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Introduction



Extreme Temperatures and Human Mortality

• Wallemacq and House (2018) reported that more than 70,000 died during the

2003 European heatwave.

• Ballester et al. (2023) estimated that 61,672 (95% CI 37,643–86,807) deaths in

Europe are heat-related between 30 May and 4 September 2022, the hottest

summer season yet in Europe.

• The WHO has alerted that the frequency, duration, and magnitude of extreme

temperature events have all increased over the world.

• While cold temperature extremes might not capture headlines as often as

heatwaves, they also result in greater mortality.
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Seasonal Variation in Mortality

Source: Falagas et al. (2009)
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Research Questions

• What will human mortality look like under different emission scenarios?

• What are the implications for the life insurance and annuity sector?

• What are the challenges for such modelling work?
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Relevant Literature from Actuarial Research

• Li and Tang (2022): Model extremal dependence between death counts and
temperature

• Focuses on excess mortality during extreme temperatures; does not consider

potential winter mortality reductions due to warming

• Seklecka et al. (2017): Integrate temperature-related factors into a
Lee-Carter-type model

• Examines annual mortality data, making it challenging to discern the impact of

temperature change across seasons.

• Naqvi and Hall (2018): Understand the effects of temperature changes on
older-age mortalities in England & Wales and Scotland.

• The use of monthly mean temperature and death data may lead to an

underestimation of the impact of extreme heatwaves or cold snaps.

4 / 39



Relevant Literature from Environmental Epidemiology

• Numerous environmental epidemiological studies (Gasparrini et al., 2010, 2015,

2017; Zhao et al., 2021) have demonstrated strong evidence of a relationship

between human mortality and non-optimal ambient temperature.

• Methodology frequently used: Distributed lag non-linear model (DLNM) that

simultaneously captures non-linear exposure-response relations and temporal

delayed effects of environmental stressors

• Limitations

• Model death counts without considering the changing population size

• Use very wide or no age bands

• Focus on inference without assessing forecasting capabilities (potentially overfitting)

• Restricted access to the dataset
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Our Approach

• Focus on the mean predictions while being mindful of the inherent uncertainty in

mortality rates and in climate models and projections

• Investigate the relationship between weekly mortality in different age groups and
daily temperature for a local area

• Use publicly available data

• Adopt DLNM with population size incorporated and overfitting addressed

• Predict local temperatures under various SSP scenarios

• Pattern scaling (relationship between global warming and local warming)

• Time series modelling (allowing for seasonality, volatility, and autocorrelation)

• Obtain predicted mortalities using the temperature-mortality relationship and

simulated local temperatures
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Data



Dataset

• Weekly death counts in 2000-2019 obtained for five age bands (0-19, 20-39,

40-59, 60-79, and 80+) in ES3 and ES4 regions (Eurostat NUTS 1 region codes)

from the Eurostat database

(a) ES3 COMUNIDAD DE MADRID (b) ES4 CENTRO (ES)
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Dataset

• Daily mean temperature for the grid closest to Madrid, obtained from the E-OBS

gridded dataset

• The dilemma with the choice of region size

• Small region: Mortality data is noisy, making it difficult to discern the temperature

impact from the natural fluctuation in mortality.

• Large region: Temperature patterns and their impact on mortality within individual

subregions can vary significantly from one another.

• The global annual average surface temperature data in 1950-2022 from the

National Centers for Environmental Information (NCEI)

• Projected global surface temperature under four future emission scenarios, namely

SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, from IPCC (2021).
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Methodology



The Distributed Lag Non-linear Model (DLNM) (Gasparrini et al., 2010)

• Lags: Use past values in time series to predict future values

• Distributed Lag: The effects of a variable can spread out over multiple future time

periods rather than being immediate and concentrated at a single time point.

• Basic structure:

Yt = β0 +
L∑

l=0

sl(Tt−l , l ;ηl) + εt

• Yt : the response (e.g., death counts) at time t

• Tt−l : a predictor (e.g., temperature) at lag l

• sl(Tt−l , l ;ηl): a cross-basis function between Tt−l and l , parameterised by

coefficients ηl , capturing the nonlinear and lagged effect of the predictor

• L: the maximum considered lag

• ϵt : error term
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The Distributed Lag Non-linear Model

• Why DLNM?

• Health impacts persist days after exposure to extreme temperatures.

• The ‘harvesting’ phenomenon: extreme temperatures can accelerate mortality for

already vulnerable individuals.

• Accurate assessments rely on models capturing both the temperature-mortality

relationship and its temporal structure.

• Generalisations

• Include multiple predictors with linear or nonlinear effects

• Use link functions (e.g., logarithm) to relate predictors to E (Yt)

• Allow for different distributions (e.g., Poisson) for the response variable

• DLNM is a special case of a generalised additive model.
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Mortality Modelling with DLNM

• Denote Dx ,t , Ex ,t and µx ,t as the death count, exposure-to-risk, and central

mortality rate for age x at time t

• Using a log link with overdispersed Poisson distribution for DLNM, we model Dx ,t

as follows

lnE (Dx ,t) = lnEx ,t + β0 + v(t) +
L∑

l=0

sl(Tt−l , l ;ηl)

• v(t) is a smoothing function of time t capturing the time trend and seasonality of

mortality.

• In mortality modelling literature, we often assume that Dx,t ∼ Poisson(Ex,tµx,t)

which leads to lnE (Dx,t) = lnEx,t + lnµx,t

• Our model implies that

lnµx,t = β0 + v(t) +
L∑

l=0

sl(Tt−l , l ;ηl)
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Model Selection and Estimation

lnE (Dx ,t) = lnEx ,t + v(t) + β0 +
L∑

l=0

sl(Tt−l , l ;ηl)

• t represents day.

• Weekly death counts: Dx ,t , t = 7, 14, 21, 28 . . .

• Take week 5 death, represented by Dx,35, as an example

• View week 5 death as the death on day 35

• Assume L = 30. Temperatures in the past 30 days (t = T35,T34, . . . ,T6) have an

impact on the death count Dx,35
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Model Estimation and Selection

• Cross basis sl(Tt−l , l ;ηl): natural cubic splines with 6 degrees of freedom (dof)

for temperature Tt−l and 5 dof for lag l , selected by QBIC

• Smoothing function v(t): natural cubic splines of 2 dof (two linear segments
connected at the internal knot) selected by cross-validation

• Environmental epidemiological studies suggest 7 dof per year of historic data to

capture trend and seasonality (Gasparrini et al., 2010; Anderson and Bell, 2009).

• We find that using 7 dof per year leads to unreasonable beyond-the-boundary

behaviours (mortality trending up indefinitely).

• We perform model fitting for each age group separately.
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Fitted Weekly Mortality
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Fitted Weekly Mortality
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Estimated Temperature Impact on Mortality

• Relative risk: measures how the temperature (◦C) on day t − l affects the

mortality on day t

RR =
µx ,t |Tt−l = T

µx ,t |Tt−l = Tref

• RR > 1: The mortality today, after exposure to temperature T from l days ago, is

higher than the mortality after exposure to the reference temperature Tref from l

days ago

• Tref is the point of overall minimum mortality.

• We plot RR v.s. temperature at lags 0, 7, and 28 days; and RR v.s. lag at the

temperatures of -1.4◦C, 14.1◦C, and 31.5◦C (corresponding to 0.1, 50, and 99.9

percentiles of historical temperatures).

• The 95% confidence intervals of RRs are also shown.
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Relative Risk - Age Band 5
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Relative Risk - Age Band 5
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Relative Risk - Age Band 5

• Overall effect combines the temperature-mortality relationship over all lag orders.

• Characteristic U-shaped overall effect is observed for Madrid & Centro area. Both

extreme cold and hot ambient temperatures are detrimental to human health.

• Wider confidence band at boundaries due to less data points related to extreme

temperatures.
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Relative Risk - Age Band 4
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Relative Risk - Age Band 3
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Relative Risk - Age Band 2
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Relative Risk - Age Band 1

23 / 39



Temperature Predictions



Features of Temperatures
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Time Series Temperature model - Without Climate Change Impact

• Features of temperature data
• Seasonality in mean: Average temperature follows a yearly pattern due to seasons.

• Autocorrelation: Today’s temperature affects temperatures in the next few days.

• Seasonality in volatility: Temperature variability also follows a yearly pattern.

• Volatility clustering: High (or low) temperature variability periods tend to cluster

together.

• We capture the features of temperature data with the s-AR-s-GARCH model

(Campbell and Diebold, 2005).

• The seasonality in mean is represented by a Fourier series:

yt = c0 +
R∑

r=1

ϕc,r cos

(
2πr

d(t)

365

)
+

R∑
r=1

ϕs,r sin

(
2πr

d(t)

365

)
• We simulate future temperatures using this model to account for inherent

fluctuations that may significantly affect mortality.
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The Impact of Climate Change on Global Surface Temperature

Changes in global surface temperature relative to the period 1850–1900, reported in °C, for
selected 20-year time periods and the five illustrative emissions scenarios considered. Source:

IPCC (2021).
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Global Warming vs Regional Warming

• It’s essential to note that the effects of global warming can be highly regional.
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Global Warming vs Regional Warming
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Global Warming vs Regional Warming
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Incorporating the Impact of Global Warming into Local Temperature Projec-

tions

• Pattern scaling (Tebaldi and Arblaster, 2014; Seneviratne et al., 2016)

• Local annual temperature changes scale with global annual temperature shifts

• A well-established method in climate science to down-scale the global pattern to a

regional level

• The rate of change in regional extreme temperature differs from that of regional

mean temperature.

• What causes the different rates of change in regional extreme temperature?

• Are there changes in volatility?

• Did the amplitude and phase of seasonal temperature cycles shift?

• Or both?
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Incorporating Climate Change Impact into the Temperature Model

• ∆Gt represents the change in global annual mean temperature compared to a

reference time point t0

• ∆yt represents the change in regional mean temperature compared to a reference

time point t0

• We illustrate the case assuming the changing amplitude of the temperature cycle.

∆yt = b0∆Gt +
R∑

r=1

ϕc,rbc,r∆Gt cos

(
2πr

d(t)

365

)
+

R∑
r=1

ϕs,rbs,r∆Gt sin

(
2πr

d(t)

365

)
• Coefficients b0, bc,r , and bs,r are calibrated to ensure the projected speed of

amplitude changes match the historical speed of change in regional mean and

extreme temperatures.
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Predicted Madrid Daily Mean Temperature
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Simulated Temperatures for Madrid - Annual Average
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Results



Mortality under Various SSP Scenarios

• For a given age x , we present the relative risk:

µx ,t under a specific SSP

µx ,t under the SSP1-2.6 scenario

• Keep in mind that SSP5-8.5 represents the most aggressive warming scenario.

• A milder winter reduces mortality, but a hotter summer increases it.

• We observe intersections among the relative risk curves across different SSPs.

• From 2020-2040, deaths from hot summers outweigh the reduced winter deaths,

making SSP5 the scenario with the highest mortality.

• Beyond 2040, winter’s mitigating effect on mortality prevails, causing a dip in deaths

under SSP5.

• However, as we project further, the fatalities from hot summers once again become

more pronounced.
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Relative Risk with Reference to Predicted Temperatures under SSP1-2.6
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Seasonal Pattern in Mortality (Age 80+)
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Climate Change Impact on Life Insurance Liability Ax+t,t
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Climate Change Impact on Life Annuity Liability ax+t,t
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Conclusion and Future Research



Conclusion and Future Research

• We established a framework to assess climate change’s impact on mortality

• Warmer winters potentially reduce moralities, while hotter summers increase them.

• The overall impact of warming climate shifts over time and varies across different

emission scenarios.

• Analysing life insurance and annuity revealed that liability values only vary by a

small amount across SSP scenarios.

• The shifting seasonal patterns could lead to large claims within specific seasons,

even if the annual figures hold relatively steady.

• Uncertainties loom in future emission predictions and subsequent temperature

shifts.

• Future research:

• Extend our study to more regions

• Address the underestimation of the consequences of heatwaves and cold snaps
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