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Outline

I Background structural credit models with mutual obligations.

I Large pool limit and the supercooled Stefan problem.

I A central agent controlling the number of defaults:

I well-posedness and ‘propagation of chaos’;

I numerical solution of mean-field control problem;

I illustration of strategies, losses, and cost to central agent.
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‘Structural’ credit risk model
à la Merton, Cox,...

I The assets of a bank minus its liabilities are modelled by a process Xt .

I The bank is considered defaulted if Xt hits zero.
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Mutual liabilities

I On default, bank 1 fails to meet some of its liabilities to bank 2.

I Bank 2’s equity process jumps downwards.
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Credit contagion

I On default of bank 2, it fails to meet some of its liabilities to bank 3.

I Bank 3’s equity process jumps downwards.
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N-bank model

We assume the X i ,N satisfy, for i = 1, . . . ,N,

X i ,N
t = X i ,N

0− + B i ,N
t −α 1

N

N∑
i=1

1{τi,N≤t},

where
τi ,N = inf{t : X i ,N

t ≤ 0},

I X i ,N
0− are non-negative i.i.d. random variables,

I (B i ,N)1≤i≤N is an N-dimensional standard Brownian motion,

independent of X0− = (X i ,N
0− )1≤i≤N ,

I and α ≥ 0 is a contagion parameter measuring the amount of
inter-firm lending.
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Mean-field limit
e.g., Hambly, Ledger, & Sojmark (2019)

For N →∞, a representative bank follows

Xt = X0− + Bt −αP
(

inf
0≤s≤t

Xs ≤ 0
)
, t ≥ 0,

where B is a standard Brownian motion independent of X0−.
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I Cartoon model for credit risk with
default contagion.

I Realistic α depends on mutual
liabilities, recovery rates, asset vol –
anything 0.5 to 5, or even higher
(see Lipton, Kaushansky, & R, 2019)

I Similar models in neuroscience
(see Delarue, Inglis, Rubenthaler,
&Tanré, 2015)

Lt = P
(

inf0≤s≤t Xs ≤ 0
)

, X0− = 0.5
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(Probabilistic) problem statement
McKean–Vlasov structure

Let X0− be a random variable with probability density f .

Consider the problem of finding a non-decreasing Λ such that the
stochastic process

Xt = X0− + Bt −Λt , t ≥ 0

satisfies the constraint

Λt = αP
(

inf
0≤s≤t

Xs ≤ 0
)
, t ≥ 0,

where B is a standard Brownian motion independent of X0−.

Let τ := inf{t ≥ 0 : Xt ≤ 0}.
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‘Blow up’ scenario
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)

HLS19: If α > 2E[X0], t → Λt cannot be continuous for all t.∗

I Λt/α = P
(

inf0≤s≤t Xs ≤ 0
)

I p(·, t) the density of X̂t = Xt1{τ>t}.

∗No jumps for α sufficiently small (Bayraktar, Guo, Tang, Zhang, 2020).
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‘Blow up’ scenario
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)

I Recall Xt = X0− + Bt − Λt .
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‘Blow up’ scenario
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)
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Physical and minimal solutions
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)

Definition (Physical and minimal solutions)

Call a solution (X ,Λ) physical if for all t

Λt − lim
s→t−

Λs =

{
inf
x

(
P(Xt− < x , inf

s<t
Xs > 0) <

1

α
x

)}
.

Call a solution Λt minimal if for any other solution Λ we have

Λt ≤ Λt , t ≥ 0.
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Well-posedness and regularity
Delarue, Nadtochiy, Shkolnikov (2019)

a. [Existence, Cuchiero, Rigger, & Svaluto-Ferro (2020); see also
Ledger and Sojmark (2019)]: If E[X0−] <∞, there is a unique
minimal solution, which is also a physical solution.

b. [Uniqueness]: Let X0− possess a density f on [0,∞) that is
bounded and changes monotonicity finitely often on compacts.
Then physical solutions are unique.

I For any t > 0, Λ ∈ C 1(t, t + ε).

I The densities p(s, ·), s ∈ (t, t + ε) are classical solutions of

∂tp =
1

2
∂xxp + Λ̇t∂xp, x ≥ 0, t ∈ [0,T ],

Λ̇t =
α

2
∂xp(t, 0), t ∈ [0,T ] and Λ0 = 0,

p(0, x) = f (x), x ≥ 0 and p(t, 0) = 0, t ∈ [0,T ].
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Supercooled Stefan problem
Sherman (1970), Fasano, Primicerio, Howison, & Ockendon (80’s), and Stefan (1889) for standard case

The transformation u(t, x) := p(t, x − Λt), x ≥ Λt leads to

∂tu =
1

2
∂xxu, x ≥ Λt , t ≥ 0,

Λ̇t =
α

2
∂xu(t,Λt), t ≥ 0 and Λ0 = 0,

u(0, x) = f (x), x ≥ 0 and u(t,Λt) = 0, t ≥ 0.

This is the classical one-dimensional supercooled Stefan problem:

I −f is the initial temperature in a liquid relative to its freezing point;

I Λt is the location of the liquid-solid boundary at time t;

I −u(t, ·) is the temperature in the liquid relative to its freezing point at time t;

I and α > 0 is a physical parameter.

We consider the supercooled regime, i.e., when f ≥ 0.
Link
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Introducing a central agent

A central agent injects cash at a rate βi ,Nt into bank i ,

X i ,N
t = X i ,N

0− +

∫ t

0
βi ,Ns ds + B i ,N

t − α 1

N

N∑
i=1

1{τi,N≤t},

where τi ,N := inf{t ≥ 0 : X i ,N
t ≤ 0}.

In analogy to before, we will consider the mean-field limit (TBC)

Xt = X0− +

∫ t

0
βs ds + Bt − Λt ,

Λt = αP
(

inf
0≤s≤t

Xs ≤ 0
)
.

London 2023 Control of credit shocks 15



Minimising costs subject to loss bound

For given β, the central agent has a total cost

CT (β) = E
[ ∫ T

0
βt dt

]
,

and observes losses prior to T ,

LT−(β) = P
(

inf
0≤s<T

Xs(β) ≤ 0
)

= ΛT−(β)/α.

We will study the constrained optimisation problem

CT (β) −→ min
β

subject to LT−(β) ≤ δ.
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Lagrangian multiplier

We minimise the following objective function

J(β) = E
[ ∫ T

0
βt dt

]
+ γ P

(
inf

0≤s<T
X s(β) ≤ 0

)
= E

[ ∫ T

0
βt dt + γ 1{X̂T−=0}

]
,

where γ traces out optimal pairs (C ?T (γ), L?T−(γ)).

As function of δ, γ is a shadow price of preventing defaults,

∂δC
?
T (δ) = −γ(δ).
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Parameter studies

In all examples, we choose a gamma initial density,

f (x) = 1/Γ(k) θ−kxk−1e−x/θ, x ≥ 0.

I Default parameters k = 2, θ = 1/3.

I Smooth solutions for small t, but blow-up is guaranteed for
α > kθ = 2/3.

I We will consider various values of α around 1.

I The terminal time is typically T = 0.02.

I We fix bmax = 30 at first, but investigate changes later on.
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Optimal strategies
Feedback controls βt = β(t, Xt )

γ = 0.1 γ = 0.0005 γ = 0.0001

Contour plots of (t, x)→ β?(t, x) for α = 1.5 and different γ. The white region is

{β? ≤ 0.05 bmax}, the (yellow) shaded region {β? ≥ 0.95 bmax}, the dark (blue) zone

the transition.
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Changing γ and bmax

Loss for γ ∈ {0.1, 0.005, 0.001} Control regions for different bmax
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Optimal cost-loss pairs
Small cash withdrawal can cause systemic events.

Pairs (C?T , L
?
T ) for different α L?T as function of γ, α = 1.5

Cost C?T and loss L?T in the optimal regime for logarithmically spaced γ ∈ [0.0001, 0.1].
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Comparison with heuristic strategies

α = 1, no jumps α = 1.5, jump possible

Cost-loss pairs (C?T , L
?
T ) under optimal strategy compared to those for a

I constant strategy, (Cu
T (c), Lu

T (c)), where cash is injected for 0 < Xt ≤ c,

I front-up strategy, (C f
T (d), Lf

T (d)), where X0 is lifted to d > 0.
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Existence of optimiser
0 ≤ βt ≤ bmax

ST :={f ∈ L2[0,T ] | 0 ≤ f ≤ bmax a.e.}
BT :={β progressively measurable | P(β ∈ ST ) = 1}.

Theorem (Existence of solutions for general drift)

For any β ∈ BT , there is a unique minimal solution to

Xt = X0− +

∫ t

0
βs ds + Bt − αP( inf

0≤s≤t
Xs ≤ 0).

Theorem (Existence of optimiser)

There is β? ∈ BT such that

V∞ = inf
β∈BT

J(β) = J(β?).
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Propagation of chaos
Consider the N-bank setting

X i ,N
t := X i ,N

0− +

∫ t

0
βi ,Ns ds + B i ,N

t − αLNt ,

LNt :=
1

N

N∑
i=1

1{τ i,N≤t}, where τi ,N := inf{t ≥ 0 : X i ,N
t ≤ 0},

VN := inf
βN∈B

E

[∫ T

0

1

N

N∑
i=1

βi ,Ns ds + γL̃NT (βN)

]
,

where L̃N(βN) is the minimal solution with drift βN and initial

condition X i ,N
0− = XN

0−+N−κ for κ ∈ (0, 1/2) and all i = 1, . . . ,N.

Theorem

Then it holds that limN→∞ VN = V∞.

London 2023 Control of credit shocks 24



A non-standard MFC problem

Recall X (β) corresponding to the minimal solution Λ(β), and

J(β) = E
[ ∫ T

0
(βt + γL̇t) dt

]
, Lt = P

(
inf

0≤s<T
X s(β) ≤ 0

)
.

For regular solutions, X̂ = X t1{τ>t} has a sub-probability density
p supported on (0,∞) and an atomic mass at 0:

∂tp+∂x(βp) =
1

2
∂xxp+Λ̇t∂xp, x ≥ 0, Λt = α

(
1−
∫ ∞

0
p(t, x) dx

)
.

Assuming again regularity, L̇t = 1
2∂xp(t, 0) and

dXt = (βt − αL̇t) dt + dBt .
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Regularisation

For (small) h > 0, approximate px(t, 0) by way of the measure νt ,

L̇ht =
1

2

∫ ∞
−∞

(−∂φh)(x) νt(dx) =
1

2
〈−∂φh, νt〉.

I Dynamics and objective can be rewritten in these terms.

I We smoothly transition SDE coefficients to 0 over [−h, 0].

Smoothed Dirac delta and its derivatives, for h = 10−3.
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Densities

Density p(t, ·) for small negative x . Density p(t, ·) in macroscopic range.

Parameters α = 1.5, γ = 0.1; Γ(2, 1/3) initial density
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(Proximal) policy gradient method

We consider the objective

inf
β∈H2(R)

E

[ ∫ T

0

(
βt +

γ

2
〈−∂φh, ν〉+ g(βt)

)
dt
]
,

where g(b) = 0 for b ∈ [0, bmax] and ∞ otherwise.

I We apply the method from R., Stockinger, Zhang, A fast
iterative PDE-based algorithm for feedback controls of
nonsmooth mean-field control problems, arXiv, 2021.

I We compute the measure by a forward PDE, and the gradient
by a backward PDE for a ‘decoupling field’.
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Finite difference convergence
Finite termination

103h 1 2−1 2−2 2−3 2−4 2−5 CPU
N

102
Nx
103 103θN ρN (s)

1 3.75 1.956 -2.42 0.5643 0.6430 0.7137 0.832 4.775 0 0.44
2 7.5 -0.806 1.31 0.5663 0.6260 0.6693 0.726 0.838 5.121 1.2
4 15 -0.614 1.82 0.5655 0.6164 0.6481 0.677 0.822 0.033 4.2
8 30 -0.337 1.94 0.5649 0.6118 0.6376 0.658 0.688 0.609 17

16 60 -0.173 — 0.5645 0.6096 0.6327 0.648 0.664 0.689 83
32 120 — — 0.5643 0.6085 0.6304 0.644 0.654 0.668 427

102ϑh 4.414 2.192 1.354 1.084 1.32 —
%h 2.01 1.61 1.24 0.81 — —

Mesh convergence, losses, α = 1.5 and γ = 0.1.
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Convergence of iterations

α = 0.5, varying γ, N = 800 varying α, γ = 1, N = 800

Convergence of C and L in the PGM for varying γ and α. Shown are |L(m+1) − L(m)|
and |C (m+1) − C (m)|.
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Delayed contagion
Hambly, Petronilia, R, Rigger & Sømark, 2023

dX i
t = b(t,X i

t , ν
N
t ) dt + σ(t,X i

t )
√

1− ρ(t, νNt )2 dW i
t +

σ(t,X i
t )ρ(t, νNt ) dW 0

t − α(t) dLN,εt ,

νNt =
1

N

N∑
i=1

δX i
t
, τ i = inf{t ≥ 0 : X i

t ≤ 0},

LNt = 1− νNt (R+), LN,εt =

∫ t

0
ε−1κ(ε−1(t − s))LNt ds,

where all W i , W 0 B.M., all independent.

I W 0 is a common noise;

I smoothed default contagion through Λt .
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Control and killing at state-dependent intensity
Hambly & Jettkant, 2023

dX i
t = b(t,X i

t , ν
N
t , γ

i
t) dt + σ(t,X i

t , ν
N
t ) dW i

t + σ0(t,X i
t , ν

N
t ) dW 0

t

−α(t,X i
t−, ν

N
t−) dLNt ,

dΛi
t = λ(t,X i

t , ν
N
t ) dt,

νNt =
1

N

N∑
i=1

1θi>Λi
t
δX i

t
, LNt = 1− νNt (R),

where all W i , W 0 B.M. and θi i.i.d. exponential, all independent.

I W 0 is a common noise;

I γ it are controls;

I default contagion through Λt .
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