

Live and let marry

The importance of spousal assumptions

Cord-Roland Rinke

Longevity 18 Conference, London, 8th September 2023

- **1** Data Sources for Spouse Information
- 2 Setting Proportion Married Assumptions
- 3 Modelling Approaches
- 4 Summary

1 Data Sources for Spouse Information

- 2 Setting Proportion Married Assumptions
- 3 Modelling Approaches
- 4 Summary

Spouse benefits in DB pension context

Who can be eligible for spouse benefits?

- In defined benefit pension context: "Any spouse definition" predominant
- Benefits paid to the spouse legally married or in a civil partnership with the scheme member as at the date of death
- Assumptions on proportion married and age difference (age of spouse) to be made

The importance of accuracy

Marital proportions and age difference – why do they matter?

- Present value impact
- Accuracy matters:
 - underpricing impacts profitability
 - over-pricing impacts competitiveness
- Risks:
 - anti-selection
 - impact of changes in portfolio composition over time

	Present Value impact*
Proportion married + 10%	0.9% - 1.6%
Age difference of female spouse increased by 1 year	0.4% - 1.4%

hannover re

Data sources for proportion married and age difference

		Pros	Cons
	Population data	Good history over time, biggest data pool	General data, not considering scheme specifics
	Electronic tracing data	Fast and reliable	Requires assumptions around categories and accuracy
	Experience data	Relevant experience of the scheme	Potential bias – not the lives being priced
7	Write-out/Survey data	Most accurate way to assess current spouse information	Response bias, time, costs

increasing accuracy

Balance availability, accuracy, relevance and costs

Available population data

UK-Population proportion married 1.0 0.9 Prop. - Married [+ SEM] 0.1 0.0 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85+ Age Gender — F — M

Source: ONS 2002,2007,2012,2016,2020 + HR-calculations

Proportion married reduces as spouse's mortality increases

Population data variability

Source: ONS 2020 + HR-calculations

All estimates come with uncertainty!

Proportion married changes Gender differences! UK-population proportion married [Males] UK-population proportion married [Females] 0.9 0.9-0.8 0.8 07 07 Prop.-Married σ -0.6-≤ 0.5 ar Te 0.4 õ. 0.3 0.3 0.2 0.2 0.1 0.1 2002 2007 2012 2002 2007 2012 2016 2016 2020 2020 ONS Year ONS Year **-** 50-54 - 60-64 - 70-74 - 80-84 ← 60-64 ─ 70-74 ← 80-84 Age Group Age Group ➡ 55-59 ➡ 65-69 ➡ 75-79 ➡ 85+ ➡ 55-59 ➡ 65-69 ➡ 75-79 ➡ 85+

Source: ONS 2002,2007,2012,2016,2020 + HR-calculations

- Declining proportion married rates at younger ages
- Increasing proportion married rates at higher ages

Electronic tracing data

Electronic trace marital categories

Varying dependent probability and higher variance for cohabiting categories

Write-Out/Survey Data

Responses to marital surveys

Write-outs most accurate but non-respondent bias to be corrected

- **1** Data Sources for Spouse Information
- 2 Setting Proportion Married Assumptions
- 3 Modelling Approaches
- 4 Summary

Proportion married and age difference

Proportion Married by Gender and Age

Portfolios can give reasonable estimates given sufficient portfolio size

Socio-economic Profiles

higher <----- Postcode proxy for Affluence -----> lower

higher <----- Postcode proxy for Affluence -----> lower

Proportion married non-linearly dependent on socioeconomics

Wealth

- Strong effects of wealth interacting with Gender!
- Errors in assumptions can be very costly!

Age difference

- Broad distribution of age-differences!
- Computations with representative agents or standard approaches will not work!

Proportion married and age difference

Key takeaways

Richer people more likely to be married

•70% vs 45%

• But don't have younger spouses

Pensioners in better neighbourhoods more likely to have a spouse

• 10 % to 15 % point differential in subset of a selected DB pension portfolio

Dependants age more slowly than pensioners

• Older people die with younger spouses

- Non-responders in survey less likely to be married than average

• 42% vs 81% in subset of our own portfolio

- **1** Data Sources for Spouse Information
- 2 Setting Proportion Married Assumptions
- **3** Modelling Approaches
- 4 Summary

Modelling Approaches

Modelling with proportion married at Death	Modelling with proportion married at Treaty Inception
Proportion married rates and age differences are given as a table and change by age	Proportion married rates and age differences are set at treaty inception and change only with spouse mortality
Source for rates and age difference: observed death data	Source for rates and age difference: write-out, tracing or ONS data
At each age, the whole spouse's benefit cashflow needs to be calculated with the probability of the first life's death	$PM_t = PM_0 *_t p_y$
modelling rather complex	modelling simple

Using death data for in-force data

Attained age by Member Status

Deceased and current members differ in terms of age profile and socio-economic profile!

- **1** Data Sources for Spouse Information
- 2 Setting Proportion Married Assumptions
- **3** Modelling Approaches
- 4 Summary

Summary

Accuracy of marital assumptions increasingly important

- Underestimating negatively impacts profitability
- Overestimating negatively impacts competitiveness

Different sources for marital information available to be used for any spouse benefits

• Selection of data source a trade-off between availability, accuracy, relevance and costs

Risk factors: Age, Gender, Socio-economics and Wealth

Socio-economics and wealth important for proportion married, but not for age difference

Two modelling approaches

- using proportion married and age difference at death
- using proportion married and age difference at inception