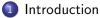
On the Valuation of Reverse Mortgages with Surrender Options


Yung-Tsung Lee Department of Banking & Finance National Chiayi University

Tianxiang Shi The Fox School of Business Temple University

Longevity 13, Taipei, September 21-22, 2017

Outline

- Reverse mortgage
- 2 Pricing Model with Surrender Option
 - Basic framework
 - When to surrender

Reverse mortgage

- The aging population structure and increases in longevity have caused steady retirement income declines from both the public and private pensions.
- To maintain a sustainable replacement ratio, many private and capital market solutions have been proposed.
- Reverse mortgage (RM): one of such longevity risk transfer solutions, which provides seniors access to their home equity without a home sale or monthly mortgage payments until closing.

Reverse mortgage

Non-recourse clause

- Reverse mortgages are sold with a non-recourse clause to protect the borrower from owing more than the proceeds of the collateralized property.
- Lenders of RM can hedge this crossover risk by participating in the Home Equity Conversion Mortgage (HECM) program in US.
- Most RM contracts in the US are under the HECM program.

Pricing and risk analysis

- Weinrobe (1988), Boehm and Ehrhardt (1994), Case and Schnare (1994), Szymanoski (1994).
- Contingent claim framework: Chen et al. (2010), Li et al. (2010), Lee et al.(2012), Wang et al. (2016).
- Securitization of crossover risk: Wang et al. (2008), Huang et al. (2011), Yang (2011).
- Profitability and risk profile: Alai et al. (2014), Cho et al. (2013), Lee and Lo (2016).

Reverse mortgage

Mortgage prepayment

- Borrowers can repay the RM loan early, which could significantly affect the cost and risk profile of a reverse mortgage contract.
 - In a sluggish housing market, a RM borrower would rarely terminate the contract because of the nonrecourse clause.
 - However, the motivation of early repayment could be significantly strengthened when the housing price appreciates.
- Average annual HECM prepayment index has been steadily increasing from 4.12% in Jan 2011 to 16.61% as of Mar 2017 (including assignment to FHA).
- Market share for HECM Refinance loans hovered between 2.3%-8.5% in FY 2005-2011.

Objective and methodology

- **Objective**: In this project, we aim to fill the gap by exploring the impact of the surrender behaviors on the cost of RM insurance.
 - Prior studies: typically consider the termination by exogenous decrements, i.e., cease of the borrower's life.
 - In our settings: the termination of a RM loan is based on two factors, the surrender and the mortality.
- Methodology: Following Milevsky (2001) and Gao and Ulm (2012), we propose a multi-period rational choice model based on a constant relative risk aversion utility function to analyze the early repayment.

Literature review

For traditional life insurance products and variable annuities,

- Empirical drivers of lapse rate:
 - level of interest rate (Kuo et al., 2003)
 - emergency fund hypothesis (Outreville, 1990)
 - product and policyholder characteristics (Eling and Kiesenbauer, 2014; Knoller et al., 2016)
 - macroeconomic variables and company specific determinants (Kim, 2005; Kiesenbauer, 2012)
- Contingent claim framework: Bacinello (2003), Bernard et al. (2014).
- Affine intensity-based framework: Russo et al. (2017).

Reverse mortgage contract

- Consider a lump-sum reverse mortgage with a constant interest rate.
- Maximum insured amount is assumed to equal to the housing value H(0) for simplicity.
- The accrued outstanding balance at t, BAL(t):

 $BAL(t) = (\pi_0 H(0) + BAL(0))(1 + \pi_m)^{t-1} e^{(r+\pi_r)t}, \quad t = 1, 2, ...$

- π_0 : upfront premium rate
- π_m : annual ongoing premium rate
- r: risk-free rate
- π_r : mortgage spread

Basic framework When to surrender

House price process

• House price process follows a geometric Brownian motion under the physical measure \mathbb{P} :

$$rac{dH(t)}{dt} = (\mu_H - \delta) \, dt + \sigma_H dW^{\mathbb{P}}(t)$$

- $\bullet~\delta$ is the rental rate
- σ_H denotes the volatility
- $W^{\mathbb{P}}(t)$ is a standard Brownian motion under \mathbb{P} .
- $\bullet\,$ Under the risk-neutral measure $\mathbb Q$

$$\frac{dH(t)}{dt} = (r - \delta) dt + \sigma_H dW^{\mathbb{Q}}(t)$$

• $W^{\mathbb{Q}}(t)$ is a standard Brownian motion under \mathbb{Q} .

Lee and Shi (NCU and TU)

Reverse Mortgages with Surrender Options

CRRA utility function

• We assume that surrender behaviors follow the intertemporal utility function with a constant relative risk aversion (CRRA) utility:

$$u(c) = \left\{ egin{array}{c} rac{c^{1-\gamma}}{1-\gamma}, & \gamma > 0, \ \gamma
eq 1, \ \ln(c), & \gamma = 1, \end{array}
ight.$$

- 1/ γ : intertemporal substitution elasticity between consumption in two different periods
- For a lump-sum reverse mortgage, the lump-sum borrowing amount is converted to annuity payments when considering intertemporal utility.

Basic framework When to surrender

Total utility with RM payments

• Given a retirement income of *p* per period, the intertemporal utility of entering a RM contract is

$$U_{R}(0) = \sum_{t=0}^{\omega-x} \beta^{t} p_{x} \cdot u(p+c_{t}) + \sum_{t=0}^{\omega-x} \zeta \beta^{t+1} p_{x} q_{x+t} \cdot u((H(t+1) - BAL(t+1))^{+})$$

- c_t : includes the RM tenure payment $BAL(0)/[(1 + L)\ddot{a}_x]$ (L is loading) and the rental income.
- β : subjective discount factor.
- ζ (0 $\leq \zeta \leq$ 1): relative bequest motive.
- At the end of any period *t*, the borrower may keep the contract with utility

$$U_{R}(t) = \sum_{s=0}^{\omega-x-t} \zeta \beta^{s+1} p_{x+t} q_{x+t+s} \cdot u \left((H(t+s+1) - BAL(t+s+1))^{+} \right) \\ + \sum_{s=0}^{\omega-x-t} \beta^{s} p_{x+t} \cdot u \left(p + c_{t+s} \right)$$

$$TETEE TERMER$$

Lee and Shi (NCU and TU)

Basic framework When to surrender

Total utility after surrendering

• We assume that the borrower has to refinance in order to pay off the outstanding balance.

$$BAL(t) < PLF_{x+t} \cdot H(t)$$

where PLF_{x+t} : the principal limit factor at age x + t.

• At t, the borrower may surrender with revised utility

$$U_{S}(t) = \sum_{s=0}^{\omega-x-t} \zeta \beta^{s+1} p_{x+t} q_{x+t+s} \cdot u \left(\left(H(t+s+1) - BAL'(t+s+1) \right)^{+} \right) + \sum_{s=0}^{\omega-x-t} \beta^{s} p_{x+t} \cdot u \left(p + c'_{t+s} \right)$$

where
$$c'_{t+s} = c_{t+s} + \frac{H(t) \cdot (\text{PLF}_{x+t} - \pi_{or}) - BAL(t)}{(1+L) \ddot{a}_{x+t}}$$
: revised cash flows at $t + s$.

Lee and Shi (NCU and TU)

Optimal surrender time

- Based on the CRRA utility, the borrower may surrender at t if $\mathbb{E}[U_S(t) | H(t)] > \mathbb{E}[U_R(t) | H(t)]$
- The borrower will receive optimal utility with surrender time

$$\tau_{\mathcal{S}} = \inf \left\{ t : \mathbb{E}[U_{\mathcal{S}}(t) | H(t)] > \mathbb{E}\left[U_{\mathcal{R}}(t) | H(t)\right] + \max\left(0, \Delta_{t}\right) \right\}$$

where

$$\Delta_t = \max_{s \ge 1} \left\{ \mathbb{E} \left[\beta^s \,_s p_{x+t} (U_S(t+s) - U_R(t+s)) \, | H(t)] \right\} \right\}$$

Parameters

- House price process
 - risk-free rate r: 2.5%
 - rental rate $\delta:~2\%$
 - growth rate of housing price $\mu_H \delta$: 3.43%
 - volatility of housing price $\sigma_{\rm H}:\,10\%$
- Reverse mortgage
 - mortgage spread π_r : 2%
 - upfront premium rate π_0 : 2.5%
 - annual ongoing premium rate π_m : 1.25%
 - origination fee for refinance π_{or} :1.5%
- CRRA utility
 - subjective annual discount factor β : 0.97
 - risk aversion parameter $\gamma:~0.5$
 - relative bequest motive ζ : 0.5

Results

- Borrower's characteristics
 - We use U.S. male population mortality data from 1970-2015 to fit the Lee-Carter model(1992).
 - We assume p = 0 for simplicity.
- Numerical methods
 - Hull and White's binomial tree (1994, 1996) with monthly time steps.
 - $\bullet\,$ Borrower's surrender decision under $\mathbb P$ measure.
 - Fair loan-to-value ratio (PLF) under \mathbb{Q} measure.
- Outcome
 - For a borrower aged 70, its fair PLF is 37.09% (as property value) with surrender option, which is 0.53% lower than the PLF without surrender option.

Premiums comparison

Table 1: Premium Reductions and Underpricing ($\sigma_H = 10\%$)

Age	PLFs	$PLF_{ns} - PLF_s$	Premium Reduction	Underpricing %
70	0.3709	0.53%	5.46%	2.40%
75	0.4546	0.58%	5.89%	2.52%
80	0.5451	0.59%	6.41%	2.64%
85	0.6380	0.53%	6.72%	2.54%
90	0.7280	0.44%	6.64%	2.40%

- Premium Reduction: premium income decrease from the no surrender option case.
- Underpricing: premium deficit as percentage of the expected insurance costs, if *PLF_{ns}* is used but surrender is allowed.

Table 2: Premium Reductions and Underpricing ($\sigma_H = 7.5\%$)

Age	PLFs	$PLF_{ns} - PLF_s$	Premium Reduction	Underpricing %
70	0.4011	0.24%	2.76%	1.16%
75	0.4875	0.26%	3.11%	1.24%
80	0.5795	0.28%	3.58%	1.35%
85	0.6724	0.26%	3.93%	1.36%
90	0.7606	0.21%	3.93%	1.33%

Conclusion

- We analyzed the cost and risk profile of a reverse mortgage contract in the presence of surrender.
- A CRRA utility based choice model is used to characterize borrower's surrender behaviors.
- Numerical evidences are provided to show the importance of surrender option in RM pricing.

