A Synthesis Mortality Model for the Elderly Effect

Karen C. Su National Taichung University of Science and Technology Jack C. Yue National Chengchi University September, 2017

Outline

- Introduction
- ➤ Mortality models brief review
- Synthesis models process and estimation results
- Extending over 100
- Pricing life annuities
- Conclusion

- Longevity risk: the importance and need for modeling mortality rates for the elderly
- Obstacles to better modeling
 - Quality and quantity required
 - Data period
 - Improvement pattern not homogeneous

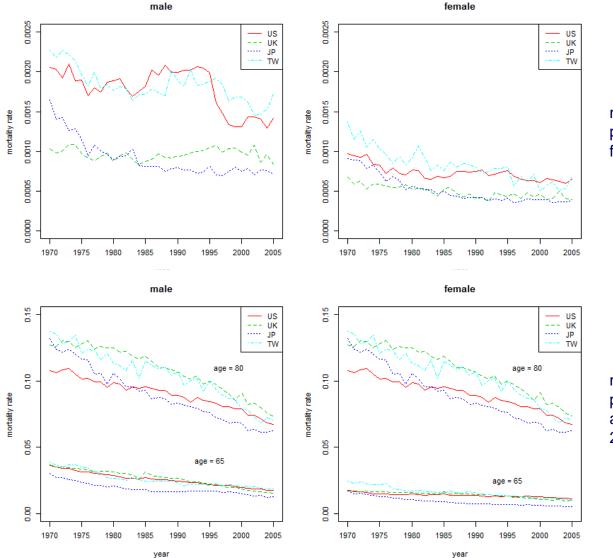


Figure 1. The mortality trend of populations age 30 from 1970 to 2005

Figure 2. The mortality trends of populations age 65 and 80 from 1970 to 2005

Relational models	Stochastic models		
Fit certain type of function	Able to model across age,		
Provide good estimation for	time and cohort		
age ranges	Provide good prediction		
Inability to model across	Have difficulty in		
time	extrapolating mortality rates		
Unstable prediction	for age groups without data		

➤ This paper...

- Propose a synthesis model combining models from both relational and stochastic group
- Focus on elderly population
- Extrapolate mortality rates for ages beyond sample age range
- Application: pricing life annuities

Model	Object	
Lee-Carter	Central death rate	$\ln m_{x,t} = \alpha_x + \beta_x k_t + \varepsilon_{x,t}$
CBD	Mortality rate	$\operatorname{logit}(q_{x,t}) = \ln\left(\frac{q_{x,t}}{1 - q_{x,t}}\right) = k_{C1,t} + k_{C2,t}(x - \overline{x}) + \varepsilon_{x,t}$
Gompertz	Force of mortality	$\mu_x = BC^x$
Coale-Kisker	Central death rate	$\min_{\alpha_{K}, s_{K}} \sum_{x} w_{x} \left[\ln m_{x} - \alpha_{K} - k_{K,85} (x - 84) + \frac{(x - 84)(x - 85)}{2} s_{K} \right]^{2}$
Logistic	Mortality rate	$\kappa_{x} = -\ln p_{x} = \frac{\exp[\beta_{L,0} + \beta_{L,1} \cdot (x + 0.5)]}{1 + \exp[\beta_{L,0} + \beta_{L,1} \cdot (x + 0.5)]}$
		1

> Data

- Human Mortality Database
- Countries: U.S., U.K., Japan, Taiwan
- Year range: 1970~2009
- Age range: 65~99

	Back-cast with 10-yr training period				
	and 5-yr testing period				
	Testing period				
	1970 ~ 1979	1980 ~ 1984			
	1975 ~ 1984	1985 ~ 1989			
	1980 ~ 1989	1990 ~ 1994			
	1985 ~ 1994	1995 ~ 1999			
	1990 ~ 1999	2000 ~ 2004			
	1995 ~ 2004	2005 ~ 2009			

- > Synthesis models considered
 - Lee-Carter + Logistic
 - Lee-Carter + Coale-Kisker
 - Lee-Carter + Gompertz
 - CBD + Gompertz
- Single models: Lee-Carter and CBD

Lee-Carter + Gompertz

• Assume: at year *t*, the force of mortality follows the Gomperz's assumption:

$$\mu_{x,t} = B_t C_t^x \implies p_{x,t} = \exp\left[-B_t C_t^x (C_t - 1) / \ln C_t\right]$$

• Further assume that:

$$L_{x,t} = \frac{l_{x,t} + l_{x+1,t+1}}{2} = \frac{l_{x,t} \cdot (1 + p_{x,t})}{2}$$

Lee-Carter + Gompertz

$$m_{x,t} = \frac{d_{x,t}}{L_{x,t}} = \frac{l_{x,t} \cdot (1 - p_{x,t})}{L_{x,t}}$$

$$\ln\left(-\ln\left(\frac{1-\frac{m_{x,t}}{2}}{1+\frac{m_{x,t}}{2}}\right)\right) = \ln\left(B_t(C_t-1)/\ln C_t\right) + x\ln C_t$$

The Synthesis modeling process

Step 1

Step 2

Step 4

Step 5

Estimate the stochastic parameters from original mortality data

Forecast future mortality rates from stochastic parameters

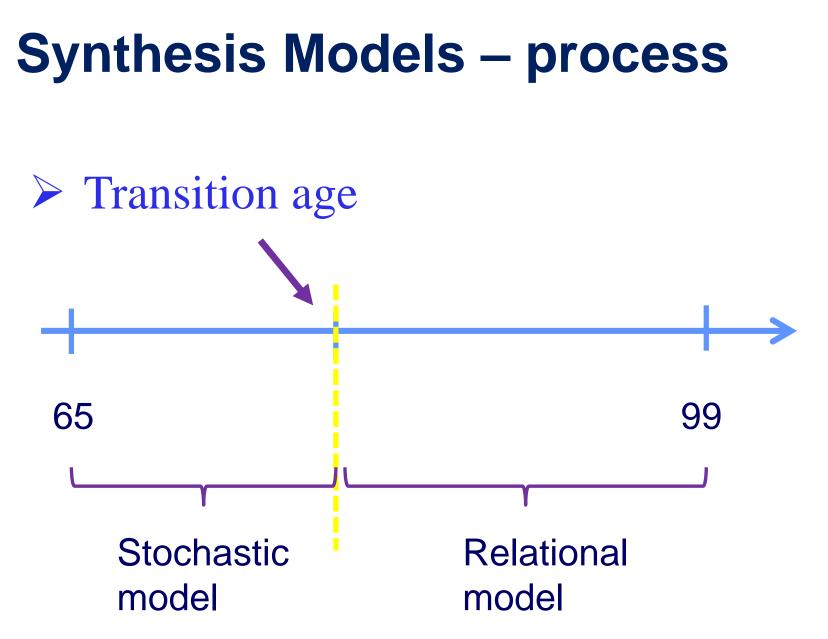
Step 3 Find the transition age using data from each training period

For each year, estimate the relational parameters by weighted least square

Recalculate mortality rates of ages after transition age with the relational model

Transition age

- Synthesis process not applicable for all age range
- Mortality pattern changes with time
- Transition age set for each country and time period by minimizing RMSE

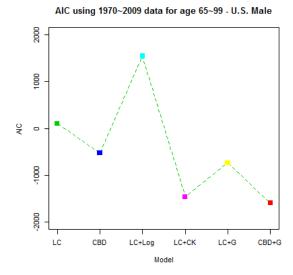


Lee-Carter + Coale-Kisker

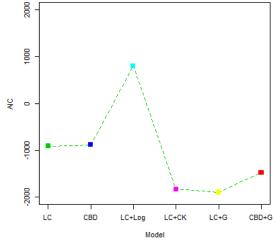
Data period	U.S.	U.K	Japan	Taiwan	
1970-1979	77	77	67	85	
1975-1984	77	77	73	96	
1980-1989	77	69	76	96	
1985-1994	75	68	74	71	
1990-1999	75	68	75	77	
1995-2004	66	66	75	74	
Lee-Carter + Gompertz					
Lee-Carter +	- Gompert	Z			
Lee-Carter + Data period	Gompert	Z U.K	Japan	Taiwan	
			Japan 75	Taiwan 70	
Data period	U.S.	U.K	-		
Data period 1970-1979	U.S. 78	U.К 65	75	70	
Data period 1970-1979 1975-1984	U.S. 78 77	U.К 65 65	75 75	70 71	
Data period1970-19791975-19841980-1989	U.S. 78 77 77	U.K 65 65 68	75 75 76	70 71 75	

CBD + Gompertz

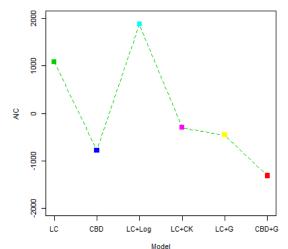
Data period	U.S.	U.K	Japan	Taiwan
1970-1979	65	86	98	98
1975-1984	65	81	97	98
1980-1989	65	77	98	98
1985-1994	65	67	98	98
1990-1999	65	69	68	98
1995-2004	65	69	65	98



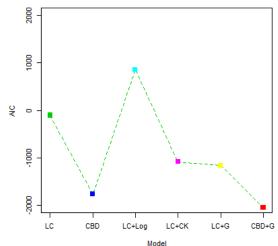
AIC using 1970~2009 data for age 65~99 - U.S. Female

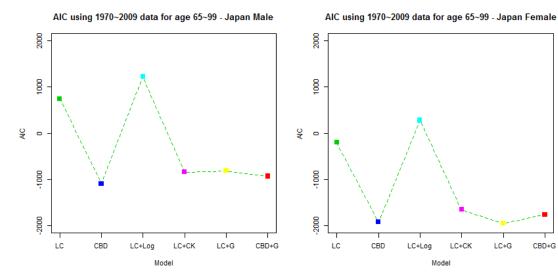


AIC using 1970~2009 data for age 65~99 - U.K. Male

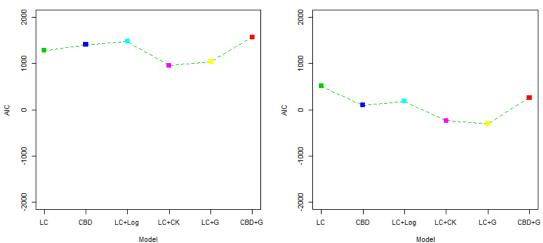


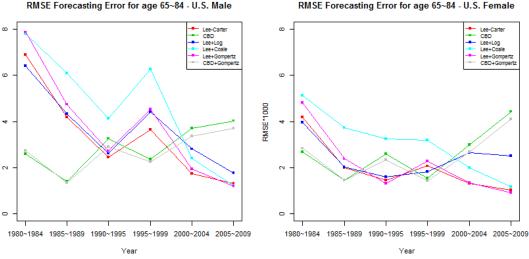
AIC using 1970~2009 data for age 65~99 - U.K. Female





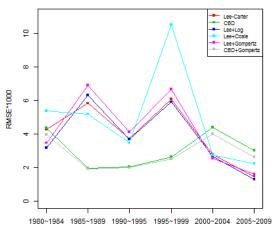
AIC using 1970~2009 data for age 65~99 - Taiwan Male



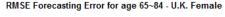


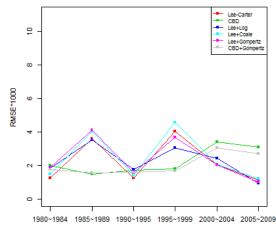
RMSE Forecasting Error for age 65~84 - U.S. Male

RMSE*1000

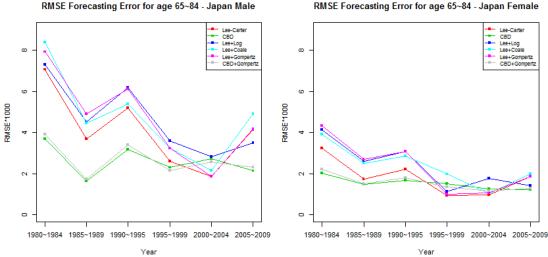


Year



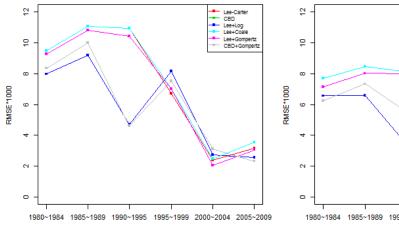


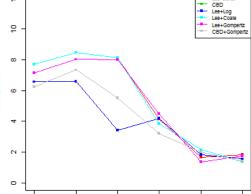
Year



RMSE Forecasting Error for age 65~84 - Taiwan Female

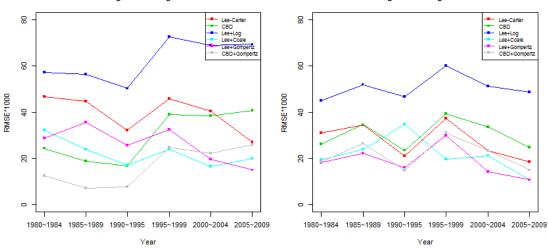
Lee-Carter





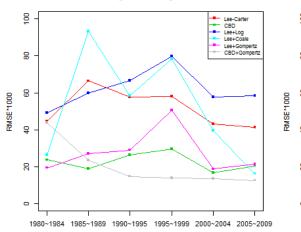
1980~1984 1985~1989 1990~1995 1995~1999 2000~2004 2005~2009

RMSE Forecasting Error for age 65~84 - Taiwan Male

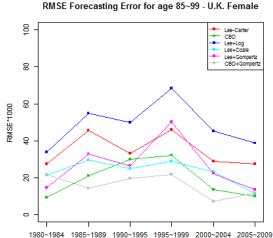


RMSE Forecasting Error for age 85~99 - U.K. Male

RMSE Forecasting Error for age 85~99 - U.S. Male

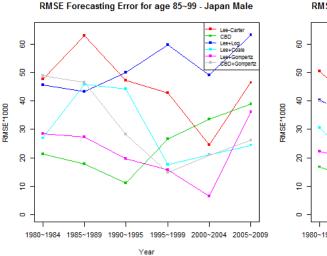


Year

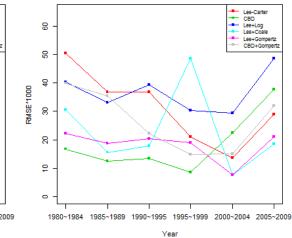


Year

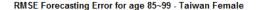
RMSE Forecasting Error for age 85~99 - U.S. Female

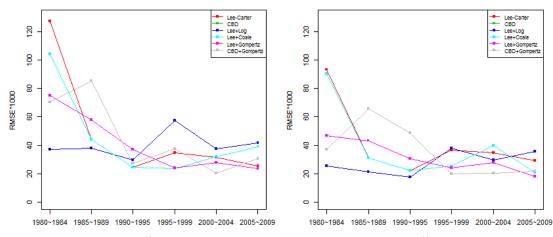


RMSE Forecasting Error for age 85~99 - Japan Female



RMSE Forecasting Error for age 85~99 - Taiwan Male





> The total number of out-performances

Model \ Age	Fitting		Forecasting	
	65-84	85-99	65-84	85-99
Lee-Carter	13	2	9	0
CBD	17	16	16	13
LC+Logistic	3	2	7	5
LC+Coale-Kisker	0	9	1	8
LC+Gompertz	1	5	7	9
CBD+Gompertz	14	14	8	13

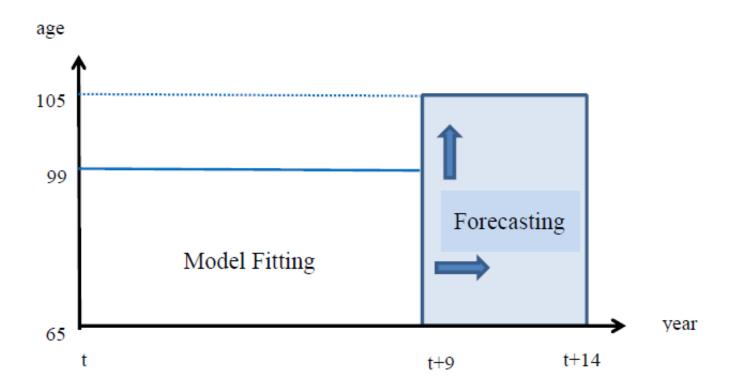
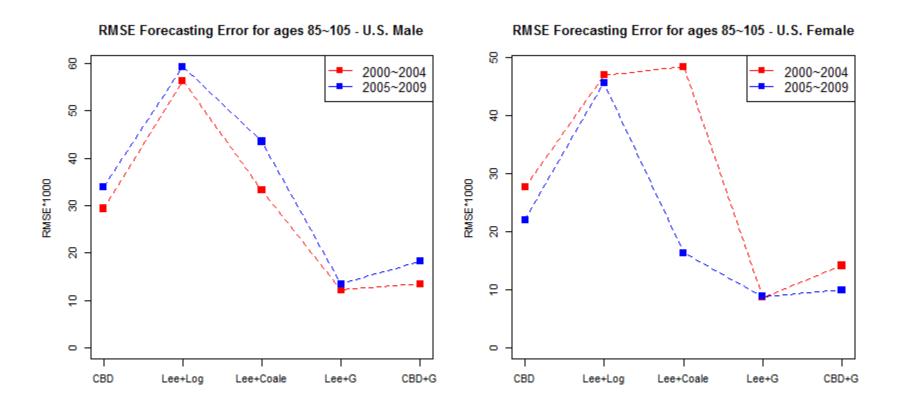
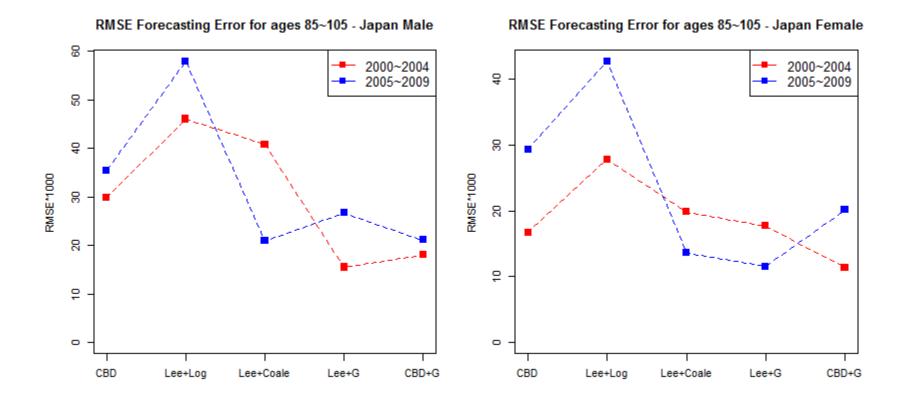


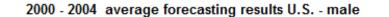
Figure 3. The methodology for future mortality estimation in this study

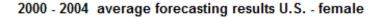
> Data

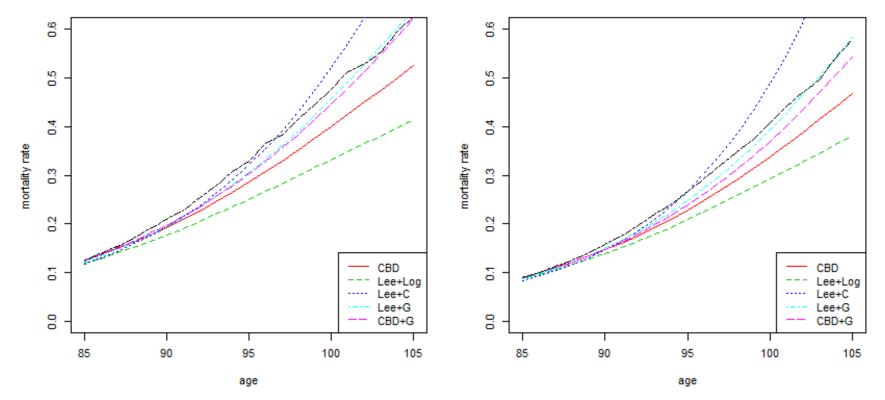
- Countries: U.S., Japan
- Training Testing
 - [1990, 1999] => [2000, 2004]
 - [1995, 2004] => [2005, 2009]
- Age range: 65~99 => 105

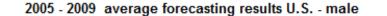


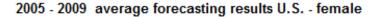


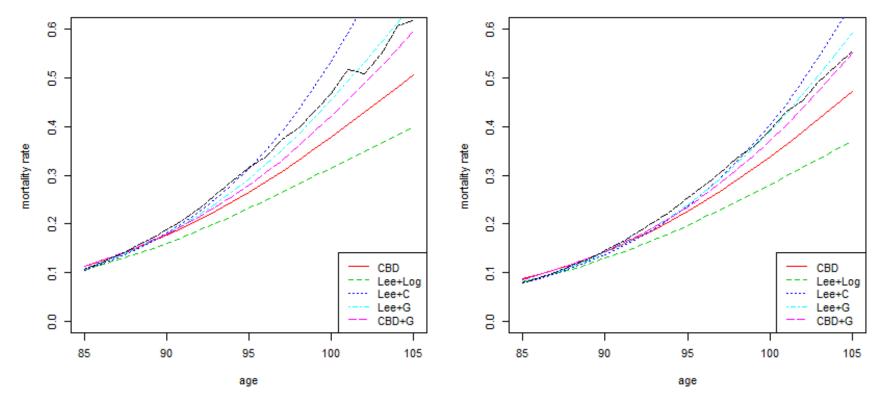




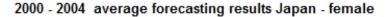


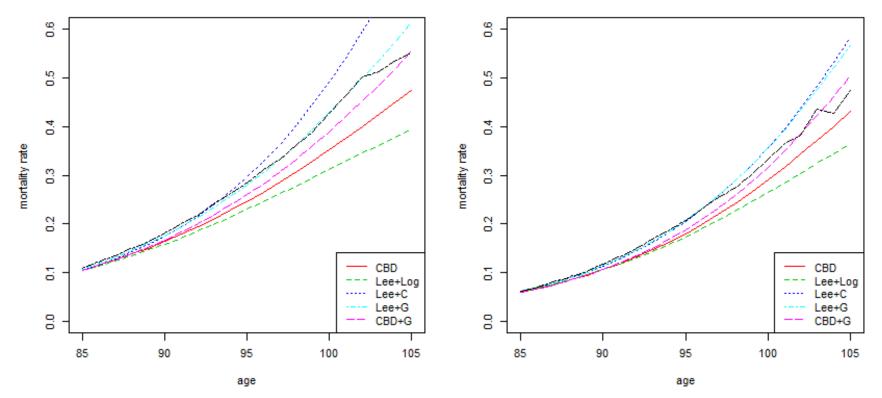




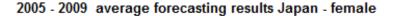


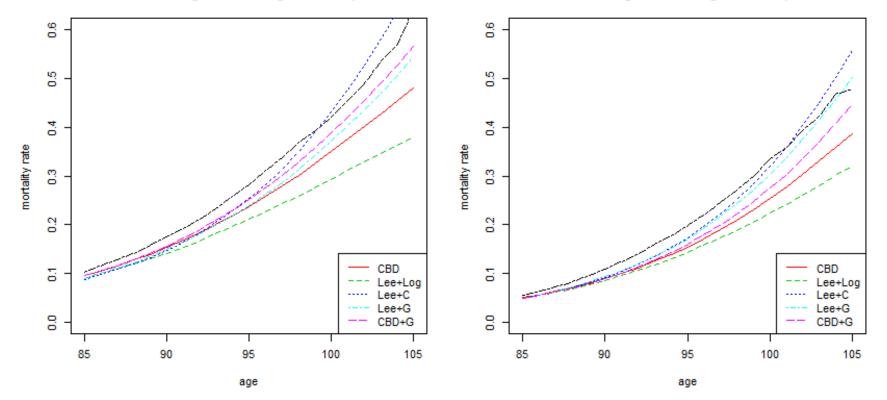
2000 - 2004 average forecasting results Japan - male





2005 - 2009 average forecasting results Japan - male

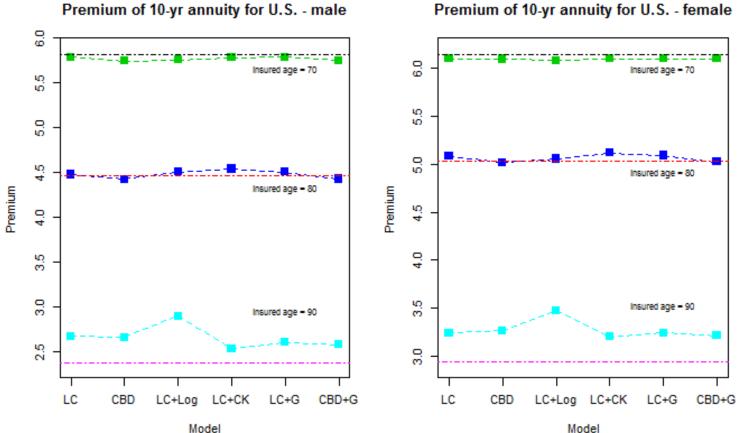




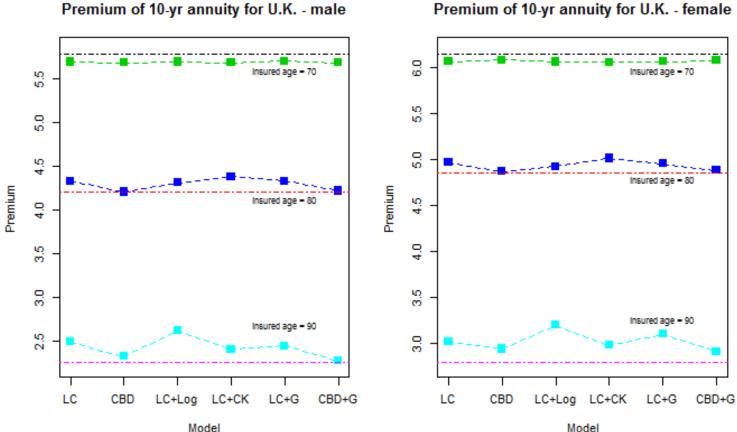
30

Product

- 10-year annuity
- Single premium
- Insured age: 70, 80, 90
- Insured period: [2000, 2009]
- [1980, 1999] mortality data used



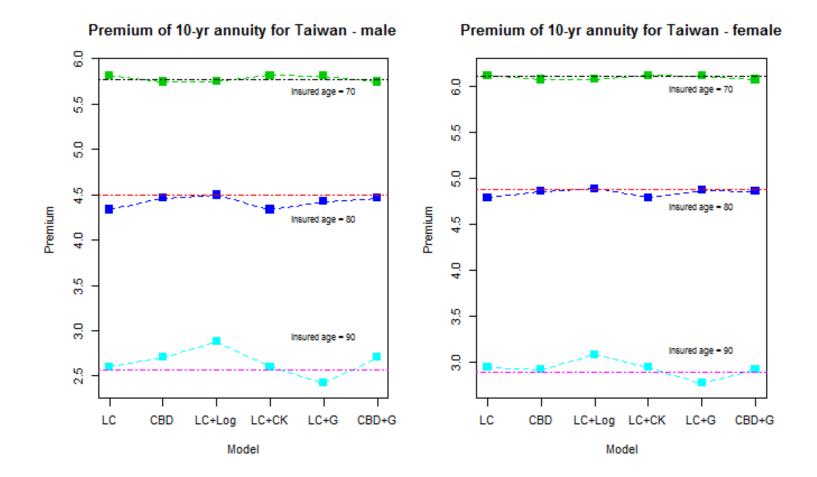
Premium of 10-yr annuity for U.S. - female



Premium of 10-yr annuity for U.K. - female



Premium of 10-yr annuity for Japan - female



Conclusion

- Post-retirement life has received a lot of attention and the need for modeling mortality rates for the elderly is essential
- We propose a synthesis model, selecting and combining models from both relational and stochastic group

Conclusion

- Our proposed model performs well, especially for the elderly, is a possible choice for the future
- Able to make proper estimation for the oldest-old
- Different models can be used together to decrease longevity risk that insurers face when selling annuity products

THANK YOU

Stochastic models

• The Lee-Carter model (Lee & Carter, 1992)

$$\ln m_{x,t} = \alpha_x + \beta_x k_t + \varepsilon_{x,t}$$

• The CBD model (Cairns et al., 2006)

logit
$$(q_{x,t}) = \ln\left(\frac{q_{x,t}}{1-q_{x,t}}\right) = k_{C1,t} + k_{C2,t}(x-\overline{x}) + \varepsilon_{x,t},$$

- Relational models
 - The Gompertz model

Force of mortality: $\mu_x = BC^x$ $p_x = \exp\left[-\int_x^{x+1} \mu_y dy\right]$ $= \exp\left[-\int_x^{x+1} BC^y dy\right]$ $= \exp\left[-BC^x(C-1)/\ln C\right]$

Relational models

• The Coale-Kisker model (Coale and Kisker, 1990)

$$m_x = m_{x-1} \cdot \exp\left[k_{K,85} + (x-85) \cdot s\right], \text{ for } x \ge 85$$

$$\min_{\alpha_{K},s_{K}} \sum_{x} w_{x} \left[\ln m_{x} - \alpha_{K} - k_{K,85} (x - 84) + \frac{(x - 84)(x - 85)}{2} s_{K} \right]^{2}$$

Relational models

• The Logistic model

$$\kappa_{x} = -\ln p_{x} = \frac{\exp[\beta_{L,0} + \beta_{L,1} \cdot (x+0.5)]}{1 + \exp[\beta_{L,0} + \beta_{L,1} \cdot (x+0.5)]}$$