Reconciling forecasts of age distribution of death counts: An application to annuity pricing

Han Lin Shang
Research School of Finance, Actuarial Studies and Statistics
Australian National University

Steven Haberman
Cass Business School
City, University of London

Japanese age-specific lifetable

1 Japanese national and sub-national age-specific life-table death counts from 1975 to 2014 from Japanese Mortality Database
2 Period life-table radix is fixed at 100,000 at age 0 for each year group
38 five-year year groups, 1975-1979, 1980-1984, $\cdots, 2010-2014$
424 age groups, age $0,1-4,5-9,10-14, \cdots, 105-109,110+$
5 Due to zero counts for age 110+ for some years, merge this age group with age group 105-109

Japanese group structure

Have national and sub-national mortality rates, data structure is displayed below where each row denotes a level of disaggregation

Group level	Number of series
Japan	1
Sex	2
Region	8
Region \times Sex	16
Prefecture	47
Prefecture \times Sex	94
Total	168

Compositional data-analytic approach

1 Compositional data are defined as a random vector of K positive components $\boldsymbol{D}=\left[d_{1}, \ldots, d_{K}\right]$ with strictly positive values whose sum is a given constant

Compositional data-analytic approach

1 Compositional data are defined as a random vector of K positive components $\boldsymbol{D}=\left[d_{1}, \ldots, d_{K}\right]$ with strictly positive values whose sum is a given constant
2 Sample space of compositional data is the simplex

$$
S^{K}=\left\{\boldsymbol{D}=\left(d_{1}, \ldots, d_{K}\right)^{\top}, \quad d_{x}>0, \quad \sum_{x=1}^{K} d_{x}=c\right\}
$$

where c is a fixed constant (such as, radix in period life table), denote vector transpose, simplex sample space is $K-1$ dimensional subset of R^{K-1}

CoDa in action

1 Begin from a data matrix \boldsymbol{D} of size $n \times K$ of life-table deaths $\left(d_{t, x}\right)$ with n rows representing the number of years and K columns representing the age x. Sum of each row adds up to life-table radix, such as 100,000

CoDa in action

1 Begin from a data matrix \boldsymbol{D} of size $n \times K$ of life-table deaths $\left(d_{t, x}\right)$ with n rows representing the number of years and K columns representing the age x. Sum of each row adds up to life-table radix, such as 100,000
2 Compute geometric mean at each age, given by

$$
\alpha_{x}=\exp ^{\frac{1}{n} \sum_{t=1}^{n} \ln \left(d_{t, x}\right)}, \quad x=1, \ldots, K
$$

For a given year t, divide $\left(d_{t, 1}, \ldots, d_{t, K}\right)$ by corresponding geometric means $\left(\alpha_{1}, \ldots, \alpha_{K}\right)$,

$$
C\left[\frac{d_{t, 1}}{\alpha_{1}}, \frac{d_{t, 2}}{\alpha_{2}}, \cdots, \frac{d_{t, K}}{\alpha_{K}}\right]
$$

CoDa in action

$C[\cdot]$ represents a closure operation, performing standardization

$$
f_{t, x}=\frac{\frac{d_{t, x}}{\alpha_{x}}}{\frac{d_{t, 1}}{\alpha_{1}}+\frac{d_{t, 2}}{\alpha_{2}}+\cdots+\frac{d_{t, K}}{\alpha_{K}}}, \quad x=1, \ldots, K
$$

where $f_{t, x}$ is a non-negative value

CoDa in action

3 Log-ratio transformation: Aitchison $(1982,1986)$ showed that compositional data are represented in a restricted space where components can only vary between 0 and positive constant, proposed centered log-ratio transformation

$$
h_{t, x}=\ln \left(\frac{f_{t, x}}{g_{t}}\right)
$$

where g_{t} are the geometric means over age at time t

$$
g_{t}=\exp ^{\frac{1}{K} \sum_{x=1}^{K} \ln \left(f_{t, x}\right)} .
$$

Transformed data matrix is \boldsymbol{H} with elements $h_{t, x} \in R$ real-valued ©

CoDa in action

4 Principal component analysis: applied to the matrix $\boldsymbol{H}_{x}=\left\{h_{t, 1}, \ldots, h_{t, K}\right\}$ to obtain the estimated principal components and their associated scores,

$$
h_{t, x}=\sum_{\ell=1}^{\min (n, K)} \beta_{t, \ell} \phi_{\ell, x} \approx \sum_{\ell=1}^{L} \beta_{t, \ell} \phi_{\ell, x}
$$

CoDa in action

4 Principal component analysis: applied to the matrix $\boldsymbol{H}_{x}=\left\{h_{t, 1}, \ldots, h_{t, K}\right\}$ to obtain the estimated principal components and their associated scores,

$$
h_{t, x}=\sum_{\ell=1}^{\min (n, K)} \beta_{t, \ell} \phi_{\ell, x} \approx \sum_{\ell=1}^{L} \beta_{t, \ell} \phi_{\ell, x}
$$

- $\left\{\phi_{1, x}, \cdots, \phi_{L, x}\right\}$ denotes first L sets of principal components

CoDa in action

4 Principal component analysis: applied to the matrix $\boldsymbol{H}_{x}=\left\{h_{t, 1}, \ldots, h_{t, K}\right\}$ to obtain the estimated principal components and their associated scores,

$$
h_{t, x}=\sum_{\ell=1}^{\min (n, K)} \beta_{t, \ell} \phi_{\ell, x} \approx \sum_{\ell=1}^{L} \beta_{t, \ell} \phi_{\ell, x}
$$

- $\left\{\phi_{1, x}, \cdots, \phi_{L, x}\right\}$ denotes first L sets of principal components
- $\left\{\beta_{t, 1}, \ldots, \beta_{t, L}\right\}$ denotes first L sets of principal component scores for time t

CoDa in action

4 Principal component analysis: applied to the matrix $\boldsymbol{H}_{x}=\left\{h_{t, 1}, \ldots, h_{t, K}\right\}$ to obtain the estimated principal components and their associated scores,

$$
h_{t, x}=\sum_{\ell=1}^{\min (n, K)} \beta_{t, \ell} \phi_{\ell, x} \approx \sum_{\ell=1}^{L} \beta_{t, \ell} \phi_{\ell, x}
$$

- $\left\{\phi_{1, x}, \cdots, \phi_{L, x}\right\}$ denotes first L sets of principal components
- $\left\{\beta_{t, 1}, \ldots, \beta_{t, L}\right\}$ denotes first L sets of principal component scores for time t
- L denotes number of retained components

CoDa in action

5 Forecast of principal component scores: Via an exponential smoothing method, obtain h-step-ahead forecast of $\ell^{\text {th }}$ principal component score $\widehat{\beta}_{n+h \mid n, \ell}$

CoDa in action

5 Forecast of principal component scores: Via an exponential smoothing method, obtain h-step-ahead forecast of $\ell^{\text {th }}$ principal component score $\widehat{\beta}_{n+h \mid n, \ell}$
6 Conditioning on estimated principal components and observations, forecast of $h_{n+h \mid n, x}$ is obtained by

$$
\widehat{h}_{n+h \mid n, x}=\sum_{\ell=1}^{L} \widehat{\beta}_{n+h \mid n, \ell} \widehat{\phi}_{\ell, x}
$$

CoDa in action

5 Forecast of principal component scores: Via an exponential smoothing method, obtain h-step-ahead forecast of $\ell^{\text {th }}$ principal component score $\widehat{\beta}_{n+h \mid n, \ell}$
6 Conditioning on estimated principal components and observations, forecast of $h_{n+h \mid n, x}$ is obtained by

$$
\widehat{h}_{n+h \mid n, x}=\sum_{\ell=1}^{L} \widehat{\beta}_{n+h \mid n, \ell} \widehat{\phi}_{\ell, x}
$$

7 Transform back to compositional data: take inverse centered log-ratio transformation

$$
\widehat{f}_{n+h \mid n, x}=C\left[\exp ^{\widehat{h}_{n+h \mid n, x}}\right]
$$

CoDa in action

$7 C[\cdot]$ is closure operator, performing standardization

$$
\widehat{f}_{n+h \mid n, x}=\frac{\exp ^{\widehat{h}_{n+h \mid n, x}}}{\exp ^{\widehat{h}_{n+h \mid n, 1}+\cdots+\exp } \widehat{h}_{n+h \mid n, K}}
$$

CoDa in action

$7 C[\cdot]$ is closure operator, performing standardization

$$
\widehat{f}_{n+h \mid n, x}=\frac{\exp ^{\widehat{h}_{n+h \mid n, x}}}{\exp ^{\widehat{h}_{n+h \mid n, 1}+\cdots+\exp } \widehat{h}_{n+h \mid n, K}}
$$

8 Add back the geometric means, to obtain forecasts of life-table death matrix $\widehat{d}_{n+h \mid n, x}$:

$$
\begin{aligned}
\widehat{d}_{n+h \mid n, x} & =C\left[\widehat{f}_{n+h \mid n, x} \times \alpha_{x}\right] \\
& =\left[\frac{\widehat{f_{n+h \mid n, 1} \times \alpha_{1}}}{\sum_{x=1}^{K} \widehat{f}_{n+h \mid n, x} \times \alpha_{x}}, \cdots, \frac{\widehat{f}_{n+h \mid n, K} \times \alpha_{K}}{\sum_{x=1}^{K} \widehat{f}_{n+h \mid n, x} \times \alpha_{x}}\right]
\end{aligned}
$$

where α_{x} denotes age-specific geometric mean of $d_{t, x}$

Selecting the number of components

To determine number of components L, determine the value of L as the minimum number of components that reaches a certain level of proportion of total variance explained by L leading components

$$
L=\underset{L: L \geq 1}{\arg \min }\left\{\sum_{\ell=1}^{L} \widehat{\lambda}_{\ell} / \sum_{\ell=1}^{\min \{n, K\}} \widehat{\lambda}_{\ell} \mathbb{1}_{\left\{\hat{\lambda}_{\ell}>0\right\}}\right\}
$$

where $\delta=95 \%, \mathbb{1}\{\cdot\}$ denotes binary indicator function excluding possible zero eigenvalues. The chosen $L=1$.

Bootstrapped forecasts

1 Bootstrapped functional time series can be obtained

$$
\widehat{h}_{t, x}^{b}=\sum_{\ell=1}^{L} \widehat{\beta}_{t, \ell}^{b} \widehat{\phi}_{\ell, x}, \quad t=1, \ldots, n,
$$

where $\widehat{\beta}_{t, \ell}^{b}$: bootstrapped $\ell^{\text {th }}$ principal component scores, for $b=1, \ldots, B$ and B is the number of bootstrap replications

Bootstrapped forecasts

1 Bootstrapped functional time series can be obtained

$$
\widehat{h}_{t, x}^{b}=\sum_{\ell=1}^{L} \widehat{\beta}_{t, \ell}^{b} \widehat{\phi}_{\ell, x}, \quad t=1, \ldots, n,
$$

where $\widehat{\beta}_{t, \ell}^{b}$: bootstrapped $\ell^{\text {th }}$ principal component scores, for $b=1, \ldots, B$ and B is the number of bootstrap replications
2 For each bootstrap replication, we obtain the forecast of $h_{n+h, x}$ as

$$
\widehat{h}_{n+h, x}^{b}=\sum_{\ell=1}^{L} \widehat{\beta}_{n+h, \ell}^{b} \widehat{\phi}_{\ell, x},
$$

$\widehat{\beta}_{n+h, \ell}^{b}$: forecast of the bootstrapped principal component scores

Bootstrapped forecasts

1 Bootstrapped functional time series can be obtained

$$
\widehat{h}_{t, x}^{b}=\sum_{\ell=1}^{L} \widehat{\beta}_{t, \ell}^{b} \widehat{\phi}_{\ell, x}, \quad t=1, \ldots, n,
$$

where $\widehat{\beta}_{t, \ell}^{b}$: bootstrapped $\ell^{\text {th }}$ principal component scores, for $b=1, \ldots, B$ and B is the number of bootstrap replications
2 For each bootstrap replication, we obtain the forecast of $h_{n+h, x}$ as

$$
\widehat{h}_{n+h, x}^{b}=\sum_{\ell=1}^{L} \widehat{\beta}_{n+h, \ell}^{b} \widehat{\phi}_{\ell, x},
$$

$\widehat{\beta}_{n+h, \ell}^{b}$: forecast of the bootstrapped principal component scores
3 By randomly sampling with replacement the observations corresponding to the year index of the in-sample fitted errors, we obtain a set of bootstrapped model residuals

000

Forecast reconciliation of death count

Japanese data follow a three-level hierarchy, coupled with sex grouping variable (S. \& Hyndman, 2017, JCGS; S. \& Haberman, IME)

Figure: Japanese geographical hierarchy tree diagram

Refer to a disaggregated series using notation $X \times S ; X$ is geographical area and S is sex

$\mathrm{d}_{\text {Japan*T,t }}$ $\mathrm{d}_{\text {Japan }}{ }^{\text {F }, t}$ $\mathrm{d}_{\text {Japan }}{ }^{*}, t$ $\mathrm{d}_{\mathrm{R} 1 * \mathrm{~T}, t}$ \vdots $\mathrm{d}_{\mathrm{R} 8^{*}, t}$ $\mathrm{d}_{\mathrm{R} 1 * \mathrm{~F}, t}$ \vdots $\mathrm{d}_{\mathrm{R} 8^{*} \mathrm{~F}, t}$ $\mathrm{d}_{\mathrm{R} 1 * \mathrm{M}, t}$ \vdots $\mathrm{d}_{\mathrm{R} 8^{*} \mathrm{M}, t}$ $\mathrm{d}_{\mathrm{P} 1 * \mathrm{~T}, t}$ \vdots $\mathrm{d}_{\mathrm{P} 47^{*} \mathrm{~T}, t}$ $\mathrm{d}_{\mathrm{P} 1 * \mathrm{~F}, t}$ $\mathrm{d}_{\mathrm{P} 1^{*} \mathrm{M}, t}$! $\mathrm{d}_{\mathrm{P} 47^{*} \mathrm{~F}, t}$ $\mathrm{d}_{\mathrm{P} 47 * \mathrm{M}, t}$	$=\left[\begin{array}{ccccccccc}1 & 1 & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & \cdots & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1\end{array}\right]$	

Bottom-up method

1 Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts

Bottom-up method

1 Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts
2 Using summing matrix, obtain reconciled forecasts

$$
\overline{\boldsymbol{D}}_{n+h \mid n}=\boldsymbol{S} \times \widehat{\boldsymbol{b}}_{n+h \mid n}
$$

where $\overline{\boldsymbol{D}}_{n+h \mid n}$ denotes reconciled forecasts

Bottom-up method

1 Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts
2 Using summing matrix, obtain reconciled forecasts

$$
\overline{\boldsymbol{D}}_{n+h \mid n}=\boldsymbol{S} \times \widehat{\boldsymbol{b}}_{n+h \mid n}
$$

where $\overline{\boldsymbol{D}}_{n+h \mid n}$ denotes reconciled forecasts
3 Performs well when there is a strong signal-to-noise ratio

Optimal-combination method

1 Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure

Optimal-combination method

1 Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
2 Using independent forecasts are responses, linear regression

$$
\boldsymbol{D}_{n+h}=\boldsymbol{S} \boldsymbol{\beta}_{n+h}+\boldsymbol{\epsilon}_{n+h},
$$

Optimal-combination method

1 Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
2 Using independent forecasts are responses, linear regression

$$
\boldsymbol{D}_{n+h}=\boldsymbol{S} \boldsymbol{\beta}_{n+h}+\boldsymbol{\epsilon}_{n+h},
$$

- \boldsymbol{D}_{n+h} is a matrix of h-step-ahead values for all series;

Optimal-combination method

1 Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
2 Using independent forecasts are responses, linear regression

$$
\boldsymbol{D}_{n+h}=\boldsymbol{S} \boldsymbol{\beta}_{n+h}+\boldsymbol{\epsilon}_{n+h},
$$

- \boldsymbol{D}_{n+h} is a matrix of h-step-ahead values for all series;
- $\boldsymbol{\beta}_{n+h}=\mathrm{E}\left[\boldsymbol{b}_{n+h} \mid \boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{n}\right]$ is unknown mean of independent forecasts of the bottom-level series;

Optimal-combination method

1 Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
2 Using independent forecasts are responses, linear regression

$$
\boldsymbol{D}_{n+h}=\boldsymbol{S} \boldsymbol{\beta}_{n+h}+\boldsymbol{\epsilon}_{n+h},
$$

- \boldsymbol{D}_{n+h} is a matrix of h-step-ahead values for all series;
- $\boldsymbol{\beta}_{n+h}=\mathrm{E}\left[\boldsymbol{b}_{n+h} \mid \boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{n}\right]$ is unknown mean of independent forecasts of the bottom-level series;
- ϵ_{n+h} denotes reconciliation errors

Estimating regression coefficient

To estimate regression coefficient, Hyndman et al. (2011) and Hyndman et al. (2016) proposed a weighted least-squares solution

$$
\widehat{\boldsymbol{\beta}}_{n+h}=(\boldsymbol{S}^{\boldsymbol{\top}} \underbrace{\boldsymbol{W}_{h}^{-1}}_{\text {pain } \odot} \boldsymbol{S})^{-1} \boldsymbol{S}^{\top} \boldsymbol{W}_{h}^{-1} \widehat{\boldsymbol{D}}_{n+h}
$$

where \boldsymbol{W}_{h} is a diagonal matrix

How to estimate W_{h} ?

1 Assuming error terms follow same group structure, $\boldsymbol{W}_{h}=k_{h} \boldsymbol{I}$ and \boldsymbol{I} is identity matrix. Revised forecasts are

$$
\overline{\boldsymbol{D}}_{n+h}=\boldsymbol{S} \widehat{\boldsymbol{\beta}}_{n+h}=\boldsymbol{S}\left(\boldsymbol{S}^{\top} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\top} \widehat{\boldsymbol{D}}_{n+h},
$$

where k_{h} is a constant (OLS)

How to estimate W_{h} ?

1 Assuming error terms follow same group structure, $\boldsymbol{W}_{h}=k_{h} \boldsymbol{I}$ and \boldsymbol{I} is identity matrix. Revised forecasts are

$$
\overline{\boldsymbol{D}}_{n+h}=\boldsymbol{S} \widehat{\boldsymbol{\beta}}_{n+h}=\boldsymbol{S}\left(\boldsymbol{S}^{\top} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\top} \widehat{\boldsymbol{D}}_{n+h},
$$

where k_{h} is a constant (OLS)
2 Assuming $\boldsymbol{W}_{h}=k_{h} \times \boldsymbol{W}_{1}$, we approximate \boldsymbol{W}_{1} by its diagonal using in-sample fitted errors. Assigning weights as inverse proportion to variance, so places smallest weights where we have largest residual variance (WLS)

Model fitting (Okinawa female data)

Forecast death counts

Based on historical death from 1975 to 2009, produce one-step-ahead point forecasts of age-specific life-table death between 2010 and 2014

Age distribution of death counts continues to be negative skewed with more deaths occurring at older ages

Expanding window analysis

1 Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts

Expanding window analysis

1 Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts
2 Re-estimate parameters in the CoDa method using the first 7 observations from 1975 to 2009. Forecasts from estimated models are produced for one-step-ahead

Expanding window analysis

1 Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts
2 Re-estimate parameters in the CoDa method using the first 7 observations from 1975 to 2009. Forecasts from estimated models are produced for one-step-ahead
3 With two one-step-ahead forecasts, evaluate out-of-sample forecast accuracy

Point forecast evaluation

1 MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors

Point forecast evaluation

1 MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors
2 For each series k, error can be expressed as

$$
\mathrm{MAPE}_{k}=\frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23}\left|\frac{d_{n+\xi, x}^{k}-\widehat{d}_{n+\xi, x}}{d_{n+\xi, x}^{k}}\right| \times 100
$$

where $d_{n+\xi, x}^{k}$ denotes actual holdout sample for age x and forecasting year ξ in $k^{\text {th }}$ series

Point forecast evaluation

1 MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors
2 For each series k, error can be expressed as

$$
\mathrm{MAPE}_{k}=\frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23}\left|\frac{d_{n+\xi, x}^{k}-\widehat{d}_{n+\xi, x}}{d_{n+\xi, x}^{k}}\right| \times 100
$$

where $d_{n+\xi, x}^{k}$ denotes actual holdout sample for age x and forecasting year ξ in $k^{\text {th }}$ series
3 By averaging MAPE_{m} across number of series within each level of disaggregation, obtain an overall assessment of point forecast accuracy for each level within collection of series

$$
\mathrm{MAPE}=\frac{1}{M_{i}} \sum_{m=1}^{M_{i}} \mathrm{MAPE}_{m}
$$

where M_{i} denotes number of series at $i^{\text {th }}$ level of disaggregation

Interval forecast evaluation

1 Consider the common case of symmetric $100(1-\gamma) \%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma / 2$ and $1-\gamma / 2$, denoted by $\widehat{d}_{n+\xi, x}$ and $\widehat{d_{n+\xi, x}^{u}}$

Interval forecast evaluation

1 Consider the common case of symmetric $100(1-\gamma) \%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma / 2$ and $1-\gamma / 2$, denoted by $\widehat{d}_{n+\xi, x}$ and $\widehat{d}_{n+\xi, x}^{u}$
2 A scoring rule for the interval forecasts at time point $d_{\xi+h, x}$ is

$$
\begin{array}{r}
S_{\gamma, \xi}^{k}\left[\widehat{d}_{n+\xi, x}^{t}, \widehat{d}_{n+\xi, x}^{u}, d_{n+\xi, x}\right]=\left(\widehat{d}_{n+\xi, x}^{u}-\widehat{d}_{n+\xi, x}^{t}\right)+\frac{2}{\gamma}\left(\widehat{d}_{n+\xi, x}^{t}-d_{n+\xi, x}\right) \\
\mathbb{1}\left\{d_{n+\xi, x}<\widehat{d}_{n+\xi, x}^{t}\right\}+\frac{2}{\gamma}\left(d_{n+\xi, x}-\widehat{d}_{n+\xi, x}^{u}\right) \mathbb{1}\left\{d_{n+\xi, x}>\widehat{d}_{n+\xi, x}^{u}\right\}
\end{array}
$$

where $\mathbb{1}\{\cdot\}$: binary indicator function, γ : level of significance

Interval forecast evaluation

1 Consider the common case of symmetric $100(1-\gamma) \%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma / 2$ and $1-\gamma / 2$, denoted by $\widehat{d}_{n+\xi, x}^{l}$ and $\widehat{d}_{n+\xi, x}^{u}$
2 A scoring rule for the interval forecasts at time point $d_{\xi+h, x}$ is

$$
\begin{array}{r}
S_{\gamma, \xi}^{k}\left[\widehat{d}_{n+\xi, x}^{t}, \widehat{d}_{n+\xi, x}^{u}, d_{n+\xi, x}\right]=\left(\widehat{d}_{n+\xi, x}^{u}-\widehat{d}_{n+\xi, x}^{t}\right)+\frac{2}{\gamma}\left(\widehat{d}_{n+\xi, x}^{t}-d_{n+\xi, x}\right) \\
\mathbb{1}\left\{d_{n+\xi, x}<\widehat{d}_{n+\xi, x}^{t}\right\}+\frac{2}{\gamma}\left(d_{n+\xi, x}-\widehat{d}_{n+\xi, x}^{u}\right) \mathbb{1}\left\{d_{n+\xi, x}>\widehat{d}_{n+\xi, x}^{u}\right\}
\end{array}
$$

where $\mathbb{1}\{\cdot\}$: binary indicator function, γ : level of significance
3 For different ages and years in the forecasting period, mean interval score is

$$
\bar{S}_{\gamma}^{k}=\frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23} S_{\gamma, \xi}^{k}\left[\widehat{d}_{n+\xi, x}^{t}, \widehat{d}_{n+\xi, x}^{u} ; d_{n+\xi, x}\right], \quad \bar{S}_{\gamma}(h)=\frac{1}{M_{i}} \sum_{k=1}^{M_{i}} \bar{S}_{\gamma}^{k}
$$

Point forecast evaluation for forecasting death counts

	MAPE		number of smaller errors number of series at each level LoD	
Level	CoDa	RW	RW	
Total	$\mathbf{6 . 8 8 3 1}$	8.0765	100%	0%
Sex	$\mathbf{7 . 6 6 3 0}$	8.2054	100%	0%
Region	$\mathbf{8 . 4 6 0 5}$	9.3633	87.50%	12.50%
Region + Sex	$\mathbf{9 . 5 9 7 5}$	10.0833	68.75%	31.25%
Prefecture	$\mathbf{1 0 . 1 1 6 1}$	11.5056	91.49%	8.51%
Prefecture + Sex	$\mathbf{1 2 . 4 5 2 7}$	13.8352	81.91%	18.09%

000

Point forecast evaluation (reconciliation methods)

Level	BU	OLS	WLS
Total	7.6064	7.3324	$\mathbf{7 . 2 9 2 5}$
Sex	7.8143	7.5184	$\mathbf{7 . 4 8 4 6}$
Region	9.3641	9.0333	$\mathbf{9 . 0 3 2 3}$
Region + Sex	9.4131	$\mathbf{9 . 1 0 1 5}$	9.1639
Prefecture	11.1255	10.7811	$\mathbf{1 0 . 7 4 9 4}$
Prefecture + Sex	12.4527	$\mathbf{1 2 . 1 6 9 3}$	12.2157
Overall Mean	9.6294	$\mathbf{9 . 3 2 2 7}$	9.3231

Interval forecast evaluation

Level	CoDa	BU	OLS	WLS
Total	1108.76	900.91	$\mathbf{8 4 8 . 5 3}$	857.71
Sex	1089.50	$\mathbf{9 4 7 . 7 1}$	962.52	991.92
Region	1145.86	815.33	$\mathbf{7 7 2 . 0 2}$	780.80
Region + Sex	1123.92	771.30	724.75	$\mathbf{7 1 9 . 9 0}$
Prefecture	1201.80	900.82	$\mathbf{7 9 1 . 1 0}$	792.98
Prefecture + Sex	1187.09	1187.09	1110.32	$\mathbf{1 0 8 1 . 0 2}$
Overall Mean	1142.82	920.53	$\mathbf{8 6 8 . 2 1}$	870.72

Life annuity

1 An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee

Life annuity

1 An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee
2 Apply forecasts of death counts to calculation of single-premium term immediate annuities

Life annuity

1 An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee
2 Apply forecasts of death counts to calculation of single-premium term immediate annuities
3τ year survival probability of a person aged x currently at $t=0$ is determined by

$$
\begin{aligned}
\tau p_{x} & =\prod_{j=1}^{\tau} p_{x+j-1} \\
& =\prod_{j=1}^{\tau}\left(1-q_{x+j-1}\right)=\prod_{j=1}^{\tau}\left(1-\frac{d_{x+j-1}}{l_{x+j-1}}\right)
\end{aligned}
$$

where d_{x+j-1} denotes number of death counts between ages $x+j-1$ and $x+j ; l_{x+j-1}$ denotes number of lives alive at age $x+j-1$

Annuity price calculation

Price of an annuity with maturity T year, written for a x-year-old with benefit $\$ 1$ per year, is given

$$
\begin{aligned}
a_{x}^{T}\left(d_{1: T}^{x}\right) & =\sum_{\tau=1}^{T} B(t=0, \tau) \times \mathrm{E}\left(\mathbb{1}_{T_{x}>\tau} \mid d_{1: \tau}^{x}\right) \\
& =\sum_{\tau=1}^{T} \underbrace{B(t=0, \tau)}_{\text {bond price }} \times \underbrace{{ }_{\tau} p_{x}\left(d_{1: \tau}^{x}\right)}_{\text {survival probability }}
\end{aligned}
$$

$11 B(t=0, \tau)$ is τ-year bond price, where $\tau<T$

Annuity price calculation

Price of an annuity with maturity T year, written for a x-year-old with benefit $\$ 1$ per year, is given

$$
\begin{aligned}
a_{x}^{T}\left(d_{1: T}^{x}\right) & =\sum_{\tau=1}^{T} B(t=0, \tau) \times \mathrm{E}\left(\mathbb{1}_{T_{x}>\tau} \mid d_{1: \tau}^{x}\right) \\
& =\sum_{\tau=1}^{T} \underbrace{B(t=0, \tau)}_{\text {bond price }} \times \underbrace{{ }_{\tau} p_{x}\left(d_{1: \tau}^{x}\right)}_{\text {survival probability }}
\end{aligned}
$$

$1 B(t=0, \tau)$ is τ-year bond price, where $\tau<T$
(2) $d_{1: \tau}^{x}$ is first τ elements of $d_{1: T}^{x}$

Annuity price calculation

Price of an annuity with maturity T year, written for a x-year-old with benefit $\$ 1$ per year, is given

$$
\begin{aligned}
a_{x}^{T}\left(d_{1: T}^{x}\right) & =\sum_{\tau=1}^{T} B(t=0, \tau) \times \mathrm{E}\left(\mathbb{1}_{T_{x}>\tau} \mid d_{1: \tau}^{x}\right) \\
& =\sum_{\tau=1}^{T} \underbrace{B(t=0, \tau)}_{\text {bond price }} \times \underbrace{{ }_{\tau} p_{x}\left(d_{1: \tau}^{x}\right)}_{\text {survival probability }}
\end{aligned}
$$

$1 B(t=0, \tau)$ is τ-year bond price, where $\tau<T$
$2 d_{1: \tau}^{x}$ is first τ elements of $d_{1: T}^{x}$
$3{ }_{\tau} p_{x}\left(d_{1: \tau}^{x}\right)$ denotes survival probability given a random $d_{1: \tau}^{x}$

Comparison of life annuity premium calculation

1 Compare annuity price estimates for different ages and maturities between methods for a female policyholder living in Japan
2 Assume a constant interest rate at $\eta=3 \%$ and $B(t=0, \tau)=\exp ^{-\eta \tau}$

Series		$T=5$	$T=10$	$T=15$	$T=20$	$T=25$	$T=30$
Female	LB	4.5255	8.3311	11.4895	14.0474	16.0071	17.3350
	Mean	4.5288	8.3448	11.5274	14.1288	16.1626	17.6018
	UB	4.5370	8.3830	11.6356	14.3754	16.6576	18.5063
Male	LB	4.4540	8.0646	10.9043	13.0075	14.4030	15.1543
	Mean	4.4602	8.0897	10.9659	13.1356	14.6187	15.4637
	UB	4.4729	8.1467	11.1276	13.4911	15.2772	16.4944
Total	LB	4.4912	8.2011	11.2047	13.5497	15.2536	16.3333
	Mean	4.4958	8.2223	11.2618	13.6700	15.4712	16.6753
	UB	4.5056	8.2714	11.4018	13.9851	16.0845	17.7222

Thank you

1 A draft paper is available upon request from hanlin.shang@anu.edu.au

Thank you

1 A draft paper is available upon request from hanlin.shang@anu.edu.au

2 Follow me at Research Gate https://www.researchgate.net/profile/Han_Lin_Shang

References

[1] Aitchison, J. (1982), 'The statistical analysis of compositional data', JRSSB, 44(2), 139-177.
[2] Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall, London.
[3] Boucher, M.-P. B., Canudas-Romo, V. and Vaupel, J. W. (2014),
Convergent mortality levels? Coherent mortality forecasts among industrialized countries, in 'Population Association of America', Boston, MA.
[4] Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G. and Shang, H. L.
(2011), 'Optimal combination forecasts for hierarchical time series', CSDA, 55, 2579-2589.
[5] Hyndman, R. J., Lee, A. and Wang, E. (2016), 'Fast computation of reconciled forecasts for hierarchical and grouped time series', CSDA, 97, 16-32. [6] Shang, H. L. and Haberman, S. (2017), 'Grouped multivariate and functional time series forecasting: An application to annuity pricing', IME, 75, 166-179. [7] Shang, H. L. and Hyndman, R. J. (2017), 'Grouped functional time series forecasting: An application to age-specific mortality rates', JCGS, 26(2), 330-343.

