<u>Helena Aro*</u> Teemu Pennanen †

*Department of Mathematics and Systems Analysis, Aalto University School of Science and Technology, Finland

> †Department of Mathematics, King's College London, UK

8th Longevity Risk and Capital Markets Solutions Conference Waterloo, Canada 7th September, 2012

- Longevity risk affects both the public sector and private insurance companies
- Longevity-linked instruments, whose cash-flows are linked to mortality developments in a specified population, have been proposed to manage this risk
- Demand for longevity-linked instruments exists, but the supply side is less clear
- Supply of longevity-linked instruments might increase if their cash-flows could be hedged by trading in more liquid assets (cf. options markets)

- Since the cash-flows of longevity-linked instruments seem to have much less to do with existing financial markets than simple stock options, longevity-linked cash flows cannot be perfectly hedged
- In other words, the markets are incomplete and the seller of such an instrument always retains some risk
- However, any connection between mortality and financial markets may help sellers of longevity bonds reduce the risk by approximate hedging of the bonds payouts

- 1. Modelling the law of a multivariate stochastic process consisting of mortality and asset returns, with particular emphasis on
 - Long-term development of mortality
 - Connections between mortality and asset returns
- 2. Utilizing this connection in the hedging of a mortality-linked cash flow using numerical optimization

- ▶ Let E_{x,t} be the size of population aged [x, x + 1) (cohort) at the beginning of year t
- Denote by $D_{x,t}$ the number of deaths of people in this cohort
- ► Objective: model the values of *E_{x,t}* over time *t* = 0, 1, 2, ... for a given set *X* ⊂ N of ages
- ► Assume the conditional distribution of E_{x+1,t+1} = E_{x,t} D_{x,t} given E_{x,t} is binomial:

$$E_{x+1,t+1} \sim Bin(E_{x,t},p_{x,t})$$

where $p_{x,t}$ is the probability that an individual aged x and alive at the beginning of year t is still alive at the end of that year

Mortality model

► We reduce the dimensionality of (p_{x,t})_{x∈X} by modelling the logistic probabilities by

$$\operatorname{logit} p_{x,t} := \ln \left(\frac{p_{x,t}}{1 - p_{x,t}} \right) = \sum_{i=1}^{n} v_t^i \phi_i(x),$$

where $\phi_i(x)$ are user-defined basis functions across cohorts, and v_t^i stochastic risk factors that vary over time

▶ In other words, $p_{x,t} = p_{v(t)}(x)$, where $v(t) = (v^1(t), \dots, v^n(t))$, and $p_v : X \to (0,1)$ is the parametric function defined for each $v \in \mathbb{R}^n$ by

$$p_{\nu}(x) = \frac{\exp\left(\sum_{i=1}^{n} v_i \phi_i(x)\right)}{1 + \exp\left(\sum_{i=1}^{n} v_i \phi_i(x)\right)}$$

- ► Modelling the logit transforms instead of p_{x,t} directly guarantees that p_{x,t} ∈ (0, 1).
- Historical values of v_t are constructed by maximum likelihood estimation, log-likelihood function is strictly concave

Mortality model

► For adult (18-100 years) mortality, we consider the model

logit
$$p_{x,t} = v_t^1 \phi_1(x) + v_t^2 \phi_2(x) + v_t^3 \phi_3(x)$$

Basis functions are piecewise linear:

$$\phi_1(x) = \begin{cases} 1 - \frac{x - 18}{32} & \text{for } x \le 50\\ 0 & \text{for } x > 50, \end{cases} \\ \phi_2(x) = \begin{cases} \frac{1}{32}(x - 18) & \text{for } x \le 50\\ 2 - \frac{x}{50} & \text{for } x > 50, \end{cases} \\ \phi_3(x) = \begin{cases} 0 & \text{for } x \le 50\\ \frac{x}{50} - 1 & \text{for } x > 50. \end{cases}$$

▶ Interpretation: values of v_t^i points on the fitted logit $p_{x,t}$ curve

Helena Aro, Teemu Pennanen Hedging of longevity-linked instruments

- We consider female mortality dynamics of six large countries with relatively high life expectancies: Australia, Canada, France, Japan, UK, US
- ▶ Data consists of annual values of cohort sizes *E_{x,t}* and numbers of deaths *D_{x,t}* for each country, covering years 1950–2007 (Source: Human mortality database)

Statistical analysis: v^1

Figure: Historical values for risk factor v^1 , females. Note the different scales.

Statistical analysis: v^1

- How long will mortality keep improving?
- Mortality risk factors often modelled as random walk with a negative drift, i.e. mortality will decline indefinitely
- Some experts predict that the decline in mortality will continue for the foreseeable future, while others suggest that human life expectancy might even decrease.
- In some sample countries, the historical values of v_t¹ seem to be stabilizing, a phenomenon already suggested by Wicksell
- In order to analyse this phenomenon, we fit the following regression into historical data:

$$\Delta v_t^1 = b + av_{t-1}^1 + \varepsilon_t = -a(-\frac{b}{a} - v_{t-1}^1) + \varepsilon_t$$

Statistical analysis provided support for this equation

Statistical analysis: v^2

Figure: Historical values for risk factor v^2 , females. Note the different scales.

- Rapid reduction in coronary disease amongst the middle-aged shows in risk factor v² reflecting the survival probability of 50-year-olds
- Can improvements in treatment and possible reductions in smoking outweigh the detrimental effects of obesity and other lifestyle-related factors?
- Historical values are not levelling out, but stabilizing behaviour similar to v¹ may be a future possibility for v²
- ► To quantify the rate of improvement for *v*², we fit the regression

$$\Delta v_t^2 = b + \varepsilon_t,$$

Statistical analysis: v^3 and GDP

Figure: Historical values for risk factor v^3 , females. Note the different scales.

Statistical analysis: v^3 and GDP

Figure: Historical values for logarithm of per capita GDP. Note the different scales.

Statistical analysis: v^3 and GDP

- Risk factor v³ describes old-age mortality, with which the cash flows of mortality-linked instruments are often connected
- Long-term dependence between GDP and mortality has been observed in earlier works
- Similarities in the general shape of their plots support the observation that v³ and log-per capita GDP may move together in the long run
- We analyse the dependence of v^3 on GDP with the regression

$$\Delta v_t^3 = b + a_1 v_{t-1}^3 + a_2 g_{t-1} + \varepsilon_t,$$

where g_t is the log-per capita GDP

Statistical analysis provided support for this equation

Statistical analysis: GDP and financial markets

Figure: US term spread, differences of US GDP (logarithm) and credit spread.

Statistical analysis: GDP and financial markets

- GDP is linked with financial markets
 - Yield curve/term spread
 - Credit spread
 - Stock prices
- Combining earlier results on the relation of GDP to term spread s_t^T and credit spread s_t^C, we analyse these connections with the regression

$$\Delta g_t = b + a_1 s_{t-1}^T + a_2 s_{t-1}^C + \varepsilon_t,$$

- ► In the above, s_t^T is the difference between US treasury log-rates of 5 and 1 years, and s_t^C is the log-difference between Moody's corporate bond log-yields with ratings BAA and AAA (Source: FRED: Federal reserve economic data)
- Statistical analysis provided support for this equation

Modelling the risk factors

We propose to model mortality and financial markets with the following system of equations:

$$\begin{aligned} \Delta v_t^1 &= a^{11} v_{t-1}^1 + b^1 + \varepsilon_t^1 \\ \Delta v_t^2 &= b^2 + \varepsilon_t^2 \\ \Delta v_t^3 &= a^{33} v_{t-1}^3 + a^{34} g_{t-1} + b^3 + \varepsilon_t^3 \\ \Delta g_t &= a^{45} s_{t-1}^T + a^{46} s_{t-1}^C + b^4 + \varepsilon_t^4 \\ \Delta s_t^T &= a^{55} s_{t-1}^T + b_5 + \varepsilon_t^5 \\ \Delta s_t^C &= a^{66} s_{t-1}^C + b_6 + \varepsilon_t^6 \end{aligned}$$

This is a linear stochastic difference equation

$$\Delta x_t = A x_{t-1} + b + \varepsilon_t$$

for $x = [v_t^1, v_t^2, v_t^3, g_t, s_t^T, s_t^C]$ • The random vector ε_t follows a Gaussian distribution

Modelling the risk factors

Figure: Medians and 95% confidence intervals for MC simulations (N=10000), US females.

Modelling the risk factors

of v_{2056}^3 and g_{2056}

- We observed connections between old-age longevity and interest rate spreads (via GDP)
- When term spread is high, old-age longevity improves faster
- As a result, investment returns on long-maturity bond tend to be relatively high when old-age longevity improves fast
- When credit spread is high, old-age longevity improves more slowly
- Corporate bond returns tend to be high when old-age mortality improves slowly

- Traditional actuarial view on valuation of cash flows: discounting expected cash flows
- Alternative approach: determining the minimal capital required to cover the claims at an acceptable level of risk

The value of liabilities depends essentially on

- Probability distribution: description of future development of claims and investment returns, both involving significant uncertainties
- Risk preferences: the level of risk at which assets should cover liabilities
- ► Hedging strategy: investment strategy for the given capital

- ▶ Denote $S_{x,t} \in [0,1]$ the proportion of survivors in cohort $x \in X \subset \mathbb{N}$ at times t = 0, 1, ..., T (Survivor index)
- ► (Annuity) longevity bond: coupon payments proportional to S_{x+t,t} at times t = 1, 2..., T in exchange for an initial payment V₀
- ► Survivor swap: exchange of a cash flow proportional to S_{x+t,t} for a fixed cash flow proportional to S
 _t at times t = 1, 2, ..., T
- ► Insurance claims/pension fund management: cash flow c_t that depends on S_{x+t,t} as well as consumer price and pension indices
- Other variants (e.g. zero-coupon bond with terminal payment $S_{x,T}$)

We use the following market model:

- A finite set J of liquid assets
- Return of asset j over period [t 1, t] is denoted by $R_{t,j}$,
- ▶ The amount of wealth invested in asset *j* at time is *t h*_{*t*,*j*}
- S_t = (S_{x,t})_{x∈X}, R_t = (R_{t,j})_{j∈J} and h_t = (h_{t,j})_{j∈J} are the vectors of survivor indices, returns and investments, respectively
- ► $(S_t)_{t=0}^T$, $(R_t)_{t=0}^T$, $(h_t)_{t=0}^T$ are adapted stochastic processes on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F})_{t=1}^T, \mathbb{P})$
- P reflects the investor's views on the future development of the stochastic factors

Least initial capital required for covering a longevity bond is

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} h_{0,j} \text{ over } h \in \mathcal{N} \\ \text{subject to} & \sum_{j \in J} h_{t,j} \leq \sum_{j \in J} R_{t,j} h_{t-1,j} - S_{x+t,t} \quad t = 1, \dots, T \\ & h_{t,j} \in \mathcal{D}_t, t = 1, \dots, T \\ & h_{t,j} \in \mathcal{D}_t, t = 1, \dots, T \\ & \rho(\sum_{j \in J} h_{T,j}) \leq 0. \end{array}$$

$$(1)$$

- ► N denotes the ℝ^J -valued investment strategies, adapted to the filtration (F)^T_{t=1}
- D_t(ω) ∈ ℝ^J is the set of feasible investment strategies at time t and state ω
- ρ: L⁰(Ω, F_T, ℙ) → ℝ is a convex risk measure; measuring risk/loss/disutility

The asset-liability management problem of an agent with initial capital \bar{w} and liabilities $\bar{c} = \bar{c_t}$ is

$$\begin{array}{ll} \text{minimize} & \rho(\sum_{j\in J} h_{\mathcal{T},j}) \text{ over } h \in \mathcal{N} \\ \text{subject to} & \sum_{j\in J} h_{0,j} \leq \bar{w} \\ & \sum_{j\in J} h_{t,j} \leq \sum_{j\in J} R_{t,j} h_{t-1,j} - \bar{c}_t \quad t = 1, \dots, T \\ & h_{t,j} \in \mathcal{D}_t, t = 1, \dots, T \end{array}$$

$$(2)$$

We denote the optimum value of this problem by $\varphi(\bar{w}, \bar{c})$. The minimum price for which the agent is willing to sell a longevity bond is $\pi(\bar{w}, \bar{c}; S) := \inf\{w | \varphi(\bar{w} + w, \bar{c} + S) \le \varphi(\bar{w}, \bar{c})\}$ (indifference pricing)

- We choose ρ to be the entropic risk measure whose acceptance set is $\mathcal{A} = \{X \in L^0 \mid \rho(X) \le 0\} = \{X \in L^0 \mid Eu(X) \ge u(0)\},\$ where u is the exponential utility function
- We apply a numerical optimization procedure for constructing hedging strategies from a given set of parametric dynamic investment strategies (basis strategies)
- Computations are based on approximating the probability distribution of the risk factors by a sample of scenarios
- Numerical methods of convex optimization are applied to find an optimal diversification amongst basis strategies
- Effectiveness of the hedge depends on how well returns on the basis strategies conform to the liabilities

Well-known basis strategies

- ▶ Buy and hold (B&H): initial asset allocation is held over time
- Fixed proportions (FP): asset allocation is rebalanced in each period so that the weight of an asset in the total portfolio stays fixed
- Target date fund (TDF): proportion invested in risky assets decreases in time

Liability-dependent basis strategies

- Spread strategies: proportion invested in long-maturity bonds/corporate bonds at time t depends on term spread s_t^T/ credit spread s_t^C
- Survival index strategies: proportions invested in long-maturity/corporate bonds depend on survival index S_t
- Survival index-wealth strategies: proportions of long-maturity bonds depends on on S_t/w_t
- GDP strategies: proportion of long-maturity bonds depends on on log-GDP g_t

- What is the least initial capital required for a longevity bond? How do the observed connections between mortality and asset returns affect the capital requirement and hedging strategy?
- The set J of assets consists of
 - 1. US Treasury bills (1-year)
 - 2. US Treasury bonds (5-year)
 - 3. US corporate bonds (5-year)
 - 4. US equity (S&P total return index)
- ► Liabilities depend on the survival index S_{x,t} of US females aged 65 at the beginning of year 2008
- Parameter of utility function $\rho = 1.1$
- ► T=30, N=500000

Table: Weights in optimal hedging strategy, well-known strategies.

Capital ı	requirement $w_0 = 14.2$
Weight	Туре
0.108	FP
0.048	FP
0.006	FP
0.839	B&H Treasury bonds

Table: Weights in optimal hedging strategy, liability-dependent and well-known strategies.

Capital requirement $w_0 = 14.0$			
Weight (%)	Туре		
0.246	Term spread (long vs. short treasury bond)		
0.016	Term spread (long treasury bond vs. equity)		
0.575	Survival index (long treasury bond vs. equity)		
0.060	Survival index/wealth ratio (long treasury bond vs. equity))		
0.036	Term spread (long vs. short treasury bond))		
0.005	Credit spread (corporate bond vs. equity)		
0.062	Credit spread (corporate bond vs. equity)		

Helena Aro, Teemu Pennanen Hedging of longevity-linked instruments

Figure: Proportion of wealth invested in long-maturity bonds as a function of the survival index for different risk levels, t = 15.

- We present a simple stochastic model of mortality and financial markets, describing their long-term development and mutual connections
- Using this model, we apply numerical methods to construct good hedging strategies for longevity-linked cash flows, given user's risk preferences
- Adjusting investment strategies to liabilities may allow for reduced capital requirements and hedging costs for mortality-linked instruments.

References

- H. Aro and T. Pennanen, *A user-friendly approach to stochastic mortality modelling*. European Actuarial Journal, 2011.
- H. Aro and T. Pennanen, *Stochastic modelling of mortality and financial markets*. Scandinavian Actuarial Journal, to appear.
- D. Duffie and K. Singleton, *Credit Risk: Pricing, Measurement and Management.* Princeton University Press, Princeton, N.J., 2003.
- P. Hilli, M. Koivu and T. Pennanen, *Cash-flow based valuation of pension liabilities*. European Actuarial Journal, 2011.
- P. Hilli, M. Koivu and T. Pennanen, *Optimal construction of a fund of funds*. European Actuarial Journal, 2011.

S. H. Preston, *The changing relation between mortality and level of economic development*. Population Studies, 29(2), 1975.

D. Wheelock and M. Wohar, *Can the term spread predict output growth and recessions?* Federal Reserve Bank of St. Louis Review:419-440, 2009

S. D. Wicksell, *Sveriges framtida befolkning under olika förutsättningar*. Ekonomisk Tidskrift, 28:91–123, 1926.