On the Valuation of Reverse Mortgages with Surrender Options

Yung-Tsung Lee
Department of Banking \& Finance
National Chiayi University

Tianxiang Shi
The Fox School of Business
Temple University

Longevity 13, Taipei, September 21-22, 2017

Outline

(1) Introduction

- Reverse mortgage
(2) Pricing Model with Surrender Option
- Basic framework
- When to surrender
(3) Numerical Illustration

Reverse mortgage

- The aging population structure and increases in longevity have caused steady retirement income declines from both the public and private pensions.
- To maintain a sustainable replacement ratio, many private and capital market solutions have been proposed.
- Reverse mortgage (RM): one of such longevity risk transfer solutions, which provides seniors access to their home equity without a home sale or monthly mortgage payments until closing.

Non-recourse clause

- Reverse mortgages are sold with a non-recourse clause to protect the borrower from owing more than the proceeds of the collateralized property.
- Lenders of RM can hedge this crossover risk by participating in the Home Equity Conversion Mortgage (HECM) program in US.
- Most RM contracts in the US are under the HECM program.

Pricing and risk analysis

- Weinrobe (1988), Boehm and Ehrhardt (1994), Case and Schnare (1994), Szymanoski (1994).
- Contingent claim framework: Chen et al. (2010), Li et al. (2010), Lee et al.(2012), Wang et al. (2016).
- Securitization of crossover risk: Wang et al. (2008), Huang et al. (2011), Yang (2011).
- Profitability and risk profile: Alai et al. (2014), Cho et al. (2013), Lee and Lo (2016).

Mortgage prepayment

- Borrowers can repay the RM loan early, which could significantly affect the cost and risk profile of a reverse mortgage contract.
- In a sluggish housing market, a RM borrower would rarely terminate the contract because of the nonrecourse clause.
- However, the motivation of early repayment could be significantly strengthened when the housing price appreciates.
- Average annual HECM prepayment index has been steadily increasing from 4.12\% in Jan 2011 to 16.61% as of Mar 2017 (including assignment to FHA).
- Market share for HECM Refinance loans hovered between 2.3\%-8.5\% in FY 2005-2011.

Objective and methodology

- Objective: In this project, we aim to fill the gap by exploring the impact of the surrender behaviors on the cost of RM insurance.
- Prior studies: typically consider the termination by exogenous decrements, i.e., cease of the borrower's life.
- In our settings: the termination of a RM loan is based on two factors, the surrender and the mortality.
- Methodology: Following Milevsky (2001) and Gao and Ulm (2012), we propose a multi-period rational choice model based on a constant relative risk aversion utility function to analyze the early repayment.

T $\operatorname{TH}_{\text {NIVERSIT }}$

Literature review

For traditional life insurance products and variable annuities,

- Empirical drivers of lapse rate:
- level of interest rate (Kuo et al., 2003)
- emergency fund hypothesis (Outreville, 1990)
- product and policyholder characteristics (Eling and Kiesenbauer, 2014; Knoller et al., 2016)
- macroeconomic variables and company specific determinants (Kim, 2005; Kiesenbauer, 2012)
- Contingent claim framework: Bacinello (2003), Bernard et al. (2014).
- Affine intensity-based framework: Russo et al. (2017).

Reverse mortgage contract

- Consider a lump-sum reverse mortgage with a constant interest rate.
- Maximum insured amount is assumed to equal to the housing value $H(0)$ for simplicity.
- The accrued outstanding balance at $t, B A L(t)$:

$$
B A L(t)=\left(\pi_{0} H(0)+B A L(0)\right)\left(1+\pi_{m}\right)^{t-1} e^{\left(r+\pi_{r}\right) t}, \quad t=1,2, \ldots
$$

- π_{0} : upfront premium rate
- π_{m} : annual ongoing premium rate
- r : risk-free rate
- π_{r} : mortgage spread

House price process

- House price process follows a geometric Brownian motion under the physical measure \mathbb{P} :

$$
\frac{d H(t)}{d t}=\left(\mu_{H}-\delta\right) d t+\sigma_{H} d W^{\mathbb{P}}(t)
$$

- δ is the rental rate
- σ_{H} denotes the volatility
- $W^{\mathbb{P}}(t)$ is a standard Brownian motion under \mathbb{P}.
- Under the risk-neutral measure \mathbb{Q}

$$
\frac{d H(t)}{d t}=(r-\delta) d t+\sigma_{H} d W^{\mathbb{Q}}(t)
$$

- $W^{\mathbb{Q}}(t)$ is a standard Brownian motion under \mathbb{Q}.

CRRA utility function

- We assume that surrender behaviors follow the intertemporal utility function with a constant relative risk aversion (CRRA) utility:

$$
u(c)= \begin{cases}\frac{c^{1-\gamma}}{1-\gamma}, & \gamma>0, \gamma \neq 1 \\ \ln (c), & \gamma=1\end{cases}
$$

- $1 / \gamma$: intertemporal substitution elasticity between consumption in two different periods
- For a lump-sum reverse mortgage, the lump-sum borrowing amount is converted to annuity payments when considering intertemporal utility.

Total utility with RM payments

- Given a retirement income of p per period, the intertemporal utility of entering a RM contract is

$$
U_{R}(0)=\sum_{t=0}^{\omega-x} \beta^{t}{ }_{t} p_{x} \cdot u\left(p+c_{t}\right)+\sum_{t=0}^{\omega-x} \zeta \beta^{t+1}{ }_{t} p_{x} q_{x+t} \cdot u\left((H(t+1)-B A L(t+1))^{+}\right)
$$

- c_{t} : includes the RM tenure payment $B A L(0) /\left[(1+L) \ddot{a}_{x}\right](L$ is loading) and the rental income.
- β : subjective discount factor.
- $\zeta(0 \leq \zeta \leq 1)$: relative bequest motive.
- At the end of any period t, the borrower may keep the contract with utility

$$
\begin{aligned}
U_{R}(t) & =\sum_{s=0}^{\omega-x-t} \zeta \beta^{s+1}{ }_{s} p_{x+t} q_{x+t+s} \cdot u\left((H(t+s+1)-B A L(t+s+1))^{+}\right) \\
& +\sum_{s=0}^{\omega-x-t} \beta^{s}{ }_{s} p_{x+t} \cdot u\left(p+c_{t+s}\right)
\end{aligned}
$$

Total utility after surrendering

- We assume that the borrower has to refinance in order to pay off the outstanding balance.

$$
B A L(t)<\operatorname{PLF}_{x+t} \cdot H(t)
$$

where PLF_{x+t} : the principal limit factor at age $x+t$.

- At t, the borrower may surrender with revised utility

$$
\begin{aligned}
& \begin{aligned}
& U_{S}(t)=\sum_{s=0}^{\omega-x-t} \zeta \beta^{s+1}{ }_{s} p_{x+t} q_{x+t+s} \cdot u\left(\left(H(t+s+1)-B A L^{\prime}(t+s+1)\right)^{+}\right) \\
&+\sum_{s=0}^{\omega-x-t} \beta^{s}{ }_{s} p_{x+t} \cdot u\left(p+c_{t+s}^{\prime}\right) \\
& \text { where } c_{t+s}^{\prime}=c_{t+s}+\frac{H(t) \cdot\left(\operatorname{PLF}_{x+t}-\pi_{o r}\right)-B A L(t)}{(1+L) \ddot{a}_{x+t}}: \text { revised cash } \\
& \text { flows at } t+s .
\end{aligned}
\end{aligned}
$$

Optimal surrender time

- Based on the CRRA utility, the borrower may surrender at t if

$$
\mathbb{E}\left[U_{S}(t) \mid H(t)\right]>\mathbb{E}\left[U_{R}(t) \mid H(t)\right]
$$

- The borrower will receive optimal utility with surrender time

$$
\begin{aligned}
& \tau_{S}=\inf \left\{t: \mathbb{E}\left[U_{S}(t) \mid H(t)\right]>\mathbb{E}\left[U_{R}(t) \mid H(t)\right]+\max \left(0, \Delta_{t}\right)\right\} \\
& \text { where }
\end{aligned}
$$

$$
\Delta_{t}=\max _{s \geq 1}\left\{\mathbb{E}\left[\beta^{s}{ }_{s} p_{x+t}\left(U_{S}(t+s)-U_{R}(t+s)\right) \mid H(t)\right]\right\}
$$

Parameters

- House price process
- risk-free rate $r: 2.5 \%$
- rental rate $\delta: 2 \%$
- growth rate of housing price $\mu_{H}-\delta: 3.43 \%$
- volatility of housing price σ_{H} : 10%
- Reverse mortgage
- mortgage spread $\pi_{r}: 2 \%$
- upfront premium rate $\pi_{0}: 2.5 \%$
- annual ongoing premium rate π_{m} : 1.25%
- origination fee for refinance $\pi_{o r}: 1.5 \%$
- CRRA utility
- subjective annual discount factor $\beta: 0.97$
- risk aversion parameter $\gamma: 0.5$
- relative bequest motive $\zeta: 0.5$

Results

- Borrower's characteristics
- We use U.S. male population mortality data from 1970-2015 to fit the Lee-Carter model(1992).
- We assume $p=0$ for simplicity.
- Numerical methods
- Hull and White's binomial tree $(1994,1996)$ with monthly time steps.
- Borrower's surrender decision under \mathbb{P} measure.
- Fair loan-to-value ratio (PLF) under \mathbb{Q} measure.
- Outcome
- For a borrower aged 70, its fair PLF is 37.09% (as property value) with surrender option, which is 0.53% lower than the PLF without surrender option.

Premiums comparison

Table 1: Premium Reductions and Underpricing ($\sigma_{H}=10 \%$)

Age	$P L F_{s}$	$P L F_{n s}-P L F_{s}$	Premium Reduction	Underpricing \%
70	0.3709	0.53%	5.46%	2.40%
75	0.4546	0.58%	5.89%	2.52%
80	0.5451	0.59%	6.41%	2.64%
85	0.6380	0.53%	6.72%	2.54%
90	0.7280	0.44%	6.64%	2.40%

- Premium Reduction: premium income decrease from the no surrender option case.
- Underpricing: premium deficit as percentage of the expected insurance costs, if $P L F_{n s}$ is used but surrender is allowed.

Impact of σ_{H}

Table 2: Premium Reductions and Underpricing ($\sigma_{H}=7.5 \%$)

Age	$P L F_{s}$	$P L F_{n s}-P L F_{s}$	Premium Reduction	Underpricing \%
70	0.4011	0.24%	2.76%	1.16%
75	0.4575	0.26%	3.11%	1.24%
80	0.5795	0.28%	3.58%	1.35%
85	0.6724	0.26%	3.93%	1.36%
90	0.7606	0.21%	3.93%	1.33%

Conclusion

- We analyzed the cost and risk profile of a reverse mortgage contract in the presence of surrender.
- A CRRA utility based choice model is used to characterize borrower's surrender behaviors.
- Numerical evidences are provided to show the importance of surrender option in RM pricing.

