Rethinking Age-Period-Cohort Mortality Trend Models

Daniel Alai Michael Sherris

Centre of Excellence in Population Ageing Research

Actuarial Studies, Australian School of Business University of New South Wales

September 8, 2011

- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

Motivation

- Models where age parameters interact with period parameters are well studied in the literature (e.g. Lee-Carter models).
- Rather than building upon such a structure, with its accepted pitfalls, we propose to take a step back.
- By rethinking model fundamentals, our approach is to clearly separate the influence of factors that drive mortality improvement.
- Inspired by models found in non-life insurance, we
 - identify trends with reliable estimation procedures (maximum likelihood), and
 - propose a framework that has the potential to improve forecasting performance.

The Mortality Triangle

- Traditionally, mortality data has been presented with an emphasis on the calendar year of death (period tables).
- By transforming the data as shown below, we
 - shift the emphasis to year of birth, and
 - format the data in a non-life setting (triangle data).

calendar year <i>k</i>	age at death j				
	0		j		J
J					
÷		realization	s of r.v	/ D _{k_::}	
k		J	$\leq k \leq$	1	

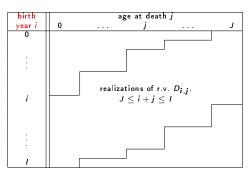


Figure: Transforming life insurance data, the mortality triangle.

- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

The Non-Life Insurance Model

Model Assumptions

- Increments $X_{i,j}$ are independent (overdispersed) Poisson distributed.
- The regression formula is given by

$$\eta_{i,j} = \beta_0 + \beta_{1,i} + \beta_{2,j}, \qquad i \in \{0,\ldots,I\}, \ j \in \{0,\ldots,J\},$$

where $\beta_{1,0} = \beta_{2,0} = 0$.

- The link function is given by $g(\mu) = \ln(\mu)$.
- This model replicates the expected future liabilities produced by the classic deterministic chain ladder method!

- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

Age-Period-Cohort Models in the GLM Framework

Model Assumptions

- Deaths D_{i,j} are independent (overdispersed) Poisson distributed.
- The regression formula is given by

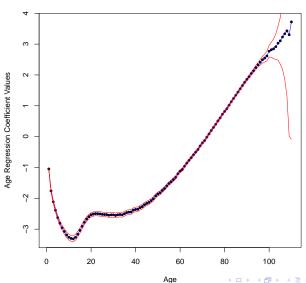
► Age-Period:
$$\eta_{i,j} = \beta_0 + \beta_{2,j} + \beta_{3,i+j},$$
 (AP)
► Age-Cohort: $\eta_{i,j} = \beta_0 + \beta_{1,i} + \beta_{2,j},$ (AC)
► Age-Period-Cohort: $\eta_{i,j} = \beta_0 + \beta_{1,i} + \beta_{2,j} + \beta_{3,i+j},$ (APC)
where $\beta_{1,0} = \beta_{2,0} = \beta_{3,0} = 0$.

- The link function is given by $g(\mu) = \ln(\mu)$.
- Age, period, and cohort effects are modelled with distinct parameters for each age, calendar year of death, and year of birth.
- Note that the age-cohort model is exactly the non-life insurance model.

Fitting the Models to Norwegian Mortality Data

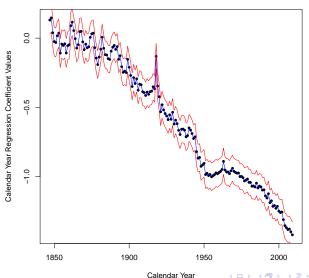
- Norwegian period mortality data dating back from 1846 to 2008 (source: the Human Mortality Database).
- In the paper, we contrast this with Australian data. The models can be fit to any country data with relative ease.
- We study the regression parameter trends:
 - age trend,
 - calendar year (period) trend,
 - birth year (cohort) trend,
- To gauge the fit, we study the errors with respect to the omitted trend (either period or cohort).

The Age-Period Model: Age Trend



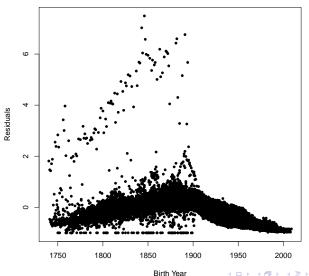
The Age-Period Model: Period Trend

AP Model: Norwegian Calendar Year Trend



Residuals of the AP Model Plotted Against Birth Year

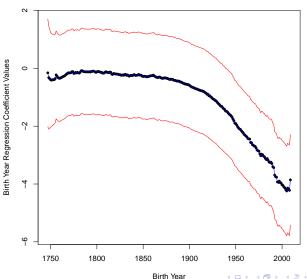
AP Model: Norwegian Residuals vs. Birth Year



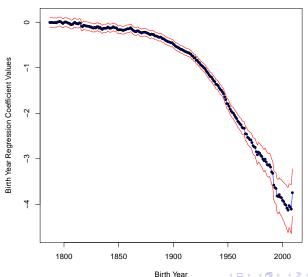
The Age-Period Model

- The age trend follows the typical shape of average log-mortality rates.
 - Relatively high infant mortality.
 - Accident hump present in early adulthood.
 - ▶ Decaying mortality for the older ages (typically modelled as linear).
- The age trend retains this pattern for the age-cohort and age-periodcohort models, where it exhibits slightly more decay for the older ages.
- The model has difficulty fitting the older ages (centenarians).
- The period trend is downward (indicating mortality improvement) and roughly linear.
 - ► Similar to the mortality index found in the Lee-Carter model.
- The residuals are not well behaved. It appears birth year is a significant covariate and aught to be included in the model!
 - Note: large residuals are result of the model's difficulties fitting centenarians.

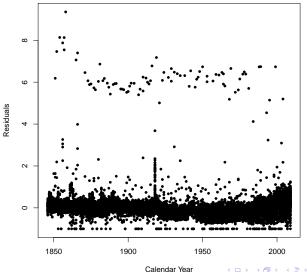
The Age-Cohort Model: Cohort Trend



The Cohort Trend - Omitting the First 50 Cohorts



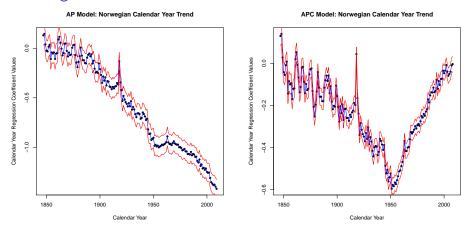
Residuals of the AC Model Plotted Against Calendar Year



The Age-Cohort Model

- The cohort trend is downward (indicating mortality improvement) and roughly quadratic.
 - It is a smooth trend compared with the period trend found in the AP model
- It appears to have high uncertainty!
 - ▶ This uncertainty originates from the earliest cohorts. If we remove, say, the first 50 cohorts, our confidence intervals become much tighter.
- The residuals are much better behaved. With the exception of 1918, the period covariates do not appear needed in the model.
 - Note: large residuals are result of the model's difficulties fitting centenarians.

The Age-Period-Cohort Model



- In the full age-period-cohort model (right), the period trend changes dramatically compared to the age-period model (left).
- The cohort trend remains unchanged when moving from the age-cohort to the age-period-cohort model.

- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

The Lee-Carter Model

Mortality improvements vary considerably among different age groups.

Lee and Carter introduce:

- κ_t , an index representative of the mortality improvement over time, $t \in \{1, 2, ..., T\}$.
- b_x , a measure of the share of that general improvement by age, $x \in \{0, 1, \dots, \omega\}$.

They model the log mortality rate as

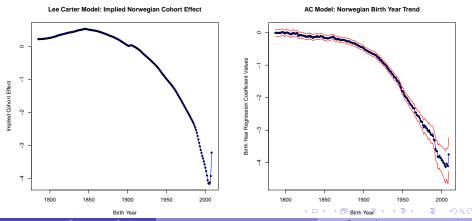
$$\ln(m_{x,t}) = a_x + b_x \kappa_t + \varepsilon_{x,t},$$

where $\varepsilon_{x,t}$ has mean zero and variance σ_{ε} .

The Implied Lee-Carter Cohort Effect

An age-period interaction term is really just a stand-alone cohort term.

- Let γ_i = average $\{b_x \kappa_t\}$, where the average is over the available combinations of x and t suitable for cohort i.
- We call γ_i the implied cohort effect and compare it with the stand-alone cohort effect in our model framework.



- Introduction
- Generalized Linear Models in Non-life Insurance
- Mortality Trends Models
- Lee-Carter Mortality Models
- Conclusions

The Moral of the Story

We fit mortality rates using three available indices, age, calendar year, and year of birth.

- Age certainly plays an important role.
- We show that year of birth dominates over calendar year of death and should be the second index included in the model!
- If necessary, one off period effects can be included, such as 1918 for the Norwegian data.

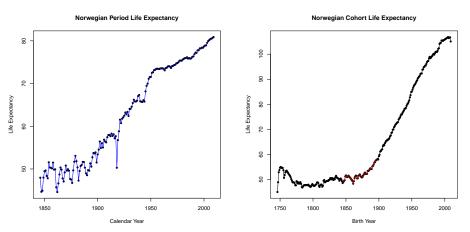
Comparison with the Lee-Carter model

- The popular Lee-Carter model uses a bilinear period effect that compares to a stand alone cohort effect.
- It is well known that the Lee-Carter model has difficulties forecasting due to the fact that the share of overall mortality improvement for age x is constant over time.
- A stand alone cohort effect does not have this problem.

On the Horizon

Problems to consider in the future

- Cohort effects need to be updated after realizing a new year of data.
- Life expectancy, forecasting, and uncertainty.



Thank you!