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Introduction

I Longevity risk affects both the public sector and private
insurance companies

I Longevity-linked instruments, whose cash-flows are linked to
mortality developments in a specified population, have been
proposed to manage this risk

I Demand for longevity-linked instruments exists, but the supply
side is less clear

I Supply of longevity-linked instruments might increase if their
cash-flows could be hedged by trading in more liquid assets
(cf. options markets)
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Introduction

I Since the cash-flows of longevity-linked instruments seem to
have much less to do with existing financial markets than
simple stock options, longevity-linked cash flows cannot be
perfectly hedged

I In other words, the markets are incomplete and the seller of
such an instrument always retains some risk

I However, any connection between mortality and financial
markets may help sellers of longevity bonds reduce the risk by
approximate hedging of the bonds payouts
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Overview

1. Modelling the law of a multivariate stochastic process
consisting of mortality and asset returns, with particular
emphasis on

I Long-term development of mortality
I Connections between mortality and asset returns

2. Utilizing this connection in the hedging of a mortality-linked
cash flow using numerical optimization
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Mortality model

I Let Ex ,t be the size of population aged [x , x + 1) (cohort) at
the beginning of year t

I Denote by Dx ,t the number of deaths of people in this cohort

I Objective: model the values of Ex ,t over time t = 0, 1, 2, . . .
for a given set X ⊂ N of ages

I Assume the conditional distribution of Ex+1,t+1 = Ex ,t − Dx ,t

given Ex ,t is binomial:

Ex+1,t+1 ∼ Bin(Ex ,t , px ,t)

where px ,t is the probability that an individual aged x and alive
at the beginning of year t is still alive at the end of that year
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Mortality model

I We reduce the dimensionality of (px ,t)x∈X by modelling the
logistic probabilities by

logit px ,t := ln
( px ,t

1− px ,t

)
=

n∑
i=1

v i
tφi (x),

where φi (x) are user-defined basis functions across cohorts,
and v i

t stochastic risk factors that vary over time
I In other words, px ,t = pv(t)(x), where

v(t) = (v1(t), . . . , vn(t)), and pv : X → (0, 1) is the
parametric function defined for each v ∈ Rn by

pv (x) =
exp (

∑n
i=1 viφi (x))

1 + exp(
∑n

i=1 viφi (x))

I Modelling the logit transforms instead of px ,t directly
guarantees that px ,t ∈ (0, 1).

I Historical values of vt are constructed by maximum likelihood
estimation, log-likelihood function is strictly concave
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Mortality model

I For adult (18-100 years) mortality, we consider the model

logit px ,t = v1
t φ1(x) + v2

t φ2(x) + v3
t φ3(x),

I Basis functions are piecewise linear:

φ1(x) =

{
1 − x−18

32
for x ≤ 50

0 for x > 50,
φ2(x) =

{
1
32

(x − 18) for x ≤ 50

2 − x
50

for x > 50,

φ3(x) =

{
0 for x ≤ 50
x
50

− 1 for x > 50.
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I Interpretation: values of v i
t points on the fitted logit px ,t curve
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Mortality model

I We consider female mortality dynamics of six large countries
with relatively high life expectancies: Australia, Canada,
France, Japan, UK, US

I Data consists of annual values of cohort sizes Ex ,t and
numbers of deaths Dx ,t for each country, covering years
1950–2007 (Source: Human mortality database)
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Statistical analysis: v 1
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Figure: Historical values for risk factor v1, females. Note the different
scales.
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Statistical analysis: v 1

I How long will mortality keep improving?

I Mortality risk factors often modelled as random walk with a
negative drift, i.e. mortality will decline indefinitely

I Some experts predict that the decline in mortality will
continue for the foreseeable future, while others suggest that
human life expectancy might even decrease.

I In some sample countries, the historical values of v1
t seem to

be stabilizing, a phenomenon already suggested by Wicksell

I In order to analyse this phenomenon, we fit the following
regression into historical data:

∆v1
t = b + av1

t−1 + εt = −a(−b

a
− v1

t−1) + εt

I Statistical analysis provided support for this equation
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Statistical analysis: v 2
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Figure: Historical values for risk factor v2, females. Note the different
scales.
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Statistical analysis: v 2

I Rapid reduction in coronary disease amongst the middle-aged
shows in risk factor v2 reflecting the survival probability of
50-year-olds

I Can improvements in treatment and possible reductions in
smoking outweigh the detrimental effects of obesity and other
lifestyle-related factors?

I Historical values are not levelling out, but stabilizing
behaviour similar to v1 may be a future possibility for v2

I To quantify the rate of improvement for v2, we fit the
regression

∆v2
t = b + εt ,
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Statistical analysis: v 3 and GDP
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Figure: Historical values for risk factor v3, females. Note the different
scales.

Helena Aro, Teemu Pennanen Hedging of longevity-linked instruments



Statistical analysis: v 3 and GDP
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Figure: Historical values for logarithm of per capita GDP. Note the
different scales.
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Statistical analysis: v 3 and GDP

I Risk factor v3 describes old-age mortality, with which the cash
flows of mortality-linked instruments are often connected

I Long-term dependence between GDP and mortality has been
observed in earlier works

I Similarities in the general shape of their plots support the
observation that v3 and log-per capita GDP may move
together in the long run

I We analyse the dependence of v3 on GDP with the regression

∆v3
t = b + a1v3

t−1 + a2gt−1 + εt ,

where gt is the log-per capita GDP

I Statistical analysis provided support for this equation
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Statistical analysis: GDP and financial markets
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Figure: US term spread, differences of US GDP (logarithm) and credit
spread.
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Statistical analysis: GDP and financial markets

I GDP is linked with financial markets
I Yield curve/term spread
I Credit spread
I Stock prices

I Combining earlier results on the relation of GDP to term
spread sTt and credit spread sCt , we analyse these connections
with the regression

∆gt = b + a1sTt−1 + a2sCt−1 + εt ,

I In the above, sTt is the difference between US treasury
log-rates of 5 and 1 years, and sCt is the log-difference
between Moody’s corporate bond log-yields with ratings BAA
and AAA (Source: FRED: Federal reserve economic data)

I Statistical analysis provided support for this equation
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Modelling the risk factors

I We propose to model mortality and financial markets with the
following system of equations:

∆v1
t = a11v1

t−1 + b1 + ε1t

∆v2
t = b2 + ε2t

∆v3
t = a33v3

t−1 + a34gt−1 + b3 + ε3t

∆gt = a45sTt−1 + a46sCt−1 + b4 + ε4t

∆sTt = a55sTt−1 + b5 + ε5t

∆sCt = a66sCt−1 + b6 + ε6t

I This is a linear stochastic difference equation

∆xt = Axt−1 + b + εt

for x = [v1
t , v

2
t , v

3
t , gt , s

T
t , s

C
t ]

I The random vector εt follows a Gaussian distribution
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Modelling the risk factors
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Figure: Medians and 95% confidence intervals for MC simulations
(N=10000), US females.
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Modelling the risk factors
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Hedging longevity-linked instruments

I We observed connections between old-age longevity and
interest rate spreads (via GDP)

I When term spread is high, old-age longevity improves faster

I As a result, investment returns on long-maturity bond tend to
be relatively high when old-age longevity improves fast

I When credit spread is high, old-age longevity improves more
slowly

I Corporate bond returns tend to be high when old-age
mortality improves slowly
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Hedging longevity-linked instruments

I Traditional actuarial view on valuation of cash flows:
discounting expected cash flows

I Alternative approach: determining the minimal capital
required to cover the claims at an acceptable level of risk

The value of liabilities depends essentially on

I Probability distribution: description of future development
of claims and investment returns, both involving significant
uncertainties

I Risk preferences: the level of risk at which assets should
cover liabilities

I Hedging strategy: investment strategy for the given capital
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Hedging longevity-linked instruments

I Denote Sx ,t ∈ [0, 1] the proportion of survivors in cohort
x ∈ X ⊂ N at times t = 0, 1, . . . ,T (Survivor index)

I (Annuity) longevity bond: coupon payments proportional to
Sx+t,t at times t = 1, 2 . . . ,T in exchange for an initial
payment V0

I Survivor swap: exchange of a cash flow proportional to Sx+t,t

for a fixed cash flow proportional to S̄t at times
t = 1, 2, . . . ,T

I Insurance claims/pension fund management: cash flow ct that
depends on Sx+t,t as well as consumer price and pension
indices

I Other variants (e.g. zero-coupon bond with terminal payment
Sx ,T )
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Hedging longevity-linked instruments

We use the following market model:

I A finite set J of liquid assets

I Return of asset j over period [t − 1, t] is denoted by Rt,j ,

I The amount of wealth invested in asset j at time is t ht,j
I St = (Sx ,t)x∈X , Rt = (Rt,j)j∈J and ht = (ht,j)j∈J are the

vectors of survivor indices, returns and investments,
respectively

I (St)
T
t=0, (Rt)

T
t=0, (ht)

T
t=0 are adapted stochastic processes on

a filtered probability space (Ω,F , (F)Tt=1,P)

I P reflects the investor’s views on the future development of
the stochastic factors
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Hedging longevity-linked instruments

Least initial capital required for covering a longevity bond is

minimize
∑
j∈J

h0,j over h ∈ N

subject to
∑
j∈J

ht,j ≤
∑
j∈J

Rt,jht−1,j − Sx+t,t t = 1, . . . ,T

ht,j ∈ Dt , t = 1, . . . ,T

ρ(
∑
j∈J

hT ,j) ≤ 0.

(1)

I N denotes the RJ -valued investment strategies, adapted to
the filtration (F)Tt=1

I Dt(ω) ∈ RJ is the set of feasible investment strategies at time
t and state ω

I ρ : L0(Ω,FT ,P)→ R is a convex risk measure; measuring
risk/loss/disutility
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Hedging longevity-linked instruments

The asset-liability management problem of an agent with initial
capital w̄ and liabilities c̄ = c̄t is

minimize ρ(
∑
j∈J

hT ,j) over h ∈ N

subject to
∑
j∈J

h0,j ≤ w̄

∑
j∈J

ht,j ≤
∑
j∈J

Rt,jht−1,j − c̄t t = 1, . . . ,T

ht,j ∈ Dt , t = 1, . . . ,T

(2)

We denote the optimum value of this problem by ϕ(w̄ , c̄). The
minimum price for which the agent is willing to sell a longevity
bond is π(w̄ , c̄ ; S) := inf{w |ϕ(w̄ + w , c̄ + S) ≤ ϕ(w̄ , c̄)}
(indifference pricing)
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Hedging longevity-linked instruments

I We choose ρ to be the entropic risk measure whose
acceptance set is
A = {X ∈ L0 | ρ(X ) ≤ 0)} = {X ∈ L0 | Eu(X ) ≥ u(0)},
where u is the exponential utility function

I We apply a numerical optimization procedure for constructing
hedging strategies from a given set of parametric dynamic
investment strategies (basis strategies)

I Computations are based on approximating the probability
distribution of the risk factors by a sample of scenarios

I Numerical methods of convex optimization are applied to find
an optimal diversification amongst basis strategies

I Effectiveness of the hedge depends on how well returns on the
basis strategies conform to the liabilities
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Hedging longevity-linked instruments

Well-known basis strategies

I Buy and hold (B&H): initial asset allocation is held over time

I Fixed proportions (FP): asset allocation is rebalanced in each
period so that the weight of an asset in the total portfolio
stays fixed

I Target date fund (TDF): proportion invested in risky assets
decreases in time
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Hedging longevity-linked instruments

Liability-dependent basis strategies

I Spread strategies: proportion invested in long-maturity
bonds/corporate bonds at time t depends on term spread sTt /
credit spread sCt

I Survival index strategies: proportions invested in
long-maturity/corporate bonds depend on survival index St

I Survival index-wealth strategies: proportions of long-maturity
bonds depends on on St/wt

I GDP strategies: proportion of long-maturity bonds depends
on on log-GDP gt
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Hedging longevity-linked instruments

I What is the least initial capital required for a longevity bond?
How do the observed connections between mortality and asset
returns affect the capital requirement and hedging strategy?

I The set J of assets consists of

1. US Treasury bills (1-year)
2. US Treasury bonds (5-year)
3. US corporate bonds (5-year)
4. US equity (S&P total return index)

I Liabilities depend on the survival index Sx ,t of US females
aged 65 at the beginning of year 2008

I Parameter of utility function ρ = 1.1

I T=30, N=500000
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Table: Weights in optimal hedging strategy, well-known strategies.

Capital requirement w0 = 14.2
Weight Type
0.108 FP
0.048 FP
0.006 FP
0.839 B&H Treasury bonds

Table: Weights in optimal hedging strategy, liability-dependent and
well-known strategies.

Capital requirement w0 = 14.0
Weight (%) Type

0.246 Term spread (long vs. short treasury bond)
0.016 Term spread (long treasury bond vs. equity)
0.575 Survival index (long treasury bond vs. equity)
0.060 Survival index/wealth ratio (long treasury bond vs. equity))
0.036 Term spread (long vs. short treasury bond))
0.005 Credit spread (corporate bond vs. equity)
0.062 Credit spread (corporate bond vs. equity)
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(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.7 (d) ρ = 1.1

Figure: Proportion of wealth invested in long-maturity bonds as a
function of the survival index for different risk levels, t = 15.
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Conclusions

I We present a simple stochastic model of mortality and
financial markets, describing their long-term development and
mutual connections

I Using this model, we apply numerical methods to construct
good hedging strategies for longevity-linked cash flows, given
user’s risk preferences

I Adjusting investment strategies to liabilities may allow for
reduced capital requirements and hedging costs for
mortality-linked instruments.
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