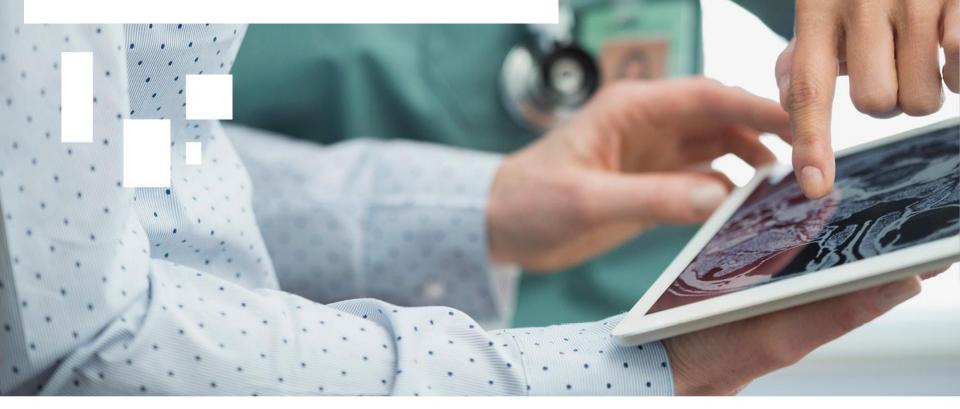

Pricing latest-generation insurance-linked securities

A disease-based modelling approach

Dr. Richard Marshall

September 2017


Willis Towers Watson III'I'III

Agenda

- Disease-based modelling
- Insurance-linked securities
- Pricing non-catastrophic mortality-linked securities
- Summary of results
- Discussion of implications for risk transfer

Disease-based modelling

What disease-based modelling is (and what it isn't)

Brief overview of general mortality modelling approaches

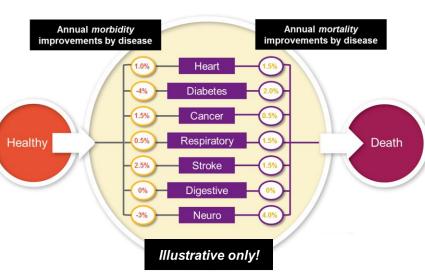
Extrapolative Models			
Examples	Features	Pros and cons	
 Lee-Carter Cairns-Blake-Dowd Age-Period-Cohort 	 Take past mortality data and fit a functional form. Fit a time-series model to changes in the fitted parameters for those functional forms over time. Project the time-series forward. Deduce future mortality rates. 	 ✓ Can be statistically robust. ✓ Some models fit well to past data for certain populations. X Tacit assumption that future mortality will replicate behaviour seen in the past. X The data window available for calibration is limited. X Less able to tailor to specific portfolios. 	

Brief overview of general mortality modelling approaches

Explanatory Models (Type 1: "Cause of death" or "Cause of cause of death" models)			
Examples	Features	Pros and cons	
RMS Life Risks Longevity Risk Model	 Divide mortality between causes of death. Determine trends in the numbers of deaths from each cause. Or determine links from drivers of mortality to deaths from each cause. Project individual trends forward and aggregate back to all-cause mortality. 	 Allow insight into the drivers of mortality rate evolution. Can reflect medical insights, e.g. emerging treatments. Do not typically account well for competing drivers of mortality. More difficult to make the models statistically robust. Less able to tailor to specific portfolios. 	

Brief overview of general mortality modelling approaches

Explanatory Models (Type 2: "Disease-based" models)			
Examples	Features	Pros and cons	
Willis Towers Watson PulseModel	 Multi-state model of the underlying disease process. Model <i>all-cause</i> mortality in the presence of known past medical conditions. Rely on medical expert opinions to set rates of change for incidence and mortality transition rates. 	 ✓ Allow greater insight into the drivers of mortality rate evolution. ✓ Can capture the effects of non-stationarity in a population. X Access to sufficiently granular medical data is usually heavily restricted. X Quality of expert judgements will deteriorate over the projection term. 	


Projection model used for this work

Willis Towers Watson PulseModel

Key Features

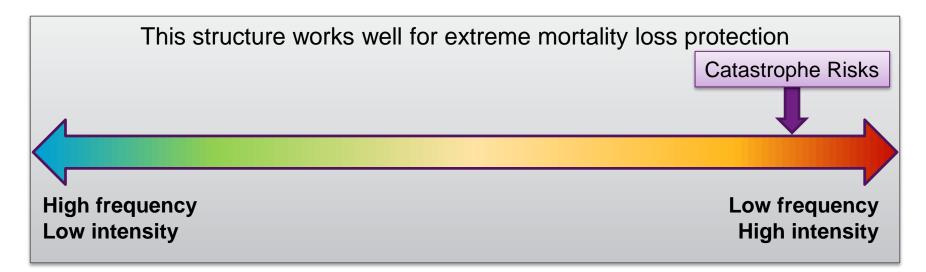
- Multi-state model which tracks disease status from healthy (or initial disease) through to death
- Parameters and risk factors from medical dataset
- Medically-informed views
- Existing UK calibration

Medical input

- Primary care dataset CPRD for base parameterisation
- Risk factors include BMI, HbA1c, smoker status, postcode group and duration since diagnosis
- Future trends from panel of medical experts (parameters & rationale)

Insurance Linked Securities 2 11 1

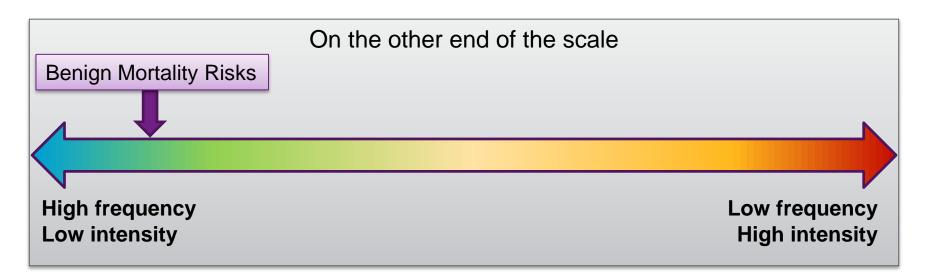
Typical mortality-linked securities


Protection against catastrophic mortality events

Typical approach to structuring and pricing a catastrophe bond:

Define an index	For example: The ratio of mortality rates in consecutive periods.	
Define a trigger	For example: Index value greater than <i>X</i> , or number of deaths due to a single infectious disease exceeding <i>N</i> .	
Define pay-outs	For example: a formula linking index values to the pay-out, or losses incurred within <i>N</i> months of a trigger event.	
Set coupon	Calculated exceedance curves and determine the coupon required on the maximum cover amount to be able to place the notes on the capital markets.	

Typical mortality-linked securities


Protection against extreme mortality losses

- Extreme mortality bonds have relatively stable value.
- Investors do not need to know (or care) about the benign changes in the underlying mortality rate.
- Only expectations of extreme mortality events (e.g. outbreaks of potential pandemic pathogens) will significantly affect the value of the notes.

Not-so-typical mortality-linked securities

Protection against benign everyday mortality losses

- Here, every death counts, so notes will have more volatile values.
- Investors are exposed to small changes in the underlying mortality rates.
- This exposes information asymmetries between the issuer and the investor.
- Consequently, expected returns need to be higher to compensate the investors for the additional risk taken.

Pricing non-catastrophic mortality-linked securities

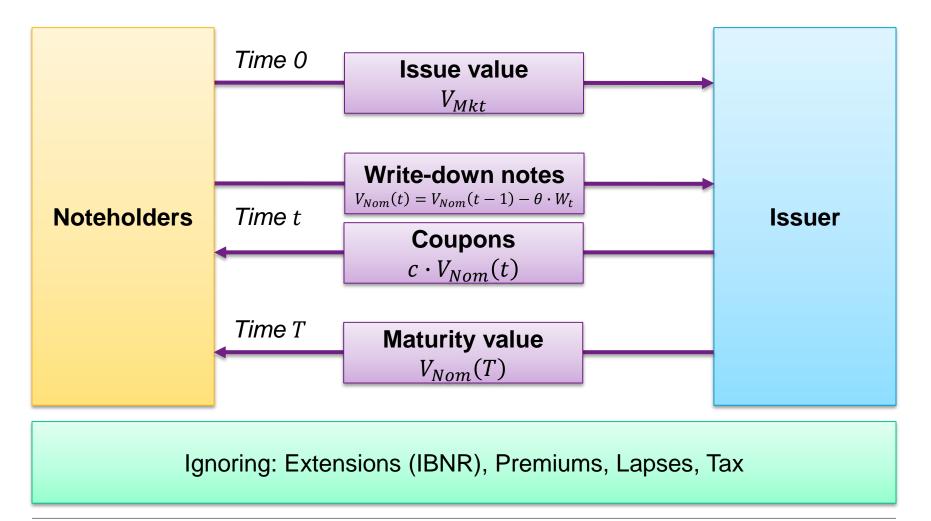
The problems of pricing non-catastrophic mortality-linked securities

Confidence in issuer's loss distribution - Without expertise, investors rely on the issuer's assessment of the risks or a 3 rd party model.	Differential impacts of risk events - E.g. a cut in diabetes care budgets would affect existing diabetics more than current non-diabetics.
"New information" events	Allowance for over-dispersion
- Prices will react to new information	- Single mortality rate per age/gender
about emerging treatments or	will not capture heterogeneity in the
bacterial resistance (not in data).	non-recently-underwritten population.

Consider a sidecar for which a proportion θ (the cession rate) of claims on a portfolio of level term assurance products is written off of the nominal value of the notes.

Notation:

- Nominal value of the notes (time t)
- Market value of the notes (time t)
- Claims in year t
- Coupon rate
- Spot interest rate (term t)


 $V_{Nom}(t)$ $V_{Mkt}(t)$ W_t c

 l_t

Aims of the investigation

Modelling approach: Cash-flows

Modelling approach: present value of cash-flows

The present value of the notes can be represented as follows:

$$K_{Mkt}(0) = K_{Nom}(0) \left((1+i_T)^{-T} + c \sum_{t=1}^T (1+i_t)^{-t} \right) - \theta \sum_{t=1}^T \left((1+i_T)^{-T} + c_{t-1|} a_{\overline{T-(t-1)|}} \right) W_t$$

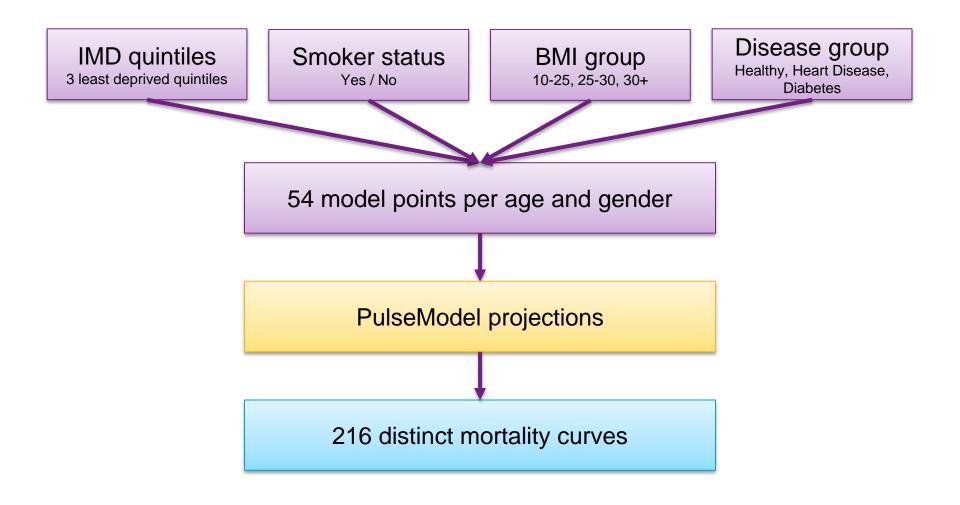
This comprises:

Present value of maturity payment after write-downs

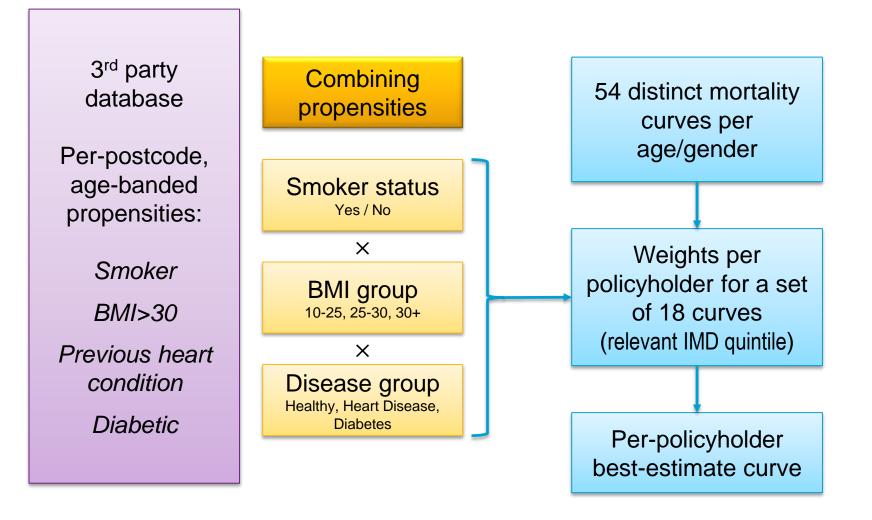
$$(1+i_T)^{-T}\left(K_{Nom}(0)-\theta\sum_{t=1}^T W_t\right)$$

Present value of coupon payments after write-downs

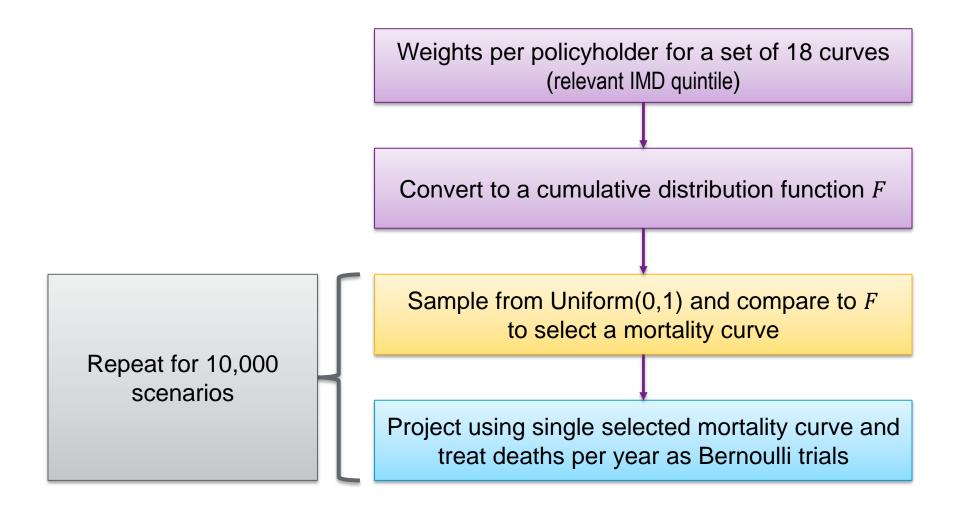
$$c \sum_{t=1}^{T} (K_{Nom}(0)(1+i_t)^{-t} - \theta W_t \cdot {}_{t-1|} a_{\overline{T-(t-1)|}})$$


 $t-1|a_{T-(t-1)|}$ is the present value of a deferred annuity of 1 p.a. payable in arrears, deferred by t-1 years for a fixed term of T-(t-1) years.

Modelling approach: Generating an example portfolio

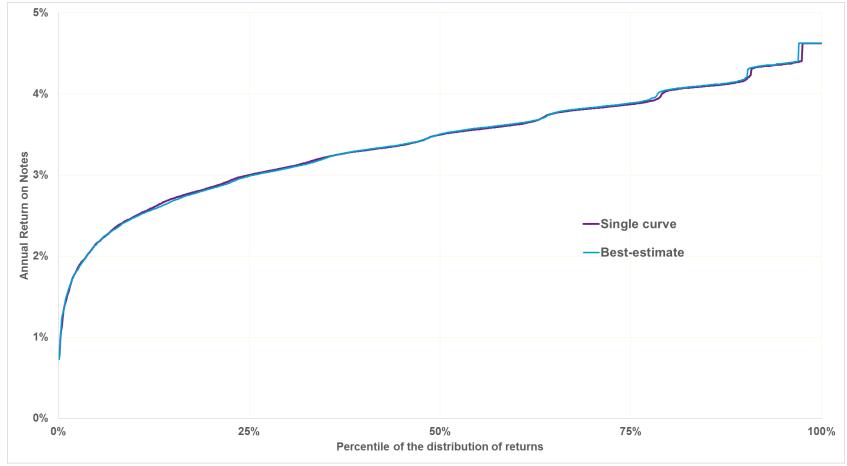


Deliberately simplistic portfolio

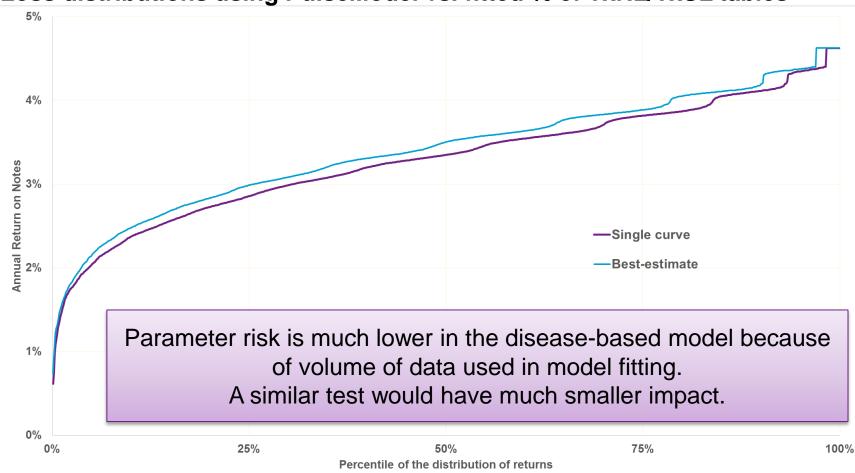

Modelling approach: Model pointing for mortality curves

Modelling approach: Weighting of conditions and rating factors

Modelling approach: Monte-Carlo simulation



Results of modelling AN ELECTRON DE LES

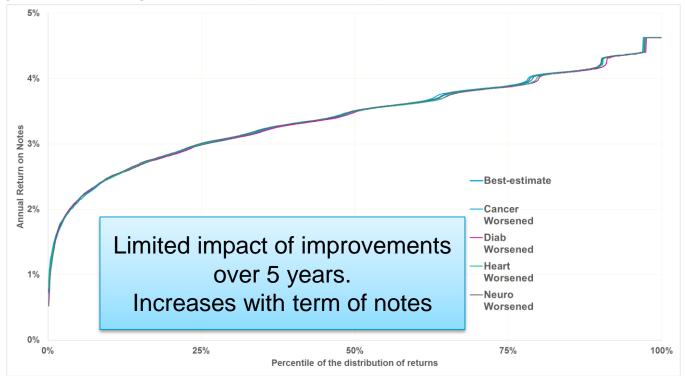

5 year capital-at-risk notes with a 4.99% coupon; 50% retention.

 $V_{Nom}(0) = V_{Mkt}(0) = \pm 3.5m$ priced at 3% above 30 Jun 2017 RFR.

Loss distributions using PulseModel vs. fitted % of TxNL/TxSL tables

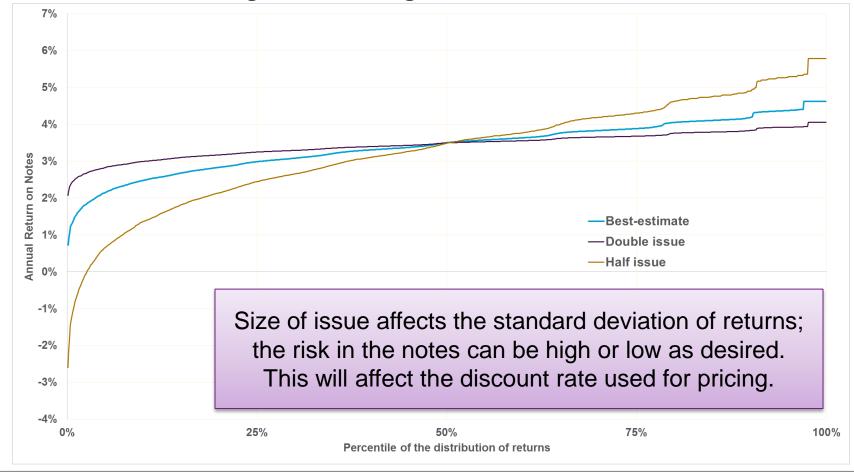
Effect of a 10% error in the % of TxNL/TxSL based on parameter estimation

Loss distributions using PulseModel vs. fitted % of TxNL/TxSL tables


willistowerswatson.com

© 2017 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Impact of variations in mortality and morbidity improvements


Based on medical expert opinions:

- Stresses to improvements in cancer, diabetes, heart disease, neurological conditions and stroke morbidity and mortality.
- Allowing for worsening of morbidity and mortality rates.

Impact of variation in the issue amount

We considered halving and doubling of the size of the issue of notes.

Key findings from modelling exercise

Return profile similar to a percentage of the 08-series term tables

Different source of parameter risk = Different size of parameter risk

However, A/E is unlikely to return this percentage of the term tables

Size of issue allows loss profile to be tailored to find an optimal price for the transfer of mortality risk

Implications for risk transfer

How can disease-based modelling reduce issue costs?

Less basis risk Portfolio specific estimates Less parameter risk X million life-years in GLM vs. a few deaths for A/E Risk communication Impact of specific medical scenarios

Increased investor confidence in analysis

Lower margin in required discount rate

Ability to apply the same approach directly to portfolios in which individual lives are known to have pre-existing conditions.

Not reliant on simple +50% or +100% type loadings for known diseases.

Downsides to disease-based modelling for ILS pricing?

Heavy data requirements e.g. Primary care data Policyholder health status estimation e.g. postcode links

Application across national boundaries

Complex model Parsimonious? Over-fitting? Long-term notes Deterioration of expert judgements (improvements)

Future for mortality-linked securities

How viable are mortality-linked securities as an alternative to reinsurance?

Insurance-linked securities vs. traditional reinsurance

Compare an ILS designed to indemnity the issuer for a share of all mortality claims on a portfolio of term-assurance policies to a quota-share reinsurance treaty.

Feature	Reinsurance	ILS
Cost	Reinsurance premiums (include implicit pricing margins)	Coupons (Explicit cost)
Capital	Counterparty default risk	Depends on investment of proceeds of issue
Knowledge of parties	Reinsurers have independent mortality expertise	Investors typically rely on 3 rd party views
Extent of cover	Can cover as-yet-unwritten business on an agreed basis for underwriting of new business	Closed blocks of business easier to cover. (Investors exposed to future underwriting risk for new business)