FORECASTING CAUSES OF DEATH USING COMPOSITIONAL DATA ANALYSIS - THE CASE OF CANCER DEATHS

Søren Kjærgaard, Yunus Emre Ergemen, Jim Oeppen, Malene Kallestrup-Lamb, and Rune Lindahl-Jacobsen

Center on Population Dynamics (CPOP), University of Southern Denmark

September 12, 2018

Cancer deaths for Dutch males by age

Proportion of deaths for Dutch males from 1957 to 2014

• Forecast the number of cancer deaths

- Forecast the number of cancer deaths
- Useful for health care planning

- Forecast the number of cancer deaths
- Useful for health care planning
- If we also can forecast relative risk, we can forecast incidence rates

- Forecast the number of cancer deaths
- Useful for health care planning
- If we also can forecast relative risk, we can forecast incidence rates
- Data for French and Dutch populations

• We use life table deaths $(d_{x,t,i})$

- We use life table deaths $(d_{x,t,i})$
- Age x, time t, and cause i

- We use life table deaths $(d_{x,t,i})$
- Age x, time t, and cause i
- $\sum_i \sum_x d_{x,i} = 1$

- We use life table deaths $(d_{x,t,i})$
- Age x, time t, and cause i
- $\sum_{i}\sum_{x} d_{x,i} = 1$
- Thus, life table deaths are compositional data

- We use life table deaths $(d_{x,t,i})$
- Age x, time t, and cause i
- $\sum_{i}\sum_{x}d_{x,i}=1$
- Thus, life table deaths are compositional data
- Can be problematic to use standard statistical methods as they are defined for real values

Compositional Data (CoDa) model by Oeppen (2008)

 Oeppen (2008) suggests to use a compositional data (CoDa) model outside a Lee-Carter model

- Oeppen (2008) suggests to use a compositional data (CoDa) model outside a Lee-Carter model
- Causes are stacked horizontally

- Oeppen (2008) suggests to use a compositional data (CoDa) model outside a Lee-Carter model
- Causes are stacked horizontally

$$clr(d_{t,x,i} \ominus \alpha_{x,i}) = \beta_{x,i}^1 k_t^1 + \beta_{x,i}^2 k_t^2 + \dots + \beta_{x,i}^p k_t^p + \epsilon_{t,x,i}, \qquad (1)$$

• After centring, causes are weighted equally

- After centring, causes are weighted equally
- $\beta_{x,i}$ is assumed to be stable over time

- After centring, causes are weighted equally
- $\beta_{x,i}$ is assumed to be stable over time
- Variation is decomposed when common for all causes

- After centring, causes are weighted equally
- $\beta_{x,i}$ is assumed to be stable over time
- Variation is decomposed when common for all causes
- Only one time trend is assumed for each rank approximation for all causes

Centered deaths for Dutch males in selected years

2 step CoDa model (2S-CoDa)

$$w_{x,i}^{age} = \frac{\bar{d}_{x,i}}{\sum_{x=1}^{\omega} \sum_{i=1}^{K} \bar{d}_{x,i}}$$
$$w_t^{time} = \rho \cdot (1-\rho)^{(T-t)}$$
$$clr(d_{t,x,i} \ominus \alpha_{x,i}) = \beta_{x,i}^J k_t^J + \beta_{x,i}^I k_{t,i}^I + \epsilon_{t,x,i}$$

- Age and cause specific weights
- Time weight
- Decomposing of cause specific variation

$$clr(d_{t,x,i} \ominus \alpha_{x,i}) = \beta_{x,i}^{1} k_{t,i}^{1} + \ldots + \beta_{x,i}^{p} k_{t,i}^{p} + \epsilon_{t,x,i},$$

- Allows for cause specific time trends
- Dependence is modelled by determining stationary relationships between the time trends

$$\Delta k_t = \Pi k_{t-1} + \sum_{j=1} \Gamma_j \Delta x_{t-j} + B + \epsilon_t$$

- II has rank zero meaning there are no long run relationships among the series, but the series are non-stationary.
- ∏ has full rank which means that all of the series are stationary.
- Π has reduced rank, r > 0, thus there exist both stationary and non-stationary series and r stable long run relationships exist.

Forecasting cause of deaths

Explained variation in the 2S-CoDa model

Weights in the 2S-CoDa model

15 years out-of-sample forecasts for Dutch males

Proportions of deaths for Dutch males

Table: 20 years out-of-sample forecast error with rolling origin, for French andDutch populations

Model	FRA females	FRA males	NLD females	NLD males					
RMSE measured in life table deaths									
CT-CoDa	105.4	292.3	140.03	316.9					
2S-CoDa	90.9*	217.2*	168.55	259.1*					
VECM-CoDa	114.6	369.4	108.13	391.6*					
LC	99.6*	263.9*	153.56	484.3					
RMSE measured in deaths rates									
CT-CoDa	0.00076	0.00320	0.00631	0.01366					
2S-CoDa	0.00070*	0.00239*	0.00586	0.01349*					
VECM-CoDa	0.00085	0.00570	0.00634	0.01490*					
LC	0.00056*	0.00324*	0.00654	0.01571					

* indicates that the model is significantly different from the CT-CoDa model on a
5% significant level using the Clark-West test.

Questions: Are all causes needed for an accurate forecast of total number of cancer deaths ?

Table: Elastic net results for Dutch males

	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	95+
Infectious	0	0	0	0	0	0	0	-0.0380	-0.1954	-0.1139	0	0	0	0.0457	0
Endocrine	0	0	0	0	0	0	0	0	-0.0276	-0.0633	-0.0534	0	0	0.0442	0.0684
Mental	0	0	0	0	0	0	0	-0.0108	-0.0552	-0.0419	-0.0345	0	0	0	0
Nervous	0.0115	0.1120	0.0735	0	0	0	0	0	0	0.1333	0.2009	0.1855	0.1771	0.0459	0
Circular	0.0508	0.1887	0.2542	0.3330	0.3519	0.3664	0.3340	0.2992	0.1834	0	0	0	0	0	0.1168
Respiratory	0.1242	0.1138	0.0099	0	0	0	0	0	0.0092	0.3434	0.3137	0.1098	0.0204	0.2281	0.5073
Digestive	0.1360	0.0443	0	0.0158	0.0082	0	0	0	0	0	0	0	0.2411	0.3140	0.0040
Other	0.0903	0.2707	0.2276	0.1293	0.0836	0	0	0	0	-0.1089	-0.0429	0	0	0	0.3487
External	0.3343	0	0.1706	0.0888	0.0064	0	0	0	0	0	0	0	0	0	0
R ²	0.77	0.87	0.83	0.89	0.91	0.93	0.94	0.90	0.80	0.83	0.80	0.82	0.90	0.90	0.85

Forecasting errors when dropping causes for Dutch males

Model	All included	Drop COD 10	Drop COD 8, 10	Drop COD 6, 8, 10	Drop COD 4, 6, 8, 10	Drop COD 3, 4, 6, 8, 10
CT-CoDa	0.1351	0.1318	0.1293	0.2020	0.2443	0.2545
2S-CoDa	0.1068	0.0998	0.0970	0.1493	0.1629	0.1585
VECM-CoDa	0.1691	0.1557	0.1651	0.1819	0.1955	0.2215

COD1(Infectious diseases), COD2(Cancer), COD3(Endocrine diseases), COD4(Mental diseases), COD5(Nervous diseases), COD6(Circular diseases), COD7(Respiratory diseases), COD8(Digestive diseases), COD9(Other diseases), COD10(External)

Conclusions

- Introducing weights and decomposition of cause specific variation can improve the model suggested by Oeppen (2008)
- Allowing for multiple time trends did not improve the forecast accuracy
- Dropping causes can improve the forecast performance but a forecast-bias is introduced because of dependence among the causes.