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» Background structural credit models with mutual obligations.

» Large pool limit and the supercooled Stefan problem.

» A central agent controlling the number of defaults:
» well-posedness and ‘propagation of chaos’;
» numerical solution of mean-field control problem;

» illustration of strategies, losses, and cost to central agent.
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‘Structural’ credit risk model

a la Merton, Cox,...
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» The assets of a bank minus its liabilities are modelled by a process X:.

» The bank is considered defaulted if X; hits zero.
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)A<t1 the stopped process of bank 1.
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Mutual liabilities
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» On default, bank 1 fails to meet some of its liabilities to bank 2.

» Bank 2's equity process jumps downwards.

Default and contagion
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X1, X2 the stopped processes of banks 1 and 2.
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Credit contagion
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» On default of bank 2, it fails to meet some of its liabilities to bank 3.

» Bank 3's equity process jumps downwards.

Default and contagion
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)A<t1, )A(f, )A(t?’ the stopped processes of banks 1, 2, and 3.
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N-bank model
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We assume the XN satisfy, for i =1,..., N,

N
. : . 1
N N N
XN =x2N + B] —(1NZI{,./_N9},
i=1
where .
TiN = inf{t : X;’N < O},

I.N . .. .
» X, are non-negative i.i.d. random variables,

» (B"N)i<i<n is an N-dimensional standard Brownian motion,

independent of Xy = (Xéi\l)lgigN,

» and o > 0 is a contagion parameter measuring the amount of
inter-firm lending.
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Mean-field limit
e.g., Hambly, Ledger, & Sojmark (2019)
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For N — 00, a representative bank follows

Xt:Xo,—i—Bt—aP( inf X5§0>, >0,

0<s<t
where B is a standard Brownian motion independent of Xj_.

» Cartoon model for credit risk with
default contagion.

P> Realistic a depends on mutual
liabilities, recovery rates, asset vol —
anything 0.5 to 5, or even higher
(see Lipton, Kaushansky, & R, 2019)

» Similar models in neuroscience
(see Delarue, Inglis, Rubenthaler,
&Tanré, 2015)

Le = P((infocece Xs 0), Xou =05
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(Probabilistic) problem statement

McKean—Vlasov structure
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Let Xo— be a random variable with probability density f.

Consider the problem of finding a non-decreasing A such that the
stochastic process

Xt:X0_+Bt */\t, tZO
satisfies the constraint

/\t:nIP)< inf xsgo>, t>0,

0<s<t
where B is a standard Brownian motion independent of Xp_.

Let 7 :=inf{t > 0: X; <0}.
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¢ 1 -
Blow up’ scenario
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015) OXFORD
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HLS19: If a > 2E[Xp], t — A; cannot be continuous for all ¢.*

N

c \{/ \7‘\

> Acja= [P(infogsths < o)

> p(-, t) the density of X = Xelgrsey

oxios “No jumps for « sufficiently small (Bayraktar, Guo, Tang, Zhang, 2020).
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Blow up’ scenario
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015)
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» Recall Xt = X()_ + Bt — At-
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‘Blow up’ scenario

Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015) OXFORD
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Physical and minimal solutions
Hambly, Ledger, & Sojmark (2019); see also Delarue, Inglis, Rubenthaler, & Tanré (2015)
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“ < Ph\ sl\sﬂ\

N\

Definition (Physical and minimal solutions)

Call a solution (X, A) physical if for all t

st «

1
A — lim Ag = {inf <IP’(X— < X, irlf;Xs >0) < x)}
X S

Call a solution A, minimal if for any other solution A we have
At S At) t 2 0.
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Well-posedness and regularity
Delarue, Nadtochiy, Shkolnikov (2019)
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a. [Existence, Cuchiero, Rigger, & Svaluto-Ferro (2020); see also
Ledger and Sojmark (2019)]: If E[Xp_] < oo, there is a unique
minimal solution, which is also a physical solution.

b. [Uniqueness]: Let Xo_ possess a density f on [0, c0) that is
bounded and changes monotonicity finitely often on compacts.
Then physical solutions are unique.

» Forany t >0, A€ Ci(t, t+e).

> The densities p(s,-), s € (t,t + €) are classical solutions of

1 .
81.‘p = Eaxxp + /\taxp7 X 2 Ou te [Oa T]7

Ar = % p(t,0), t€[0,T] and Ag=0,

p(0,x) =f(x), x>0 and p(t,0)=0, t€][0,T].
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Supercooled Stefan problem
Sherman (1970), Fasano, Primicerio, Howison, & Ockendon (80’s), and Stefan (1889) for standard case
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The transformation u(t, x) := p(t,x — A¢), x > A leads to
Oy = %8XXU, x>Ng, t>0,
Ae = %Oxu(t,/\t), t>0 and Ag =0,
u(0,x) =1f(x), x>0 and u(t,A)=0, t>0.
This is the classical one-dimensional supercooled Stefan problem:

—f is the initial temperature in a liquid relative to its freezing point;
At is the location of the liquid-solid boundary at time t;
—u(t,-) is the temperature in the liquid relative to its freezing point at time t;

vvyyvyy

and a > 0 is a physical parameter.

We consider the supercooled regime, i.e., when f > 0.

Oxford
14
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https://www.youtube.com/watch?v=_9N-Y2CyYhM

Introducing a central agent
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A central agent injects cash at a rate Jé'N into bank i,

XM= x|
0

i, N
3N ds + BEN — ay hIR e
i=1
where 7; y :=inf{t > 0: Xti’N < 0}.
In analogy to before, we will consider the mean-field limit (TBC)

t
Xt=Xo+/ B, ds + B — Ay,
0

Ay = aIP( inf X, < 0).
0<s<t
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Minimising costs subject to loss bound
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For given (3, the central agent has a total cost

-
Cr(8) = E[/ Btdt],
0
and observes losses prior to T,

Lr_(B) = P( inf_ X,(8) < o) = Ar_(8)/a.

0<s<T

We will study the constrained optimisation problem

IN

Cr(B) — m/@in subject to Lr_(B) <o.
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Lagrangian multiplier
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We minimise the following objective function

J(ﬁ):E[/(]T,Btdt}—mIP’( inf Xs(ﬁ)§0>

0<s<T
-
:E|:/O Btdt—i_ﬁ/l{XTf:O}]’
where v traces out optimal pairs (CF(7), L5_(7)).
As function of §, v is a shadow price of preventing defaults,

95C+(8) = —(6).
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Parameter studies
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In all examples, we choose a gamma initial density,

f(x) =1/T(k) 0 *x1e/?  x>o.

Default parameters k =2, § = 1/3.

Smooth solutions for small t, but blow-up is guaranteed for
a> kO =2/3.

We will consider various values of « around 1.

v

v

v

The terminal time is typically T = 0.02.
We fix bmax = 30 at first, but investigate changes later on.

v

v
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Optimal strategies
Feedback controls 8y = B(t, Xt)
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02 Contours of A(tx), a=15,y=0.1 o Contours of f(tx), a =1.5, y=0.0005 o Contours of A(tx), a=1.5, y=0.0001
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Contour plots of (t,x) — 8*(t,x) for a = 1.5 and different 4. The white region is
{B* < 0.05 bmax}, the (yellow) shaded region {8* > 0.95 bmax}, the dark (blue) zone

the transition.
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Changing v and bpax
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Loss
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Control regions for different bmax
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Optimal cost-loss pairs

Small cash withdrawal can cause systemic events.
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Cost-loss, different « o Loss versus gamma, « = 1.5
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Pairs (CF, L%) for different o

% as function of v, a = 1.5

Oxford
Mathematics

Cost C7 and loss L% in the optimal regime for logarithmically spaced v € [0.0001,0.1].
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Comparison with heuristic strategies
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012 Cost-loss, different strategies, o = 1

Cost-loss, different strategies, « = 1.5
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cost
a =1, no jumps a = 1.5, jump possible

Cost-loss pairs (C¥, L%) under optimal strategy compared to those for a
> constant strategy, (C%(c), L%(c)), where cash is injected for 0 < X; < c,

> front-up strategy, (Cg_(d)7 LfT(d)), where Xj is lifted to d > 0.
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Existence of optimiser
0 < Bt < bmax
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St:={f€l?0,T]|0<f < bpax ae.}
Bt :={f progressively measurable | P(8 € St) = 1}.

Theorem (Existence of solutions for general drift)

For any 8 € BT, there is a unique minimal solution to

t
X = Xo- +/O B ds + Br — aP( inf X, <0).

Theorem (Existence of optimiser)

There is p* € Bt such that
Vo = inf J(B) = J(BY).
BIEnBT J( ) J( )
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Propagation of chaos
Consider the N-bank setting
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. . t . .
XN = Xélv-l-/ BiN ds + BN —all,
0
N
Ly ::l21 i< where Ty = inf{t>0:Xi’N<O}
t an {riN<t}s i = t =V
1=

Vy = inf E
BNeB

T1 N B
[ SLATRRLIEUIS
i=1

where ZN(BN) is the minimal solution with drift 3V and initial
condition X;N = X + N~ for k € (0,1/2) and all i = 1,..., N.

Theorem
Then it holds that limy_oo VN = V.
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A non-standard MFC problem
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Recall X(3) corresponding to the minimal solution A(5), and

J(B) = E[/OT(,Bt+7Lt) dt}, Ly = ]P( inf_X.(8) < 0).

0<s<T

For regular solutions, X = X1 7>+ has a sub-probability density
p supported on (0,00) and an atomic mass at O:

1 o
Orp+0x(Bp) = O P+A:Oxp, x >0, A = a(l—/ p(t,x) dx).
0

2
Assuming again regularity, L, = %(‘?Xp(t, 0) and

dXt = (,Bt — OéLt) dt + dBt
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Regularisation
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For (small) h > 0, approximate py(t,0) by way of the measure v,

1

it =5 [ (000 nle) = 5 (-6 ).

> Dynamics and objective can be rewritten in these terms.

» We smoothly transition SDE coefficients to 0 over [—h, 0].
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Smoothed Dirac delta and its derivatives, for h = 1073,

11
1210

Oxford
Mathematics London 2023 Control of credit shocks

26



Densities
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Density p(t,-) for small negative x. Density p(t,-) in macroscopic range.

Parameters a = 1.5, v = 0.1; (2, 1/3) initial density
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(Proximal) policy gradient method
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We consider the objective

inf EUOT (5t+ %<78¢h,1/>+g(6t)) dt],

BEH?(R)

where g(b) = 0 for b € [0, bmax] and oo otherwise.

» We apply the method from R., Stockinger, Zhang, A fast
iterative PDE-based algorithm for feedback controls of
nonsmooth mean-field control problems, arXiv, 2021.

» We compute the measure by a forward PDE, and the gradient
by a backward PDE for a ‘decoupling field’.
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Finite difference convergence

Finite termination
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[ [ [ [ 10%h | 1 [ 27V [ 272 T 273 ] 27" [ 27 [ CPU |
EEEXEEY (s)
1| 375 | 1.956 | -2.42 | 0.5643 | 0.6430 | 0.7137 | 0.832 | 4.775 0 0.44
2 7.5 | -0.806 | 1.31 | 0.5663 | 0.6260 | 0.6693 | 0.726 | 0.838 | 5.121 | 1.2
4 15 | -0.614 | 1.82 | 0.5655 | 0.6164 | 0.6481 | 0.677 | 0.822 | 0.033 | 4.2
8 30 | -0.337 | 1.94 | 0.5649 | 0.6118 | 0.6376 | 0.658 | 0.688 | 0.609 17
16 60 | -0.173 — 0.5645 | 0.6096 | 0.6327 | 0.648 | 0.664 | 0.689 83
32 | 120 — — 0.5643 | 0.6085 | 0.6304 | 0.644 | 0.654 | 0.668 | 427
1029, | 4.414 2.192 1.354 | 1.084 | 1.32 —
on 2.01 1.61 1.24 0.81 — —

Mesh convergence, losses, « = 1.5 and v = 0.1.
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Convergence of iterations
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Convergence of gradient iteration Convergence of gradient iteration

—-loss, 7
-o-cost, =0,
—+loss, v=0.

cost, y=0.1

1054 ., Nmﬂmm -
0 10 20 30 40 50 0 10 2 30 4 50
m m
a = 0.5, varying v, N = 800 varying a, v =1, N = 800

Convergence of C and L in the PGM for varying v and «. Shown are |L("’+1) - L(’")|
and |C(m+1) — c(m),
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Delayed contagion
Hambly, Petronilia, R, Rigger & Sgmark, 2023
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dX! = b(t, X!, vNY dt + o(t, XD)\/1 — p(t,vN)2 dW] +
a(t, X)) p(t,vN) dW? — a(t) d/_‘,iv’g,

N
1 i . i
V{":N 'E_l Oxis T = inf{t >0: X/ <0},
t
IN=1-uNRrR", )M = / e tr(e (t —s))Ly ds,
0

where all Wi, W° B.M., all independent.

» WO is a common noise;

» smoothed default contagion through A;.
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Control and killing at state-dependent intensity

Hambly & Jettkant, 2023 OXFORD
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dX! = b(t, X[, v A dt + o (t, X, vN) dW + oo(t, X[ 0) aw?
—a(t, X!, vN)dLV,
dAL = \(t, X,_!,yt ) dt,

1
v = N Z Lponidxis LY = 1-1'(R),
i=1

where all W/, W9 B.M. and 6; i.i.d. exponential, all independent.

> WO iS @a common noise;
> ~; are controls;

» default contagion through A;.
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