Emergence of shocks in large pool credit contagion models and resulting optimal bailout strategies

Christoph Reisinger

with Christa Cuchiero and Stefan Rigger

Bayes Business School, 6 December 2023

Oxford Mathematics

Mathematica Institute

- Background structural credit models with mutual obligations.
- Large pool limit and the supercooled Stefan problem.
- ► A central agent controlling the number of defaults:
 - well-posedness and 'propagation of chaos';
 - numerical solution of mean-field control problem;
 - illustration of strategies, losses, and cost to central agent.

-

イロト 不得 トイヨト イヨト

'Structural' credit risk model

à la Merton, Cox,...

- The assets of a bank minus its liabilities are modelled by a process X_t .
- The bank is considered defaulted if X_t hits zero.

э

Mutual liabilities

- On default, bank 1 fails to meet some of its liabilities to bank 2.
- Bank 2's equity process jumps downwards.

Credit contagion

- On default of bank 2, it fails to meet some of its liabilities to bank 3.
- Bank 3's equity process jumps downwards.

Control of credit shocks

N-bank model

We assume the $X^{i,N}$ satisfy, for i = 1, ..., N, $X_t^{i,N} = X_{0-}^{i,N} + B_t^{i,N} - \alpha \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{\tau_{i,N} \le t\}},$

where

$$\tau_{i,N} = \inf\{t : X_t^{i,N} \le 0\},\$$

- $X_{0-}^{i,N}$ are non-negative i.i.d. random variables,
- ► (B^{i,N})_{1≤i≤N} is an N-dimensional standard Brownian motion, independent of X₀₋ = (X^{i,N}₀₋)_{1≤i≤N},
- ► and α ≥ 0 is a contagion parameter measuring the amount of inter-firm lending.

Mean-field limit

e.g., Hambly, Ledger, & Sojmark (2019)

For $N \to \infty$, a representative bank follows

$$X_t = X_{0-} + B_t - \alpha \mathbb{P}\left(\inf_{0 \le s \le t} X_s \le 0\right), \ t \ge 0,$$

where B is a standard Brownian motion independent of X_{0-} .

- Cartoon model for credit risk with default contagion.
- Realistic α depends on mutual liabilities, recovery rates, asset vol – anything 0.5 to 5, or even higher (see Lipton, Kaushansky, & R, 2019)
- Similar models in neuroscience (see Delarue, Inglis, Rubenthaler, &Tanré, 2015)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Let X_{0-} be a random variable with probability density f.

Consider the problem of finding a non-decreasing $\boldsymbol{\Lambda}$ such that the stochastic process

$$X_t = X_{0-} + B_t - \Lambda_t, \ t \ge 0$$

satisfies the constraint

$$\Lambda_t = \alpha \, \mathbb{P}\Big(\inf_{0 \le s \le t} X_s \le 0\Big), \ t \ge 0,$$

where *B* is a standard Brownian motion independent of X_{0-} .

Let $\tau := \inf\{t \ge 0 : X_t \le 0\}.$

э.

・ロット 御 マ イロット キャー

'Blow up' scenario Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)

HLS19: If $\alpha > 2\mathbb{E}[X_0]$, $t \to \Lambda_t$ cannot be continuous for all t.*

 $_{\text{Oxford}}$ *No jumps for α sufficiently small (Bayraktar, Guo, Tang, Zhang, 2020). Mathematics London 2023 Control of credit shocks

э

・ロト ・ 雪 ト ・ ヨ ト ・

'Blow up' scenario Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, &Tanré (2015)

 $\blacktriangleright \text{ Recall } X_t = X_{0-} + B_t - \Lambda_t.$

Oxford Mathematics

Control of credit shocks

э.

・ロト ・ 一 ト ・ モト ・ モト

'Blow up' scenario

Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015)

Control of credit shocks

э

(日)、

Physical and minimal solutions

Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015)

Definition (Physical and minimal solutions)

Call a solution (X, Λ) physical if for all t

$$\Lambda_t - \lim_{s \to t^-} \Lambda_s = \left\{ \inf_x \left(\mathbb{P}(X_{t^-} < x, \inf_{s < t} X_s > 0) < \frac{1}{\alpha} x \right) \right\}.$$

Call a solution $\underline{\Lambda}_t$ minimal if for any other solution Λ we have $\underline{\Lambda}_t \leq \Lambda_t, \quad t \geq 0.$

Oxford Mathematics

э

Well-posedness and regularity

Delarue, Nadtochiy, Shkolnikov (2019)

- a. [Existence, Cuchiero, Rigger, & Svaluto-Ferro (2020); see also Ledger and Sojmark (2019)]: If E[X_{0−}] < ∞, there is a unique minimal solution, which is also a physical solution.
- b. [Uniqueness]: Let X_{0-} possess a density f on $[0, \infty)$ that is bounded and changes monotonicity finitely often on compacts. Then physical solutions are unique.

• For any
$$t > 0$$
, $\Lambda \in C^1(t, t + \epsilon)$.

▶ The densities $p(s, \cdot)$, $s \in (t, t + \epsilon)$ are classical solutions of

$$\begin{split} \partial_t p &= \frac{1}{2} \partial_{xx} p + \dot{\Lambda}_t \partial_x p, \ x \ge 0, \ t \in [0, T], \\ \dot{\Lambda}_t &= \frac{\alpha}{2} \partial_x p(t, 0), \ t \in [0, T] \ \text{and} \ \Lambda_0 = 0, \\ p(0, x) &= f(x), \ x \ge 0 \ \text{and} \ p(t, 0) = 0, \ t \in [0, T]. \end{split}$$

Oxford Mathematics

Supercooled Stefan problem

Sherman (1970), Fasano, Primicerio, Howison, & Ockendon (80's), and Stefan (1889) for standard case

The transformation
$$u(t,x) := p(t, x - \Lambda_t)$$
, $x \ge \Lambda_t$ leads to
 $\partial_t u = \frac{1}{2} \partial_{xx} u$, $x \ge \Lambda_t$, $t \ge 0$,
 $\dot{\Lambda}_t = \frac{\alpha}{2} \partial_x u(t, \Lambda_t)$, $t \ge 0$ and $\Lambda_0 = 0$,
 $u(0, x) = f(x)$, $x \ge 0$ and $u(t, \Lambda_t) = 0$, $t \ge 0$.

This is the classical one-dimensional supercooled Stefan problem:

- -f is the initial temperature in a liquid relative to its freezing point;
- Λ_t is the location of the liquid-solid boundary at time t;
- $-u(t, \cdot)$ is the temperature in the liquid relative to its freezing point at time t;
- and $\alpha > 0$ is a physical parameter.

We consider the *supercooled* regime, i.e., when $f \ge 0$.

► Link

Introducing a central agent

A central agent injects cash at a rate $\beta_t^{i,N}$ into bank *i*,

$$X_{t}^{i,N} = X_{0-}^{i,N} + \int_{0}^{t} \beta_{s}^{i,N} \, ds + B_{t}^{i,N} - \alpha \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{\tau_{i,N} \leq t\}},$$

where $\tau_{i,N} := \inf\{t \ge 0 : X_t^{i,N} \le 0\}.$

In analogy to before, we will consider the mean-field limit (TBC)

$$X_t = X_{0-} + \int_0^t \beta_s \, ds + B_t - \Lambda_t,$$

$$\Lambda_t = \alpha \mathbb{P}\Big(\inf_{0 \le s \le t} X_s \le 0\Big).$$

Oxford Mathematics

Control of credit shocks

3

イロト 不得 トイヨト イヨト

For given $\beta,$ the central agent has a total cost

$$C_{\mathcal{T}}(\beta) = \mathsf{E}\Big[\int_0^{\mathcal{T}} \beta_t \, dt\Big],$$

and observes losses prior to T,

$$L_{\mathcal{T}-}(\beta) = \mathbb{P}\left(\inf_{0 \le s < T} X_s(\beta) \le 0\right) = \Lambda_{\mathcal{T}-}(\beta)/\alpha.$$

We will study the constrained optimisation problem

 $C_{\mathcal{T}}(\beta) \longrightarrow \min_{\beta}$ subject to $L_{\mathcal{T}-}(\beta) \leq \delta$.

Oxford Mathematics

We minimise the following objective function

$$J(\beta) = \mathsf{E}\Big[\int_0^T \beta_t \, dt\Big] + \gamma \, \mathbb{P}\Big(\inf_{0 \le s < T} \underline{X}_s(\beta) \le 0\Big)$$
$$= \mathsf{E}\Big[\int_0^T \beta_t \, dt + \gamma \, \mathbb{1}_{\{\widehat{X}_{T-}=0\}}\Big],$$

where γ traces out optimal pairs $(C_T^{\star}(\gamma), L_{T-}^{\star}(\gamma))$.

As function of $\delta,\,\gamma$ is a shadow price of preventing defaults,

$$\partial_{\delta} C_T^{\star}(\delta) = -\gamma(\delta).$$

Oxford Mathematics

In all examples, we choose a gamma initial density,

$$f(x) = 1/\Gamma(k) \, \theta^{-k} x^{k-1} \mathrm{e}^{-x/\theta}, \qquad x \ge 0.$$

- Default parameters k = 2, $\theta = 1/3$.
- Smooth solutions for small *t*, but blow-up is guaranteed for $\alpha > k\theta = 2/3$.
- We will consider various values of α around 1.
- The terminal time is typically T = 0.02.
- We fix $b_{max} = 30$ at first, but investigate changes later on.

Optimal strategies

Feedback controls $\beta_t = \beta(t, X_t)$

Contour plots of $(t, x) \rightarrow \beta^{\star}(t, x)$ for $\alpha = 1.5$ and different γ . The white region is $\{\beta^{\star} \leq 0.05 \ b_{max}\}$, the (yellow) shaded region $\{\beta^{\star} \geq 0.95 \ b_{max}\}$, the dark (blue) zone the transition.

Oxford Mathematics

Changing γ and \textit{b}_{\max}

э

Optimal cost-loss pairs

Small cash withdrawal can cause systemic events.

Pairs $(C_T^{\star}, L_T^{\star})$ for different α

(日)、

Cost C_T^{\star} and loss L_T^{\star} in the optimal regime for logarithmically spaced $\gamma \in [0.0001, 0.1]$.

Oxford Mathematics

э

Comparison with heuristic strategies

 $\alpha = 1$, no jumps

Cost-loss pairs $(C_T^{\star}, L_T^{\star})$ under optimal strategy compared to those for a

- constant strategy, $(C_T^u(c), L_T^u(c))$, where cash is injected for $0 < X_t \le c$,
- front-up strategy, $(C_T^f(d), L_T^f(d))$, where X_0 is lifted to d > 0.

$$\begin{split} S_{\mathcal{T}} :=& \{f \in L^2[0,\,\mathcal{T}] \mid 0 \leq f \leq b_{\mathsf{max}} \text{ a.e.} \} \\ \mathcal{B}_{\mathcal{T}} :=& \{\beta \text{ progressively measurable } \mid \mathbb{P}(\beta \in \mathcal{S}_{\mathcal{T}}) = 1 \}. \end{split}$$

Theorem (Existence of solutions for general drift)

For any $\beta \in \mathcal{B}_T$, there is a unique minimal solution to $X_t = X_{0-} + \int_0^t \beta_s \, ds + B_t - \alpha \mathbb{P}(\inf_{0 \le s \le t} X_s \le 0).$

Theorem (Existence of optimiser)

There is $\beta^{\star} \in \mathcal{B}_{T}$ such that

$$V_{\infty} = \inf_{\beta \in \mathcal{B}_{\mathcal{T}}} J(\beta) = J(\beta^{\star}).$$

Oxford Mathematics

Control of credit shocks

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Propagation of chaos

Consider the N-bank setting

$$\begin{split} X_t^{i,N} &:= X_{0-}^{i,N} + \int_0^t \beta_s^{i,N} \, \mathrm{d}s + B_t^{i,N} - \alpha L_t^N, \\ L_t^N &:= \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{\tau^{i,N} \leq t\}}, \quad \text{where} \quad \tau_{i,N} := \inf\{t \geq 0 : X_t^{i,N} \leq 0\}, \\ V_N &:= \inf_{\beta^N \in \mathcal{B}} \mathbb{E} \left[\int_0^T \frac{1}{N} \sum_{i=1}^N \beta_s^{i,N} \, \mathrm{d}s + \gamma \widetilde{\underline{L}}_T^N(\beta^N) \right], \end{split}$$

where $\underline{\widetilde{L}}^{N}(\beta^{N})$ is the minimal solution with drift β^{N} and initial condition $X_{0-}^{i,N} = X_{0-}^{N} + N^{-\kappa}$ for $\kappa \in (0, 1/2)$ and all i = 1, ..., N.

Theorem

Then it holds that
$$\lim_{N\to\infty} V_N = V_\infty$$
.

Oxford Mathematics

Control of credit shocks

3

A non-standard MFC problem

Recall $\underline{X}(\beta)$ corresponding to the minimal solution $\underline{\Lambda}(\beta)$, and

$$J(\beta) = \mathsf{E}\Big[\int_0^T (\beta_t + \gamma \dot{L}_t) \, dt\Big], \qquad L_t = \mathbb{P}\Big(\inf_{0 \le s < T} \underline{X}_s(\beta) \le 0\Big).$$

For regular solutions, $\underline{\hat{X}} = \underline{X}_t \mathbb{1}_{\{\tau > t\}}$ has a sub-probability density p supported on $(0, \infty)$ and an atomic mass at 0:

$$\partial_t p + \partial_x (\beta p) = \frac{1}{2} \partial_{xx} p + \dot{\Lambda}_t \partial_x p, \ x \ge 0, \qquad \Lambda_t = \alpha \Big(1 - \int_0^\infty p(t, x) \, dx \Big).$$

Assuming again regularity, $\dot{L}_t = \frac{1}{2}\partial_x p(t,0)$ and

$$dX_t = (\beta_t - \alpha \dot{L}_t) dt + dB_t.$$

Oxford Mathematics

-

Regularisation

For (small) h > 0, approximate $p_x(t, 0)$ by way of the measure ν_t ,

$$\dot{L}^h_t = rac{1}{2}\int_{-\infty}^\infty (-\partial \phi^h)(x)\,
u_t(dx) = rac{1}{2}\langle -\partial \phi^h,
u_t
angle.$$

Dynamics and objective can be rewritten in these terms.

• We smoothly transition SDE coefficients to 0 over [-h, 0].

Smoothed Dirac delta and its derivatives, for $h = 10^{-3}$.

Oxford Mathematics

Control of credit shocks

26

Densities

Density $p(t, \cdot)$ for small negative x.

Density $p(t, \cdot)$ in macroscopic range.

(日)、

Parameters $\alpha = 1.5$, $\gamma = 0.1$; $\Gamma(2, 1/3)$ initial density

Oxford Mathematics

э

We consider the objective

$$\inf_{\beta \in \mathcal{H}^2(\mathbb{R})} \mathsf{E}\bigg[\int_0^T \left(\beta_t + \frac{\gamma}{2} \langle -\partial \phi^h, \nu \rangle + g(\beta_t)\right) \mathrm{d}t\bigg],$$

where g(b) = 0 for $b \in [0, b_{max}]$ and ∞ otherwise.

- We apply the method from R., Stockinger, Zhang, A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems, arXiv, 2021.
- We compute the measure by a forward PDE, and the gradient by a backward PDE for a 'decoupling field'.

-

Finite difference convergence

Finite termination

			10 ³ h	1	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	CPU
$\frac{N}{10^2}$	$\frac{N_x}{10^3}$	$10^3 \theta_N$	ρΝ							(s)
1	3.75	1.956	-2.42	0.5643	0.6430	0.7137	0.832	4.775	0	0.44
2	7.5	-0.806	1.31	0.5663	0.6260	0.6693	0.726	0.838	5.121	1.2
4	15	-0.614	1.82	0.5655	0.6164	0.6481	0.677	0.822	0.033	4.2
8	30	-0.337	1.94	0.5649	0.6118	0.6376	0.658	0.688	0.609	17
16	60	-0.173		0.5645	0.6096	0.6327	0.648	0.664	0.689	83
32	120	_	—	0.5643	0.6085	0.6304	0.644	0.654	0.668	427
			$10^2 \vartheta_h$	4.414	2.192	1.354	1.084	1.32	—	
			Qh	2.01	1.61	1.24	0.81	—	—	

Mesh convergence, losses, $\alpha=1.5$ and $\gamma=0.1.$

э.

イロト 不得 トイヨト イヨト

Convergence of iterations

 $\alpha = 0.5$, varying γ , N = 800

(日)、

Convergence of C and L in the PGM for varying γ and α . Shown are $|L^{(m+1)} - L^{(m)}|$ and $|C^{(m+1)} - C^{(m)}|$.

Oxford Mathematics

э

Delayed contagion

Hambly, Petronilia, R, Rigger & Sømark, 2023

$$\begin{split} dX_t^i &= b(t, X_t^i, \nu_t^N) \, dt + \sigma(t, X_t^i) \sqrt{1 - \rho(t, \nu_t^N)^2} \, dW_t^i + \\ &\sigma(t, X_t^i) \rho(t, \nu_t^N) \, dW_t^0 - \alpha(t) \, d\mathcal{L}_t^{N,\epsilon}, \\ \nu_t^N &= \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}, \qquad \tau^i = \inf\{t \ge 0 : X_t^i \le 0\}, \\ \mathcal{L}_t^N &= 1 - \nu_t^N(\mathbb{R}^+), \qquad \mathcal{L}_t^{N,\epsilon} = \int_0^t \epsilon^{-1} \kappa(\epsilon^{-1}(t-s)) \mathcal{L}_t^N \, ds, \end{split}$$

where all W^i , W^0 B.M., all independent.

- W^0 is a common noise;
- smoothed default contagion through Λ_t .

Control and killing at state-dependent intensity

Hambly & Jettkant, 2023

$$\begin{split} dX_t^i &= b(t, X_t^i, \nu_t^N, \gamma_t^i) \, dt + \sigma(t, X_t^i, \nu_t^N) \, dW_t^i + \sigma_0(t, X_t^i, \nu_t^N) \, dW_t^i \\ &- \alpha(t, X_{t-}^i, \nu_{t-}^N) \, dL_t^N, \\ d\Lambda_t^i &= \lambda(t, X_t^i, \nu_t^N) \, dt, \\ \nu_t^N &= \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\theta_i > \Lambda_t^i} \delta_{X_t^i}, \qquad L_t^N = 1 - \nu_t^N(\mathbb{R}), \end{split}$$

where all W^i , W^0 B.M. and θ_i i.i.d. exponential, all independent.

- W^0 is a common noise;
- γ_t^i are controls;
- default contagion through Λ_t .

イロト 不得 トイヨト イヨト

- C Cuchiero, C Reisinger, S Rigger. Optimal bailout strategies resulting from the drift controlled supercooled Stefan problem. Annals of Operations Research, 2023.
- B Hambly, A Petronilia, C Reisinger, S Rigger, A Søjmark. Contagious McKean–Vlasov problems with common noise: from smooth to singular feedback through hitting times, arxiv:2307.10800
- B Hambly, P Jettkant. Control of McKean–Vlasov SDEs with contagion through killing at a state-dependent Intensity, arxiv:2310.15854

イロト 不得 トイヨト イヨト