Data Method	I Forecas	st reconciliation R	Results A	Annuity pricing	Conclusion

Reconciling forecasts of age distribution of death counts: An application to annuity pricing

Han Lin Shang Research School of Finance, Actuarial Studies and Statistics Australian National University

> Steven Haberman Cass Business School City, University of London

> > July 27, 2017

- Japanese national and sub-national age-specific life-table death counts from 1975 to 2014 from *Japanese Mortality Database*
- 2 Period life-table radix is fixed at 100,000 at age 0 for each year group
- 3 8 five-year year groups, 1975-1979, 1980-1984, …, 2010-2014
- 4 24 age groups, age 0, 1-4, 5-9, 10-14, …, 105-109, 110+
- Due to <u>zero counts</u> for age 110+ for some years, merge this age group with age group 105-109

Data 00●	Method 000000000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00		
Japa	Japanese group structure						

Have national and sub-national mortality rates, data structure is displayed below where each row denotes a level of disaggregation

Group level	Number of series
Japan	1
Sex	2
Region	8
Region \times Sex	16
Prefecture	47
$Prefecture\timesSex$	94
Total	168

Compositional data are defined as a random vector of K positive components $D = [d_1, \ldots, d_K]$ with strictly positive values whose sum is a given constant

- Compositional data are defined as a random vector of K positive components $D = [d_1, \ldots, d_K]$ with strictly positive values whose sum is a given constant
- 2 Sample space of compositional data is the simplex

$$S^{K} = \left\{ \boldsymbol{D} = (d_{1}, \dots, d_{K})^{\mathsf{T}}, \quad d_{x} > 0, \quad \sum_{x=1}^{K} d_{x} = c \right\}$$

where c is a fixed constant (such as, radix in period life table), $^{\rm T}$ denote vector transpose, simplex sample space is K-1 dimensional subset of R^{K-1}

Data 000	Method o●ooooooo	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa in action					

1 Begin from a data matrix D of size $n \times K$ of life-table deaths $(d_{t,x})$ with n rows representing the number of years and K columns representing the age x. Sum of each row adds up to life-table radix, such as 100,000

Data 000	Method o●ooooooo	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa	in action				

- Begin from a data matrix D of size $n \times K$ of life-table deaths $(d_{t,x})$ with n rows representing the number of years and K columns representing the age x. Sum of each row adds up to life-table radix, such as 100,000
- 2 Compute geometric mean at each age, given by

$$\alpha_x = \exp^{\frac{1}{n}\sum_{t=1}^n \ln(d_{t,x})}, \qquad x = 1, \dots, K$$

For a given year t, divide $(d_{t,1}, \ldots, d_{t,K})$ by corresponding geometric means $(\alpha_1, \ldots, \alpha_K)$,

$$C\left[\frac{d_{t,1}}{\alpha_1}, \frac{d_{t,2}}{\alpha_2}, \cdots, \frac{d_{t,K}}{\alpha_K}\right]$$

Data 000	Method oo●oooooo	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa in action					

 $C[\cdot]$ represents a closure operation, performing standardization

$$f_{t,x} = \frac{\frac{d_{t,x}}{\alpha_x}}{\frac{d_{t,1}}{\alpha_1} + \frac{d_{t,2}}{\alpha_2} + \dots + \frac{d_{t,K}}{\alpha_K}}, \qquad x = 1,\dots,K$$

where $f_{t,x}$ is a non-negative value

Data 000	Method 000●00000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa	in action				

3 Log-ratio transformation: Aitchison (1982, 1986) showed that compositional data are represented in a restricted space where components can only vary between 0 and positive constant, proposed centered log-ratio transformation

$$h_{t,x} = \ln\left(\frac{f_{t,x}}{g_t}\right)$$

where g_t are the geometric means over age at time t

$$g_t = \exp^{\frac{1}{K}\sum_{x=1}^K \ln(f_{t,x})}.$$

Transformed data matrix is H with elements $h_{t,x} \in R$ real-valued \odot

Data 000	Method 0000●0000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa	in action				

4 Principal component analysis: applied to the matrix $H_x = \{h_{t,1}, \dots, h_{t,K}\}$ to obtain the estimated principal components and their associated scores,

$$h_{t,x} = \sum_{\ell=1}^{\min(n,K)} \beta_{t,\ell} \phi_{\ell,x} \approx \sum_{\ell=1}^{L} \beta_{t,\ell} \phi_{\ell,x}$$

Data 000	Method 0000●0000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa in action					

Principal component analysis: applied to the matrix $H_x = \{h_{t,1}, \dots, h_{t,K}\}$ to obtain the estimated principal components and their associated scores,

$$h_{t,x} = \sum_{\ell=1}^{\min(n,K)} \beta_{t,\ell} \phi_{\ell,x} \approx \sum_{\ell=1}^{L} \beta_{t,\ell} \phi_{\ell,x}$$

 $\blacksquare \ \{\phi_{1,x}, \cdots, \phi_{L,x}\}$ denotes first L sets of principal components

Data 000	Method 0000●0000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa in action					

Principal component analysis: applied to the matrix $H_x = \{h_{t,1}, \dots, h_{t,K}\}$ to obtain the estimated principal components and their associated scores,

$$h_{t,x} = \sum_{\ell=1}^{\min(n,K)} \beta_{t,\ell} \phi_{\ell,x} \approx \sum_{\ell=1}^{L} \beta_{t,\ell} \phi_{\ell,x}$$

{φ_{1,x},...,φ_{L,x}} denotes first L sets of principal components
 {β_{t,1},...,β_{t,L}} denotes first L sets of principal component scores for time t

Data 000	Method 0000●0000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa in action					

Principal component analysis: applied to the matrix $H_x = \{h_{t,1}, \ldots, h_{t,K}\}$ to obtain the estimated principal components and their associated scores,

$$h_{t,x} = \sum_{\ell=1}^{\min(n,K)} \beta_{t,\ell} \phi_{\ell,x} \approx \sum_{\ell=1}^{L} \beta_{t,\ell} \phi_{\ell,x}$$

- $\{\phi_{1,x}, \cdots, \phi_{L,x}\}$ denotes first L sets of principal components
- $\{\beta_{t,1},\ldots,\beta_{t,L}\}$ denotes first L sets of principal component scores for time t
- L denotes number of retained components

Data 000	Method 00000●000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa	in action				

5 Forecast of principal component scores: Via an exponential smoothing method, obtain *h*-step-ahead forecast of ℓ^{th} principal component score $\widehat{\beta}_{n+h|n,\ell}$

Data 000	Method 00000●000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
CoDa	in action				

- **5** Forecast of principal component scores: Via an exponential smoothing method, obtain *h*-step-ahead forecast of ℓ^{th} principal component score $\widehat{\beta}_{n+h|n,\ell}$
- 6 Conditioning on estimated principal components and observations, forecast of $h_{n+h|n,x}$ is obtained by

$$\widehat{h}_{n+h|n,x} = \sum_{\ell=1}^{L} \widehat{\beta}_{n+h|n,\ell} \widehat{\phi}_{\ell,x}$$

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	00000●000		00000000	0000	00
CoDa	in action				

- **5** Forecast of principal component scores: Via an exponential smoothing method, obtain *h*-step-ahead forecast of ℓ^{th} principal component score $\widehat{\beta}_{n+h|n,\ell}$
- 6 Conditioning on estimated principal components and observations, forecast of $h_{n+h|n,x}$ is obtained by

$$\widehat{h}_{n+h|n,x} = \sum_{\ell=1}^{L} \widehat{\beta}_{n+h|n,\ell} \widehat{\phi}_{\ell,x}$$

7 Transform back to compositional data: take inverse centered log-ratio transformation

$$\widehat{f}_{n+h|n,x} = C\left[\exp^{\widehat{h}_{n+h|n,x}}\right]$$

 $C[\cdot]$ is closure operator, performing standardization

$$\widehat{f}_{n+h|n,x} = \frac{\exp^{\widehat{h}_{n+h|n,x}}}{\exp^{\widehat{h}_{n+h|n,1}} + \dots + \exp^{\widehat{h}_{n+h|n,K}}}$$

Data Method Forecast reconciliation Results Annuity pricing Conclusion CoDa in action Conclusion Conclusion Conclusion Conclusion Conclusion

 $\mathbf{Z} C[\cdot]$ is closure operator, performing standardization

$$\widehat{f}_{n+h|n,x} = \frac{\exp^{\widehat{h}_{n+h|n,x}}}{\exp^{\widehat{h}_{n+h|n,1}} + \dots + \exp^{\widehat{h}_{n+h|n,K}}}$$

B Add back the geometric means, to obtain forecasts of life-table death matrix $\widehat{d}_{n+h|n,x}$:

$$\begin{split} \widehat{d}_{n+h|n,x} &= C\left[\widehat{f}_{n+h|n,x} \times \alpha_x\right] \\ &= \left[\frac{\widehat{f}_{n+h|n,1} \times \alpha_1}{\sum_{x=1}^K \widehat{f}_{n+h|n,x} \times \alpha_x}, \cdots, \frac{\widehat{f}_{n+h|n,K} \times \alpha_K}{\sum_{x=1}^K \widehat{f}_{n+h|n,x} \times \alpha_x}\right] \end{split}$$

where α_x denotes age-specific geometric mean of $d_{t,x}$

To determine number of components L, determine the value of L as the minimum number of components that reaches a certain level of proportion of total variance explained by L leading components

$$L = \underset{L:L\geq 1}{\operatorname{arg\,min}} \left\{ \sum_{\ell=1}^{L} \widehat{\lambda}_{\ell} / \sum_{\ell=1}^{\min\{n,K\}} \widehat{\lambda}_{\ell} \mathbb{1}_{\{\widehat{\lambda}_{\ell}>0\}} \right\}$$

where $\delta = 95\%$, $\mathbb{1}\{\cdot\}$ denotes binary indicator function excluding possible zero eigenvalues. The chosen L = 1.

1 Bootstrapped functional time series can be obtained

$$\widehat{h}_{t,x}^{b} = \sum_{\ell=1}^{L} \widehat{\beta}_{t,\ell}^{b} \widehat{\phi}_{\ell,x}, \qquad t = 1, \dots, n,$$

where $\widehat{\beta}_{t,\ell}^b$: bootstrapped ℓ^{th} principal component scores, for $b = 1, \ldots, B$ and B is the number of bootstrap replications

Bootstrapped functional time series can be obtained

$$\widehat{h}^b_{t,x} = \sum_{\ell=1}^L \widehat{\beta}^b_{t,\ell} \widehat{\phi}_{\ell,x}, \qquad t = 1, \dots, n,$$

where $\widehat{\beta}_{t,\ell}^b$: bootstrapped ℓ^{th} principal component scores, for $b = 1, \dots, B$ and B is the number of bootstrap replications 2 For each bootstrap replication, we obtain the forecast of $h_{n+h,x}$ as

$$\widehat{h}_{n+h,x}^{b} = \sum_{\ell=1}^{L} \widehat{\beta}_{n+h,\ell}^{b} \widehat{\phi}_{\ell,x},$$

 $\widehat{\beta}^b_{n+h,\ell}$: forecast of the bootstrapped principal component scores

1 Bootstrapped functional time series can be obtained

$$\widehat{h}^b_{t,x} = \sum_{\ell=1}^L \widehat{\beta}^b_{t,\ell} \widehat{\phi}_{\ell,x}, \qquad t = 1, \dots, n,$$

where $\widehat{\beta}_{t,\ell}^b$: bootstrapped ℓ^{th} principal component scores, for $b = 1, \dots, B$ and B is the number of bootstrap replications 2 For each bootstrap replication, we obtain the forecast of $h_{n+h,x}$ as

$$\widehat{h}_{n+h,x}^{b} = \sum_{\ell=1}^{L} \widehat{\beta}_{n+h,\ell}^{b} \widehat{\phi}_{\ell,x},$$

β^b_{n+h,ℓ}: forecast of the bootstrapped principal component scores

 By randomly sampling with replacement the observations
 corresponding to the year index of the in-sample fitted errors, we
 obtain a set of bootstrapped model residuals

Forecast reconciliation of death count

Japanese data follow a three-level hierarchy, coupled with sex grouping variable (S. & Hyndman, 2017, JCGS; S. & Haberman, IME)

Figure: Japanese geographical hierarchy tree diagram

Refer to a disaggregated series using notation $X \times S$; X is geographical area and S is sex

Data 000	Method 000000000	Forecast 0●0000	reconciliation	Results		Annuity pricing	Conclusion 00
	$\begin{bmatrix} d_{Japan}^{*}T,t \\ d_{Japan}^{*}F,t \\ d_{Japan}^{*}M,t \\ d_{R1}^{*}T,t \\ \vdots \\ d_{R8}^{*}T,t \\ d_{R1}^{*}F,t \\ \vdots \\ d_{R8}^{*}F,t \\ d_{R1}^{*}M,t \\ \vdots \\ d_{R8}^{*}M,t \\ d_{P1}^{*}T,t \\ d_{P1}^{*}T,t \\ d_{P1}^{*}F,t \\ d_{P1$	$= \begin{array}{c} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0$	$ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} $	1 1 1 0 0 1 0 0 <td< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\underbrace{\begin{bmatrix} d_{P1*F,t} \\ d_{P1*M,t} \\ d_{P2*F,t} \\ d_{P2*M,t} \\ \vdots \\ d_{P47*F,t} \\ d_{P47*M,t} \end{bmatrix}}_{b_t}$</th><th></th></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underbrace{\begin{bmatrix} d_{P1*F,t} \\ d_{P1*M,t} \\ d_{P2*F,t} \\ d_{P2*M,t} \\ \vdots \\ d_{P47*F,t} \\ d_{P47*M,t} \end{bmatrix}}_{b_t}$	

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000	00●000	00000000		00
Botto	om-up met	hod			

 Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts

Data 000	Method 000000000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00		
Bottom-up method							

- Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts
- 2 Using summing matrix, obtain reconciled forecasts

$$\overline{oldsymbol{D}}_{n+h|n}$$
 = $oldsymbol{S} imes \widehat{oldsymbol{b}}_{n+h|n}$

where $\overline{oldsymbol{D}}_{n+h|n}$ denotes reconciled forecasts

Data 000	Method 000000000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion 00
Botto	om-up met	hod			

- Generates independent forecasts for each series at most disaggregated level, aggregate these to produce required forecasts
- 2 Using summing matrix, obtain reconciled forecasts

$$\overline{oldsymbol{D}}_{n+h|n}$$
 = $oldsymbol{S} imes \widehat{oldsymbol{b}}_{n+h|n}$

where $\overline{D}_{n+h|n}$ denotes reconciled forecasts 3 Performs well when there is a strong *signal-to-noise* ratio

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000	000●00	00000000		00
Optir	nal-combir	nation method			

Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure

- Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
- 2 Using independent forecasts are responses, linear regression

 $D_{n+h} = S\beta_{n+h} + \epsilon_{n+h},$

- Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
- **2** Using independent forecasts are responses, linear regression

$$D_{n+h} = S\beta_{n+h} + \epsilon_{n+h},$$

• D_{n+h} is a matrix of *h*-step-ahead values for all series;

- Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
- **2** Using independent forecasts are responses, linear regression

$$D_{n+h} = S\beta_{n+h} + \epsilon_{n+h},$$

- **D** $_{n+h}$ is a matrix of *h*-step-ahead values for all series;
- $\beta_{n+h} = \mathsf{E}[b_{n+h}|D_1, \dots, D_n]$ is unknown mean of independent forecasts of the bottom-level series;

- Optimal-combination method combines independent forecasts through linear regression, generated revised forecasts are as close as possible to independent forecasts but consistent with respect to the group structure
- 2 Using independent forecasts are responses, linear regression

$$D_{n+h} = S\beta_{n+h} + \epsilon_{n+h},$$

- **D** $_{n+h}$ is a matrix of *h*-step-ahead values for all series;
- $\beta_{n+h} = \mathsf{E}[b_{n+h}|D_1, \dots, D_n]$ is unknown mean of independent forecasts of the bottom-level series;
- ϵ_{n+h} denotes reconciliation errors

To estimate regression coefficient, Hyndman et al. (2011) and Hyndman et al. (2016) proposed a weighted least-squares solution

$$\widehat{\boldsymbol{\beta}}_{n+h} = \left(\boldsymbol{S}^{\mathsf{T}} \underbrace{\boldsymbol{W}_{h}^{-1}}_{\text{pain}} \boldsymbol{S} \right)^{-1} \boldsymbol{S}^{\mathsf{T}} \boldsymbol{W}_{h}^{-1} \widehat{\boldsymbol{D}}_{n+h}$$

where W_h is a diagonal matrix

1 Assuming error terms follow same group structure, $W_h = k_h I$ and I is identity matrix. Revised forecasts are

$$\overline{oldsymbol{D}}_{n+h}$$
 = $oldsymbol{S} \widehat{oldsymbol{eta}}_{n+h}$ = $oldsymbol{S} (oldsymbol{S}^{ op} oldsymbol{S})^{-1} oldsymbol{S}^{ op} \widehat{oldsymbol{D}}_{n+h},$

where k_h is a constant (OLS)

1 Assuming error terms follow same group structure, $W_h = k_h I$ and I is identity matrix. Revised forecasts are

$$\overline{\boldsymbol{D}}_{n+h} = \boldsymbol{S}\widehat{\boldsymbol{\beta}}_{n+h} = \boldsymbol{S}(\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S})^{-1}\boldsymbol{S}^{\mathsf{T}}\widehat{\boldsymbol{D}}_{n+h},$$

where k_h is a constant (OLS)

Assuming W_h = k_h × W₁, we approximate W₁ by its diagonal using in-sample fitted errors. Assigning weights as inverse proportion to variance, so places smallest weights where we have largest residual variance (WLS)

Age

Year

Based on historical death from 1975 to 2009, produce one-step-ahead point forecasts of age-specific life-table death between 2010 and 2014

Age distribution of death counts continues to be negative skewed with more deaths occurring at older ages

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000		00000000	0000	00
Expa	nding wind	low analysis			

 Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000		00000000	0000	00
Expa	nding wind	low analysis			

- Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts
- Re-estimate parameters in the CoDa method using the first 7 observations from 1975 to 2009. Forecasts from estimated models are produced for *one-step-ahead*

- Using the first 6 observations of five-year interval from 1975 to 2004 in Japanese age-specific life-table death counts, produce one-step-ahead point forecasts
- Re-estimate parameters in the CoDa method using the first 7 observations from 1975 to 2009. Forecasts from estimated models are produced for *one-step-ahead*
- 3 With two one-step-ahead forecasts, evaluate out-of-sample forecast accuracy

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion			
000	000000000		000●0000	0000	00			
Poin	Point forecast evaluation							

1 MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors

- MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors
- **2** For each series k, error can be expressed as

$$\mathsf{MAPE}_{k} = \frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23} \left| \frac{d_{n+\xi,x}^{k} - \widehat{d}_{n+\xi,x}}{d_{n+\xi,x}^{k}} \right| \times 100,$$

where $d^k_{n+\xi,x}$ denotes actual holdout sample for age x and forecasting year ξ in $k^{\rm th}$ series

- MAPE measures how close forecasts are to the actual values of variable being forecast, regardless of direction of forecast errors
- **2** For each series k, error can be expressed as

$$\mathsf{MAPE}_{k} = \frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23} \left| \frac{d_{n+\xi,x}^{k} - \widehat{d}_{n+\xi,x}}{d_{n+\xi,x}^{k}} \right| \times 100,$$

where $d^k_{n+\xi,x}$ denotes actual holdout sample for age x and forecasting year ξ in $k^{\rm th}$ series

3 By averaging MAPE_m across number of series within each level of disaggregation, obtain an overall assessment of point forecast accuracy for each level within collection of series

$$\mathsf{MAPE} = \frac{1}{M_i} \sum_{m=1}^{M_i} \mathsf{MAPE}_m$$

where M_i denotes number of series at i^{th} level of disaggregation

Data 000	Method 00000000	Forecast reconciliation	Results 0000●000	Annuity pricing	Conclusion 00
Inter	val forecas	t evaluation			

1 Consider the common case of symmetric $100(1-\gamma)\%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma/2$ and $1-\gamma/2$, denoted by $\widehat{d}_{n+\xi,x}^l$ and $\widehat{d}_{n+\xi,x}^u$

Consider the common case of symmetric $100(1-\gamma)\%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma/2$ and $1-\gamma/2$, denoted by $\widehat{d}_{n+\xi,x}^l$ and $\widehat{d}_{n+\xi,x}^u$

2 A scoring rule for the interval forecasts at time point $d_{\xi+h,x}$ is

$$S_{\gamma,\xi}^{k} \left[\widehat{d}_{n+\xi,x}^{t}, \widehat{d}_{n+\xi,x}^{u}, d_{n+\xi,x} \right] = \left(\widehat{d}_{n+\xi,x}^{u} - \widehat{d}_{n+\xi,x}^{t} \right) + \frac{2}{\gamma} \left(\widehat{d}_{n+\xi,x}^{t} - d_{n+\xi,x} \right)$$
$$\mathbb{1} \left\{ d_{n+\xi,x} < \widehat{d}_{n+\xi,x}^{t} \right\} + \frac{2}{\gamma} \left(d_{n+\xi,x} - \widehat{d}_{n+\xi,x}^{u} \right) \mathbb{1} \left\{ d_{n+\xi,x} > \widehat{d}_{n+\xi,x}^{u} \right\}$$

where $\mathbb{1}\{\cdot\}$: binary indicator function, γ : level of significance

I Consider the common case of symmetric $100(1 - \gamma)\%$ prediction intervals, with lower and upper bounds that are predictive quantiles at $\gamma/2$ and $1 - \gamma/2$, denoted by $\widehat{d}_{n+\xi,x}^t$ and $\widehat{d}_{n+\xi,x}^u$

2 A scoring rule for the interval forecasts at time point $d_{\xi+h,x}$ is

$$S_{\gamma,\xi}^{k} \left[\widehat{d}_{n+\xi,x}^{t}, \widehat{d}_{n+\xi,x}^{u}, d_{n+\xi,x} \right] = \left(\widehat{d}_{n+\xi,x}^{u} - \widehat{d}_{n+\xi,x}^{t} \right) + \frac{2}{\gamma} \left(\widehat{d}_{n+\xi,x}^{t} - d_{n+\xi,x} \right)$$
$$\mathbb{1} \left\{ d_{n+\xi,x} < \widehat{d}_{n+\xi,x}^{t} \right\} + \frac{2}{\gamma} \left(d_{n+\xi,x} - \widehat{d}_{n+\xi,x}^{u} \right) \mathbb{1} \left\{ d_{n+\xi,x} > \widehat{d}_{n+\xi,x}^{u} \right\}$$

where $\mathbb{1}\{\cdot\}$: binary indicator function, γ : level of significance 3 For different ages and years in the forecasting period, mean interval score is

$$\overline{S}_{\gamma}^{k} = \frac{1}{23 \times 2} \sum_{\xi=1}^{2} \sum_{x=1}^{23} S_{\gamma,\xi}^{k} \left[\widehat{d}_{n+\xi,x}^{t}, \widehat{d}_{n+\xi,x}^{u}; d_{n+\xi,x} \right], \quad \overline{S}_{\gamma}(h) = \frac{1}{M_{i}} \sum_{k=1}^{M_{i}} \overline{S}_{\gamma}^{k}$$

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	00000000		00000●00	0000	00
Point	forecast ev	aluation for fo	precasting	death coun	ts

	MAPE			of smaller errors series at each level
Level	CoDa	RW	CoDa	RW
Total	6.8831	8.0765	100%	0%
Sex	7.6630	8.2054	100%	0%
Region	8.4605	9.3633	87.50%	12.50%
Region + Sex	9.5975	10.0833	68.75%	31.25%
Prefecture	10.1161	11.5056	91.49%	8.51%
Prefecture + Sex	12.4527	13.8352	81.91%	18.09%

Data 000	Method 00000000	Forecast reconciliation	Results 000000●0	Annuity pricing	Conclusion 00
Point	: forecast e	valuation (reco	onciliation	methods)	

Level	BU	OLS	WLS
Total	7.6064	7.3324	7.2925
Sex	7.8143	7.5184	7.4846
Region	9.3641	9.0333	9.0323
Region + Sex	9.4131	9.1015	9.1639
Prefecture	11.1255	10.7811	10.7494
Prefecture + Sex	12.4527	12.1693	12.2157
Overall Mean	9.6294	9.3227	9.3231

	1.0	1			
000	000000000	000000	0000000	0000	00
Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion

Interva	l forecast	eva	luation
---------	------------	-----	---------

Level	CoDa	BU	OLS	WLS
Total	1108.76	900.91	848.53	857.71
Sex	1089.50	947.71	962.52	991.92
Region	1145.86	815.33	772.02	780.80
Region + Sex	1123.92	771.30	724.75	719.90
Prefecture	1201.80	900.82	791.10	792.98
Prefecture + Sex	1187.09	1187.09	1110.32	1081.02
Overall Mean	1142.82	920.53	868.21	870.72

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000		00000000	●000	00
Life a	nnuity				

An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000		00000000	●000	00
Life a	annuity				

- An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee
- 2 Apply forecasts of death counts to calculation of single-premium term immediate annuities

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
000	000000000		00000000	●000	00
Life a	annuity				

- An annuity is a contract offered by insurers guaranteeing a steady stream of payments for either a fixed term or lifetime of annuitants in exchange for an initial premium fee
- Apply forecasts of death counts to calculation of single-premium term immediate annuities
- 3 τ year survival probability of a person aged x currently at t = 0 is determined by

$$\tau p_x = \prod_{j=1}^{\tau} p_{x+j-1}$$

$$= \prod_{j=1}^{\tau} (1 - q_{x+j-1}) = \prod_{j=1}^{\tau} \left(1 - \frac{d_{x+j-1}}{l_{x+j-1}} \right)$$

where d_{x+j-1} denotes number of death counts between ages x+j-1and x+j; l_{x+j-1} denotes number of lives alive at age x+j-1

Price of an annuity with maturity T year, written for a x-year-old with benefit \$1 per year, is given

$$a_x^T (d_{1:T}^x) = \sum_{\tau=1}^T B(t=0,\tau) \times \mathsf{E} \left(\mathbbm{1}_{T_x > \tau} | d_{1:\tau}^x\right)$$
$$= \sum_{\tau=1}^T \underbrace{B(t=0,\tau)}_{\text{bond price}} \times \underbrace{\tau p_x(d_{1:\tau}^x)}_{\text{survival probability}}$$

1 $B(t = 0, \tau)$ is τ -year bond price, where $\tau < T$

Price of an annuity with maturity T year, written for a x-year-old with benefit \$1 per year, is given

$$a_x^T (d_{1:T}^x) = \sum_{\tau=1}^T B(t=0,\tau) \times \mathsf{E}\left(\mathbbm{1}_{T_x > \tau} | d_{1:\tau}^x\right)$$
$$= \sum_{\tau=1}^T \underbrace{B(t=0,\tau)}_{\text{bond price}} \times \underbrace{\tau p_x(d_{1:\tau}^x)}_{\text{survival probability}}$$

1 $B(t = 0, \tau)$ is τ -year bond price, where $\tau < T$ **2** $d_{1:\tau}^x$ is first τ elements of $d_{1:T}^x$

(

Price of an annuity with maturity T year, written for a x-year-old with benefit \$1 per year, is given

$$a_x^T (d_{1:T}^x) = \sum_{\tau=1}^T B(t=0,\tau) \times \mathsf{E}\left(\mathbbm{1}_{T_x > \tau} | d_{1:\tau}^x\right)$$
$$= \sum_{\tau=1}^T \underbrace{B(t=0,\tau)}_{\text{bond price}} \times \underbrace{\tau p_x(d_{1:\tau}^x)}_{\text{survival probability}}$$

- **1** $B(t = 0, \tau)$ is τ -year bond price, where $\tau < T$
- 2 $d_{1:\tau}^x$ is first τ elements of $d_{1:T}^x$

1

3 $_{ au}p_x(d^x_{1: au})$ denotes survival probability given a random $d^x_{1: au}$

- Compare annuity price estimates for different ages and maturities between methods for a female policyholder living in Japan
- **2** Assume a constant interest rate at $\eta = 3\%$ and $B(t = 0, \tau) = \exp^{-\eta \tau}$

Data 000	Method 00000000	Forecast reconciliation	Results 00000000	Annuity pricing 000●	Conclusion
Fixed-	term annu	ity price (age =	= 60) for	Japan (F, M	I, T)

Series		T = 5	T = 10	T = 15	T = 20	T = 25	T = 30
Female	LB	4.5255	8.3311	11.4895	14.0474	16.0071	17.3350
	Mean	4.5288	8.3448	11.5274	14.1288	16.1626	17.6018
	UB	4.5370	8.3830	11.6356	14.3754	16.6576	18.5063
Male	LB	4.4540	8.0646	10.9043	13.0075	14.4030	15.1543
	Mean	4.4602	8.0897	10.9659	13.1356	14.6187	15.4637
	UB	4.4729	8.1467	11.1276	13.4911	15.2772	16.4944
Total	LB	4.4912	8.2011	11.2047	13.5497	15.2536	16.3333
	Mean	4.4958	8.2223	11.2618	13.6700	15.4712	16.6753
	UB	4.5056	8.2714	11.4018	13.9851	16.0845	17.7222

Data 000	Method 000000000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion ●○
Thank	k you				

 A draft paper is available upon request from hanlin.shang@anu.edu.au

Data 000	Method 000000000	Forecast reconciliation	Results 00000000	Annuity pricing	Conclusion ●0
Thank	k you				

- A draft paper is available upon request from hanlin.shang@anu.edu.au
- Follow me at Research Gate https://www.researchgate.net/profile/Han_Lin_Shang

Data	Method	Forecast reconciliation	Results	Annuity pricing	Conclusion
					00

References

[1] Aitchison, J. (1982), 'The statistical analysis of compositional data', *JRSSB*, **44**(2), 139-177.

[2] Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman & Hall, London.

[3] Boucher, M.-P. B., Canudas-Romo, V. and Vaupel, J. W. (2014),

Convergent mortality levels? Coherent mortality forecasts among industrialized countries, <u>in</u> 'Population Association of America', Boston, MA.

[4] Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G. and Shang, H. L.

(2011), 'Optimal combination forecasts for hierarchical time series', *CSDA*, **55**, 2579-2589.

[5] Hyndman, R. J., Lee, A. and Wang, E. (2016), 'Fast computation of reconciled forecasts for hierarchical and grouped time series', *CSDA*, **97**, 16-32.
[6] Shang, H. L. and Haberman, S. (2017), 'Grouped multivariate and functional time series forecasting: An application to annuity pricing', *IME*, **75**, 166-179.
[7] Shang, H. L. and Hyndman, R. J. (2017), 'Grouped functional time series forecasting: An application to age-specific mortality rates', *JCGS*, **26**(2), 330-343.