t)$$

New:

- Time, t: improved treatments
- θ : relative frailty depends on a number of factors
 - vaccination status (0, 1, 2, booster)
 - which vaccines have been administered
 - duration since vaccination
 - prior infection status
 - ${\scriptstyle \bullet}$ newly infected \Rightarrow which variant
- Infection rates also depend on θ :
 - number and timing of vaccinations
 - behaviour

Phase 2 Development

By subgroup, *i*, and age *x*:

- $ar{m{ heta}}(i,x,t) =$ proportions in different states for heta in subgroup i, age x at time t
- Phase 2: at any given point in time (e.g. mid 2021) Aggregate $\bar{\theta}(i, x, t) =$ is highly variable (e.g. old \rightarrow young)
- \bullet Problem: Data lacks granularity with respect to θ
- So difficult to check the validity of the proportionality hypothesis

Phase 3: Endemic Phase, middle of 2022 onwards

- \bullet Antibody prevalence \Rightarrow most people either
 - vaccinated
 - have a prior infection (and recovered) (70% to 90%?)
 - both
- epidemiological studies ⇒ not much difference in levels of protection, except for people who are unvaccinated and have not had a prior infection
- Basic idea concerning relative frailty:

No Vacc+No Prior \gg Yes V+No P > No V+Yes P > Yes V+Yes P

- Key points:
 - Proportion with no vaccines and no prior infection is very small
 - So impact on aggregate *deaths* (e.g. whole age group) is small

Phase 3: Endemic Phase, middle of 2022 onwards (cont.)

- Data: by national age group only (consistent data through Phases 1, 2, 3)
 - No data to allow estimation of RF by vaccination subgroup etc.
 - No consistent subgroup data (e.g. deprivation) through the three phases
- Key assumption for Phase 3:
 - All age groups have approximately the same mix of vaccinations and prior infections

with negligible differences in RF between vaccinated and previously-infected groups

- Any variation in $RF(i, \bar{\theta}(i, x, t), t, x)$ due to varying proportions (endemic phase) is much less than intrinsic variation by age
- Hence: the specifics of each subgroup, $\bar{\theta}(i, x, t)$, do not influence results significantly across age groups

Assessing the Aggregate Proportionality Hypothesis in Phase 3

- Data: fortnightly data by age group only (phases 1, 2, 3)
- Infection rates \rightarrow hospitalisations \rightarrow deaths \Rightarrow Infection Fatality Rate, *IFR*(*t*, *x*)
- Analysis does not differentiate between different vaccination groups
- $RF(t,x) = IFR(t,x)/m_A(x)$

 $m_A(x) =$ pre-covid all-cause mortality excluding external causes No differentiation possible between, e.g., vaccination subgroups

Estimated relatively frailty

- Covid mortality = all-cause mortality \times infection rate \times relative frailty
- Steady decline as vaccines take effect; % of prior infections grows; new variants replace older variants

4 3 3 4

Estimated relatively frailty: further remarks

- Phase 1 (end of 2020): relative frailty has modest dependence on age
- ullet Phase 2: Vaccination sequencing (old \rightarrow young) causes the age dependency to disappear
- Phase 3: Modest age dependency re-emerges in 2022 after booster roll out to all age groups

• = • •

Aggregate Proportionality Hypothesis: Interpretation

• Left: on a log scale, RF dependence on age much less than all-cause death rate

• Right: on a log scale, IFR is approximately parallel to all-cause death rate \Rightarrow on a given date *t*, IFR is approximately proportional to $m_A(x)$

Infection Rates: Phase 1 to Phase 3

Infection Rates By Region

Weekly Deaths Involving Covid–19 By Region As a Percentage of All–Cause Deaths By Week (2015–2019, 5–Year Average)

• Phase 3: Synchronised waves and much reduced urban-rural effect

(3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3)

Possible interpretations

- Wave 1: Covid already circulating freely around England before March 2020 lockdown
- Wave 2 + Phase 2: restrictions on movement \Rightarrow new waves don't spread easily to other regions
- Phase 3: no restrictions on movement \Rightarrow new variants quickly spread to all regions \Rightarrow return to synchronised
- Diminishing Urban-Rural effect:
 - ??? rural areas benefitted more from lockdown and travel restrictions
 - ??? catchup in rural areas (higher % are susceptible)

Other insights: Non-Covid Excess Deaths

- Expected deaths: projection based on 2015-19 data assuming no pandemic
- Significant excess deaths not attributed to Covid-19
- Possible reasons: optimistic projection; long covid; other

Other insights: Non-Covid Excess Deaths (cont.)

- $\bullet \ {\sf Epidemiological \ studies} \Rightarrow$
 - Covid+Hospital survivors have higher death rates after discharge from hospital than non-Covid people
 - e.g. higher death rates from cardiovascular diseases
 - Reverts to 'standard' mortality over a period of weeks or months
 - 'Long Covid' ?? or general 'still not feeling 100%'
 - Similar pattern to influenza studies
- Other diseases and illnesses will have related patterns
- So each individual, j, has a much more volatile death rate m(j, x) compared to their larger subgroup

Other insights: Non-Covid Excess Deaths (cont.)

23 / 3

(E)

Conclusions

- Good evidence to support the Proportionality Hypothesis:
 Covid death rates are approximately proportional to the product of the all-cause death rate and infection rates
- But it is complex: *relative frailty* depends on several factors including vaccination status and variant
- Onclusions should apply to other countries
- There is a need to understand better excess non-Covid deaths. Will they persist into the future linked to endemic Covid-19?

Thank you!

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/~andrewc Paper: available soon – email me!

