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The population of a country is heterogeneous
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Population vs portfolio-specific mortality

I Life insurers and pension funds value their liabilities using
prospective mortality rates to account for future mortality
developments

I These mortality rates should be specific to the underlying
portfolio, and two general approaches are used to obtain
portfolio-specific mortality rates:

1. Assuming population mortality is known, explain the difference
between population and portfolio using risk characteristics:
Pro: Can be done for relatively small portfolios;

Con: Population mortality is projected separately.

2. Use a multiple population approach to model a stochastic ‘spread’
between population and portfolio:
Pro: Allows for separate mortality trend in portfolio;

Con: Time series modeling for the portfolio is required.

I Our dataset has only few historical years, and we shall therefore
focus on the first approach.



Literature review
Taking salary information into account

Plat [2009] considers observed portfolio factors that are defined as:

Pt,x =
qA

t,x

qpop
t,x

, with qA
t,x =

AD
t,x

1
2 (AP

t,x + AD
t,x + AD

t,x )
,

where Ai
t,x is the assured amount with i ∈ {Primo,Ultimo,Deceased},

and qpop
t,x is an observed mortality rate in the population:

+ Through this definition of qA
t,x the correlation between mortality and

salary/education/... is implicitly taken into account, since more weight is
given to participants with large insured amounts;

– The observed Pt,x can be very volatile for small portfolios, and there is
no obvious distribution for the Pt,x ’s. As a result, it is difficult to
distinguish between individual mortality risk and uncertainty in portfolio
factors;



Literature review
Including risk factors in Poisson regression

Gschlössl et al. [2011] model observed deaths directly:

Di ∼ Poisson(Eiµi ), with lnµi = β0 + β1 lnµb
i +

r+1∑
j=2

βjxij ,

where µb
i is a smooth baseline mortality rate estimated from portfolio

data, and the xij are other observed risk factors such as curtate
duration of the policy, product type and amount insured:

+ A wide variety of risk factors can easily be included in this framework;

– It is not trivial how to construct portfolio-specific mortality forecasts from
the estimated model;

– Continuous risk factors are either included in a linear way in the linear
predictor or are converted to categorical variables. Structure in the data
may be lost through this approach;



Portfolio mortality data
Individual vs aggregated observations

From the dataset we construct individual death and exposure-to-risk
observations:

I δtjx is an indicator variable which equals 1 if participant j died in calendar
year t at age x and 0 otherwise;

I τtjx ∈ [0, 1] is the fraction of the year lived by participant j in calendar
year t at age x .

Define a risk profile as a unique combination of risk factors such as
Age and Sal. From the individual observations (j) we construct death
and exposure-to-risk observations at risk profile level (i) as follows:

I di =
∑2011

t=2006

∑Lt,x
j=1

∑x(j,t)+1
x=x(j,t) δtjx · I(i, t , j, x);

I Ẽi =
∑2011

t=2006

∑Lt,x
j=1

∑x(j,t)+1
x=x(j,t) τtjxµ

pop
tjx · I(i, t , j, x);

I I(i, t , j, x) is an indicator variable that is 1 if in calendar year t participant
j at age x belongs to risk profile i (thus also taking into account all other risk

factors), and 0 otherwise.



Observations in the dataset



Risk factors in the dataset



Poisson regression model
Generalized additive model

We assume the following model:

Di ∼ Poisson(Ẽiηi ),

and we use a Generalized Additive Model (GAM) to calibrate the ηi
as:

ln ηi = β0 +

p∑
k=1

βk xd
ik︸ ︷︷ ︸

categorical variables

+

1D continuous variables︷ ︸︸ ︷
q∑

l=1

fl (xc
il ) + g(x long

i , x lat
i )︸ ︷︷ ︸

2D continuous variable

.

The main advantage of GAMs (as opposed to e.g. GLMs) is that
smooth effects can be estimated for the risk factors, instead of having
to impose some relationship on beforehand



Strategy for working with large datasets
Binning the postal code effect

The final dataset has more than 22 million observations, which is too
large for regular estimation procedures. We proceed as follows:

1. Estimate the effects for all risk factors except postal code;
I Aggregate the observations over the different postal codes, thereby

decreasing the size of the dataset.

2. Estimate a spatial effect on the residuals;
I Take the estimated effect from step 1 as given, and aggregate the dataset

over all risk factors except postal code.

3. Cluster similar postal code using the Fisher-Jenks binning
method;

I Minimize the variance within clusters, maximize the variance between
clusters;

I Consider different number of cluster, estimate GLMs with different numbers
of clusters, and choose optimal number of clusters using BIC.

4. Estimate full model with all 1D risk factors and clustered postal
code.



In-sample statistics and cross-validation tests

To compare different model specifications:
I We compute a variety of in-sample statistics such as the

loglikelihood and information criteria (cAIC and BIC);
I We compute the log score (a proper scoring rule / cross

validation test). This can be interpreted as the out-of-sample
likelihood, see Czado et al. [2009].

General observation (after calibration):
I Including more variables results in improves in-sample and

out-of-sample statistics.

See van Berkum [2018] for more details.



Parameter estimates
Model with risk factors DisPerc, Sal, IA, AFPP, Edu and PC



Parameter estimates
Model with risk factors DisPerc, Sal, IA, AFPP, Edu and PC



Remaining cohort life expectancy in 2017
Model with risk factors DisPerc, Sal, IA, AFPP, Edu and PC

PC DisPerc Sal LEM
25 LEF

25 LEM
65 LEF

65

Lowest No 0.90 69.1 71.2 26.2 28.8
mortality 0.50 66.7 68.9 23.7 26.5
(cluster 1) 0.10 63.5 66.0 20.6 23.6

5% 0.90 62.7 65.2 19.9 22.9
0.50 60.2 62.8 17.6 20.7
0.10 56.7 59.5 14.8 18.0

Highest No 0.90 68.2 70.3 25.2 27.9
mortality 0.50 65.8 68.1 22.8 25.6
(cluster 3) 0.10 62.6 65.1 19.7 22.7

5% 0.90 61.8 64.3 19.0 22.0
0.50 59.2 61.9 16.7 19.9
0.10 55.6 58.5 14.0 17.2

NB: the risk factors IA, AFPP and Edu are assumed missing in calculating the above numbers.



Financial backtest

Our model is specified on observed numbers of death, but for a
pension fund it is more relevant to accurately predict the (release of)
the value of the liabilities

We assume the management of the pension fund at the beginning of
the year 2011 wants to predict the value of the liabilities at the end of
the year. Define the following variables:

I bj is the annual pension benefit that is paid if participant j reaches the
retirement age;

I aj is an annuity (valued at Dec 31st 2011) that starts paying 1 unit at
retirement age if participant j is then still alive;

I Ij is an indicator variable that is 1 if participant j is still alive at Dec 31st
2011 (given that participant j is alive at Jan 1st 2011), and 0 otherwise.

See van Berkum [2018] for details on how aj is calculated.



Financial backtest

Define p2011,j = exp[−µ2011,j ] as the one-year survival probability for
participant j :

I We define µ2011,j = µpop
2011,x(j,2011) · η

−2011
j

I We model uncertainty of participant j surviving the year 2011 using a
Bernoulli(p2011,j ) distributed r.v. Y2011,j .

The stochastic value of the liabilities Γ on Dec 31st 2011 is then given
by

Γ =

L2011∑
j=1

(Y2011,j · bjaj + (1− Y2011,j ) · 0),

and the actual value of the liabilities at Dec 31st 2011 is given by

Γ̃ =

L2011∑
j=1

Ij · bjaj .



Financial backtest
Confidence interval

The mean and variance of Γ are given by:

E(Γ|η−2011
j ) =

L2011∑
j=1

p2011,j · bjaj

Var(Γ|η−2011
j ) =

L2011∑
j=1

(bjaj )
2 · p2011,j · (1− p2011,j ),

We shall compare the 90% confidence interval for Γ against the
actual liabilities Γ̃

We also calculate the Mean Squared Prediction Error:

MSPE =

L2011∑
j=1

(I2011,j · bjaj − p2011,j · bjaj )
2

/ L2011∑
j=1

bjaj

=

L2011∑
j=1

(bjaj )
2︸ ︷︷ ︸

‘weights’

(I2011,j − p2011,j )
2︸ ︷︷ ︸

‘errors’

/ L2011∑
j=1

bjaj︸ ︷︷ ︸
normalizing constant

.



Financial backtest
Mean Squared Prediction Error

103.70 103.75 103.80 103.85 103.90 103.95

● ● ●No model

● ● ●Constant

● ● ●DisPerc

● ● ●Sal

● ● ●DisPerc−Sal

● ● ●DisPerc−Sal−IA−AFPP−Edu−PC

Liabilities in € B

Predicted liabilities for all participants MSPE

1459.8

1455.5

1452.8

1453.9

1451.9

1451.8



Financial backtest

4.28 4.29 4.30 4.31 4.32

● ● ●No model

● ● ●Constant

● ● ●DisPerc

● ● ●Sal

● ● ●DisPerc−Sal

Liabilities in € B

Disability unknown

3.520 3.525 3.530 3.535 3.540 3.545

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Liabilities in € B

Disability equal to zero

3.075 3.080 3.085 3.090 3.095 3.100 3.105 3.110

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Liabilities in € B

Positive disability 

S
alary unknow

n

79.80 79.85 79.90 79.95 80.00 80.05

● ● ●No model

● ● ●Constant

● ● ●DisPerc

● ● ●Sal

● ● ●DisPerc−Sal

Liabilities in € B

12.94 12.96 12.98 13.00

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Liabilities in € B

S
alary know

n



Conclusion

We have shown how to explain observed portfolio mortality using a
wide variety of risk factors

From our model estimates we find that the following risk factors have
a strong impact on mortality rates:

I Salary information;
I Disability information;
I An allowance for working at irregular hours.

Differences in remaining life expectancy at the retirement age may be
more than 10 years!

For the purpose of accurately predicting the value of the liabilities,
only salary and disability information seem to be crucial, and:

I Using only salary might lead to an appropriate level of liabilities for the
portfolio;

I But, for subgroups the value of the liabilities might be less appropriate.



Recommendations

In general, when more risk characteristics are collected, more
accurate risk profiles can be created:

I Pension funds and insurance companies should ensure their data warehouse
systems are able to produce reliable and complete information based on
individual observations.

Specifically for pensioners, few risk factors are known:
I Ideally, we would use accrued rights for pensioners, since these are known.

However, accrued rights do not always provide accurate risk factors, because
participants may have accrued rights at other pension funds;

I A solution might be to keep track of the last known salary (and part-time factor),
such that for pensioners we are able to classify in terms of the distribution of
normalized log salary;

I We have to be careful in estimating a single salary effect for both active
participants and pensioners; we may have to distinguish between these two
groups.
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