Case Study – Modeling Longevity Risk for Solvency II

September 8, 2012 Longevity 8 Conference Waterloo, Ontario Presented by Stuart Silverman Principal & Consulting Actuary

Background

- SOLVENCY II New Minimum Capital Requirements
 - Standard Formula Stipulated Methodology
 - Internal Model ... may produce smaller amount
- Internal Models Current Focus on Market Risks
 - Capture Asset Volatility including Asset-Related Liability Risks
- Fifth Quantitative Impact Study (QIS5)
 - Issued by EIOPA (European Insurance and Occupational Pensions Authority)
 - Analysis in advance of implementation of Solvency II in 2011
 - Identified Most Material Risk Modules for Life Undertakings: After Market Risk, the next most material risk is:
 - Life Underwriting Risk (Lapse and Longevity)

Solvency II Capital

- Two Approaches:
 - Standard Formula Stipulated Methodology
 - Internal Model must satisfy certain standards:
 - Widely used and plays important role in decision-making
 - Sufficiently sophisticated to support standards of statistical quality
 - · Calibrated to external and internal trends and volatility
 - Back-tested to demonstrate sources of profit and loss
 - Validated regularly against results
 - Sufficient documentation including limits and deficiencies

Goals of this Presentation

- Demonstrate Advantages of Internal Model Using Volatile Mortality
 - Potential reduction in Required Capital
 - Better Understanding of Capital Requirements

This will be accomplished by a relatively simple case study...

The case study can be found at

http://www.milliman.com/expertise/life-financial/productstools/reveal/pdfs/modelling-longevity-risk.pdf

Case Study

- Calculate Required Capital for Liabilities
- Ignore Market Risk
- Model Sample Portfolio
- Calculate Minimum Required Assets Under Solvency II as Sum of:
 - 1. Best Estimate Liability
 - 2. Solvency Risk Requirement (SCR) → 1-in-200-year event

(99.5th Percentile)

- 3. Risk Margin
- Used proprietary modeling software, Milliman REVEAL...

REVEAL stands for:

Risk and Economic Volatility Evaluation of Annuitant Longevity

REVEAL is a system developed to analyze longevity risk.

Stochastic model for pension & annuity liabilities with volatility:

- · baseline mortality,
- mortality improvement,
- extreme mortality and longevity events, and
- plan participant behavior (e.g., retirement dates & benefit elections)

For more information about REVEAL, please visit:

http://www.milliman.com/expertise/life-financial/products-tools/reveal/

Historical and Projected General Population Annual Mortality Rate (Male 70 years old, 25 scenarios)

L Milliman

7 September 8, 2012

3.0%

- 1. Mortality improvement may be modeled as a combination of:
 - Long-term waves with lingering effects over multiple years, and
 - Random annual fluctuations.
- 2. May group ages to minimize offsetting fluctuations across model population
- 3. May designate random probability of the contingency of a significant long-term shift by specific cause of death related deaths (e.g., infection or cure)
- 4. May assign random probability of short-term mortality spike (e.g., epidemic or terrorism)

Long-Term Waves and Short-Term Fluctuations

- Long-Term: Develop random average annualized mortality improvement factor for each T-year period. (e.g., T is 10 years in case study.)
- 2. Short-Term: Develop random annual mortality improvement factor for each year that fluctuate around the random annualized long-term improvement factor for each *T-year period*.

Sample Projection of Long-Term Trend and Short-Term Volatility

Projected General Population Mortality Rates Based on Historical Annual and Long Term Mortality Improvements (Male 70 years old, 3 Scenarios)

Calibration to Historical Results

- Calibrate the model, in this case, using moment fitting approach:
- The stochastic mortality model is calibrated such as:
 - 1. The expected value of the projected improvements matches with the average historical improvements (or current expectation);
 - 2. The volatility of the long term improvement component as well as the short term improvement component match with the historical volatility (or current expectation);
 - 3. The long term and short term correlation match with the historical correlation (or current expectation).

Historical Long-Term Mortality Improvement Correlation, UK population

Projecting Improvement by Specified Cause of Death

The Hypothetical Portfolio

"The Hypothetical Portfolio was designed to:"

...be consistent with a typical block of in payment annuities held by an insurer.

...be sufficiently large to minimize random 'basis' volatility,

...highlight the effect of other volatility factors."

Assumptions

- Valuation Date 12/31/2010
- Hypothetical Portfolio of 50,000 in-payment annuities
- Husband Age = Wife Age + 3
- 50% Benefit to Surviving Spouse
- Annualized Benefits Increase 5% Each Year
- Quarterly Payments
- Discount Interest at the 12/31/2009 Spot Rates

Assumptions

- Best Estimate Mortality (before improvement):
 - 90% of the PCMA00 and PCFA00
 PCMA00 & PCFA00 tables in the CMI Library are described:
 "Life Office Pensioners, Combined, amounts ultimate"
- Best Estimate Mortality Improvement:
 - Male: CMI 2010 projection model,
 with a long term rate of 1.2% p.a., applied from 2000 onwards.
 - Female: CMI 2010 projection model,
 - with a long term rate of 0.9% p.a., applied from 2000 onwards.

Distribution of Hypothetical Portfolio 1

by Annualized Benefit Amount

Measuring Life		Annualized Benefit Amount		
Primary Annuitant	55%	< 1,000	13%	
Spouse (Widow/Widower)	45%	1,000 - 4,999	22%	
		5,000 - 9,999	21%	
Gender of Measuring Life		10,000 – 19,999	7%	
Male	55%	20,000 - 29,999	1%	
Female	45%	30,000 +	2%	

Annual Benefits	
Indexed to CPI	84%
Fixed	16%

Distribution of Hypothetical Portfolio 2

by Annualized Benefit Amount

		Benefits Currently Paid to Joint-		
Age of Measuring Life		Life or Surviving Spouse		
Measuring Life Age Group		Measuring Life Age Group		
Ages 60-64	13%	Ages 60-64	92%	
Ages 65-69	22%	Ages 65-69	89%	
Ages 70-74	21%	Ages 70-74	84%	
Ages 75-79	19%	Ages 75-79	79%	
Ages 80-84	14%	Ages 80-84	74%	
Ages 85-89	7%	Ages 85-89	61%	
Ages 90-94	2%	Ages 90-94	47%	
Ages 95-99	1%	Ages 95-99	29%	

Plan of Action – Values to Calculate

Best Estimate Liability

•Present Value of Expected Annuity Cash Flows, (Estimated using average of stochastic projections on expected mortality)

•Discounted using Risk-Free Spot Rates with 100% allowance for illiquidity premium.

Best Estimate Liability

- ia_t = Annual Spot Rate from Risk-Free Curve with 100% allowance for illiquidity premium.
- $BECF_t$ = Average annual annuity payments projected to be paid in year (e.g., best estimate cash flow)
- BEL_0 = Best Estimate Liability at time zero

$$= \sum_{t=0,1,2,...} \frac{BECF_t}{(1+ia_t)^t}$$

1,725.5 million

Standard Formula

Use Immediate & permanent 20% improvement in mortality rates. (*i.e.*, Best Estimate Mortality multiplied by 80% in all years) SCR = excess of

(a) Standard Formula Liability (Present value of cash flows reflecting the 20% margin),

over

(b) the Best Estimate Liability, (discounted to Valuation Date using the spot curves with 100% allowance for the illiquidity premium.)

Standard Formula:

Solvency Capital Requirement

 $SFCF_t$

Avg annual annuity payments projected (Using the Standard Formula Mortality Assumption) to be paid in year.

Standard Formula Liability

$$= \sum_{t=0,1,2,...} \frac{SFCF_t}{(1+ia_t)^t}$$

Standard Formula:

Solvency Capital Requirement

- = Solvency Capital Requirement
- = Standard Formula Liability less BEL_0
- = 1,884.1 million 1,725.5 million
- = 158.6 million

$BEL_0 = 1,725.5 \text{ million}$ $SCR_0^{StdForm} = 158.6 \text{ million}$

Standard Formula:

Range of Formulations under QIS5, including:

Risk Margin

Amortize SCR proportional to Best Estimate Liability annuity cash flows:

SCR_tStdForm

 $i Z_t$

= Amortized Solvency Capital Requirement

$$= SCR_{t-1}^{StdForm} * \frac{BECF_t}{BECF_{t-1}}$$

Annual Spot Rate from Risk-Free Curve with 0% allowance for illiquidity premium

$BEL_0 = 1,725.5 \text{ million}$ $SCR_0^{StdForm} = 158.6 \text{ million}$

Standard Formula:

Risk Margin

6% (*i.e., proxy for cost of capital*) of PV of future amortized SCR_t rates, discounted at risk-free rates

$$6\% * \sum_{t=0,1,2,...} \frac{SCR_t^{StdForm}}{(1+iz_t)^t}$$

181.0 million

Standard Formu	la:	Excess Over Best Estimate
Risk Margin ₀ StdForm	=	181.0 million
SCR ₀ StdForm	=	158.6 million
BEL_0	=	1,725.5 million

 $ExBEL_0^{StdForm}$

Standard Formula SCR

+ Standard Formula Risk Margin

339.6 million

=

Standard Formula:

Summary

SCR_0 StdForm	=	158.6 million	
Risk Margin ₀ StdForm	=	181.0 million	
$ExBEL_0^{StdForm}$	=	339.6 million	
BEL_0	=	1,725.5 million	

Standard Formula Summary

Modeling Stochastic Mortality

The stochastic projections reflect three sources of volatility:

- 1. Randomized Dates of Death Monte Carlo Simulation applied to Scenario-Specific Mortality
- 2. Future Mortality Improvement Trend Volatility Analysis of historical population mortality (e.g., UK 1979-2009) to create stochastic mortality improvement scenarios reproducing historic mean, standard deviation, and correlation over annual and adjacent longer-term (e.g., 10-year) periods
- 3. Potential Extreme Longevity Occurrences Risk of immediate long-term change for specific cause of death (e.g., a new highly effective treatment for cancer)

Principle-Based Economic Calculation

The Economic Capital Approach was performed two ways:

- Volatility Assumptions A
 - volatility in the mortality curve based solely on historical mortality improvement trends, and
- Volatility Assumptions B

volatility in the mortality curve based on **both** historical mortality improvement trends and the possibility of a significant reduction in cancer related deaths.

Principle-Based Economic Calculation

10,000 Scenarios for 50,000-Life Portfolio

The 99.5th Percentile of PV Future Annuity Cash Flows:

		$ExBEL_0$
Standard Formula	=	339.6 million
Econ Model Vol A	=	183.5 million
Econ Model Vol B	=	190.8 million

Internal Model Approach

For Each Scenario:

- 1. Generate stochastic mortality improvement for first duration, and
- 2. Set the mortality improvement in years 2+ to:
 - reflecting simulated mortality improvement experience over the first year,
 - given a credibility factor of 10%.

Internal Model Approach

 $\Delta q_{x,t}^{new}$

- $\Delta q_{x,t}$ = Expected annual rate of mortality improvement at attained age, duration t
- $Q_x^{\text{scale}}(0) =$ Stochastic adjustment to mortality improvement at attained age x, duration 0
 - Expected annual rate of mortality
 improvement at attained age x, duration t, reflecting duration 0 stochastic improvement

$$1 - (1 - \Delta q_{x,t}) * \mathbf{Q}_{\mathbf{x}}^{\text{scale}} (0)$$

Internal Model Approach

Credibility assigned to stochastic mortality improvement simulated in the first duration

$$\Delta q_{x,t}^{Sol2}$$
 =

С

Assumed annual rate of mort improvement at attained age x, duration t (t = 1, 2, ...) adjusted to reflect credibility of duration 0 stochastic improvement

$$= (1-c) * \Delta q_{x,t} + c * \Delta q_{x,t}^{new}$$

Note: If credibility c equals zero, then the Assumed Improvement equals Best Estimate Expected Improvement. (The Case Study assumed c=10%)

Internal Model Approach

Our understanding of *regulator-approved internal model* under Solvency II :

Economic capital reflects once-in-200-years event

Internal Model SCR =
$$VaR_{99.5\%}\left(\frac{BEL_1}{(1+i(1))} + \sum_{0 < t \le 1} \frac{CF_t}{(1+i(t))^t}\right) - BEL_0$$
, where

- $VaR_{99.5\%}(x) = 99.5\%$ percentile of a random variable x
- BEL₁ = Best Estimate Liability at Time t=1 Using altered mortality expectation reflecting credibility of "simulated" experience from t=0 to t=1

Internal Model Approach

		Volatility Assumptions A	Volatility Assumptions B
$SCR_0^{IntModel}$	=	140.5 million	140.9 million
Risk Margin ₀ ^{IntModel}	=	160.3 million	160.8 million

 $ExBEL_0^{IntModel}$ = 300.8 million 301.8 million

Comparison:

Summary

	Standard Formula	Internal Model Volatility A	Internal Model Volatility B
SCR_0	158.6 million	140.5 million	140.9 million
Risk Margin ₀	181.0 million	160.3 million	160.8 million
$ExBEL_0$	339.6 million	300.8 million	301.8 million
BEL_0	1,725.5 million	1,725.5 million	1,725.5 million

Solvency II Capital:

Internal Model Savings

	Standard Formula	Reduction Under Internal Model Volatility A	Reduction Under Internal Model Volatility B
SCR ₀	158.6 million	18.1 million	17.7 million
Risk Margin ₀	181.0 million	20.7 million	20.2 million
ExBEL :	339.6 million	38.8 million	37.0 million
BEL	1,725.5 million	0 million	0 million

Components of Total Assets Requirement (TAR)

Summary – Excess Over Best Estimate Liability

Take-Aways

- 1. Internal Model may produce capital savings for Longevity Risk (relative to Standard Formula)
- 2. Internal Model may still produce higher capital costs than a principle-based economic calculation
- 3. Possible advantage of financial transactions to move longevity risk to more favorable regulatory environment.

Contact Information

Stuart Silverman, FSA, MAAA, CERA Principal and Consulting Actuary

Phone: 646-473-3108 stuart.silverman@milliman.com

