The Annuity Duration Puzzle

Moshe A. Milevsky (with N. Charupat and M. Kamstra)

Longevity 8 Conference, Waterloo Friday, September 7, 2012

ヘロト ヘアト ヘビト ヘビト

ъ

Moshe A. Milevsky (with N. Charupat and M. Kamstra) The Annuity Duration Puzzle

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

ヘロト 人間 ト ヘヨト ヘヨト

- We have access to a unique dataset of over 3 million annuity prices (weekly quotes) over a period of a decade, from the major U.S. insurance companies.
- We are interested in studying how prices react to changes in interest rates, a.k.a. **annuity duration**.

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

イロト イ理ト イヨト イヨト

Our main results are (i.) prices react to 30-year mortgage rates more than risk-free U.S. swap or Treasury rates, (ii.) duration values are much lower than expected, and (iii.) the response is asymmetric, all of which we label an **annuity duration** puzzle.

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

イロト 不得 とくほと くほとう

э.

- To be clear, we are interested in the Single Premium Immediate Annuity (SPIA), a \$7.6 billion U.S. market (2010).
- This is much smaller than the Variable Annuities (VA) with Guaranteed Living Income Benefits (GLIB), which is a \$140 billion U.S. market (2010) in new sales.

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

ヘロト ヘアト ヘビト ヘビト

[1.] **Portfolio Choice and Timing of Annuitization** How much of personal retirement wealth should be allocated to life annuities and at what age should they be purchased?

- Yaari (RES, 1965),
- Brugiavini (JPubE, 1993)
- Gerrard, Haberman and Vigna (IME, 2004), Kingston & Thorpe (JPEF, 2005), Stabile (IJTAF, 2006)
- Milevsky, Moore and Young (MathFin, 2006), Milevsky and Young (JEDC, 2007)
- Horneff, Maurer, Stamos (JEDC, 2008), Horneff, Maurer, Mitchell and Stamos (JPEF, 2010)
- Koijen, Nijman and Werker (RF, 2010)
- other papers at this conference!

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

イロト イポト イヨト イヨト

[2.] Money's Worth Ratio (MWR) and Pricing Studies

Do private-market life annuities provide "good value" around the world and how large is the adverse selection problem?

- Warshawsky (JRI, 1988)
- Finkelstein and Poterba (JPE, 2004)
- Mitchell, Poterba, Warshawsky and Brown (AER, 1999)
- Cannon and Tonks (FHR, 2004)
- Sheshinski (Princeton U. Press, 2008)
- Fong, Lemaire and Tse (WP, 2011)

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

・ロト ・聞 と ・ ヨ と ・ ヨ と …

[3.] Annuity Puzzle and Solutions

If annuities are so great, then why don't more people voluntarily purchase annuities, and what can we do about it?

- Davidoff, Brown and Diamond (AER, 2005)
- Dushi and Webb (JPubE, 2004)
- Lopez and Michaelidis (FRL, 2007)
- Butler and Teppa (JPubE, 2007)
- Pashchenko (WP, 2010)
- Inkman, Lopez and Michaelidis (RFS, 2011)
- Benartzi, Previtero and Thaler (JEP, 2011)
- Ameriks, et. al. (JF, 2011)

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature Our Research Relevance

イロト イポト イヨト イヨト

[4.] Proper Valuation of Pension Liabilities

A Defined Benefit (DB) pension plan creates deferred annuity-like liability for the sponsor and should be valued as such. Are sponsors doing this properly?

- Treynor (JF, 1976), Bulow (QJE, 1982)
- Bodie (FAJ, 1990), Ippolito (FAJ, 2002)
- Sundaresan and Zapatero (RFS, 1997)
- Brown and Wilcox (AER, 2009)
- Novy-Marx and Rauh (JF, 2011)

The Main Result Upfront The Market We Are Interested In Related and Relevant Literature **Our Research Relevance**

イロン 不得 とくほ とくほとう

æ

All of these research strands implicitly or explicitly assume that over short periods of time, the **only** change in prices should be due to interest (or valuation) rates.

Annuity Factor Duration of Life Annuity Numerical Example

イロト イポト イヨト イヨト

3

The (No Arbitrage) Annuity Factor:

$$\bar{a}(x,g,r) = \int_0^\infty e^{-rt} p(x,g,t) dt.$$

The (pseudo) survival probability is:

$$p(x,g,t) = \left\{ egin{array}{cc} 1 & t \leq g \ e^{-\int_0^t \lambda(x+s)ds} & t > g. \end{array}
ight.$$

Where *g* is the period certain (in years) and $\lambda(x + s)$ is any continuous mortality rate.

Annuity Factor Duration of Life Annuity Numerical Example

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

The theoretical duration of the life annuity factor is:

$$D(x,g,r) := rac{-rac{\partialar{a}(x,g,r)}{\partial r}}{ar{a}(x,g,r)} pprox rac{- rianglear{a}(x,g,r)/ riangle r}{ar{a}(x,g,r)}.$$

Annuity Factor Duration of Life Annuity Numerical Example

イロト イポト イヨト イヨト

3

If (a_i, r_i) denotes the *observed* annuity factor and corresponding interest rate at time *i*, and (a_{i+1}, r_{i+1}) denotes the same pair in the next period, then:

$$\frac{-(a_{i+1}-a_i)}{a_i}=\frac{-\triangle a_i}{a_i}=D(r_{i+1}-r_i)=D\triangle r_i,$$

where D is now the empirical duration.

Annuity Factor Duration of Life Annuity Numerical Example

イロト イポト イヨト イヨト 一臣

So, our plan is to run the regression:

$$\frac{-\triangle a_i}{a_i} = d_0 + d_1 \triangle r_i + e_i.$$

We would expect that $d_0 = 0$ and $d_1 = D(x, g, r)$, as long as we get *r* and $\triangle r$ calibrated correctly.

Annuity Factor Duration of Life Annuity Numerical Example

ヘロト ヘアト ヘビト ヘビト

æ

NUMERICAL EXAMPLE: Assume that r = 4.35% and the mortality rate $\lambda(t)$ obeys a Gompertz law of mortality with m = 92.63 and b = 8.78. This implies that p(65,35) = 10.3%, which is the survival probability for a healthy U.S. female from the Individual Annuity Mortality table. (Source: Milevsky and Young, 2007).

Annuity Factor Duration of Life Annuity Numerical Example

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

And, here are annuity duration values:

$$\begin{bmatrix} g = 10 \text{ (years)} & a(x, g, r) & \frac{\partial \bar{a}(x, g, r)}{\partial r} & D \text{ (Duration)} \\ \text{Age } x = 55 & \$17.02 & -220 & 12.9 \\ \text{Age } x = 65 & \$14.44 & -151 & 10.4 \\ \text{Age } x = 75 & \$11.51 & -90 & 7.8 \end{bmatrix}$$

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト イポト イヨト イヨト

The Data

- The database was created via a collaboration between CANNEX Financial Exchanges and QWeMA Group.
- It contains over three million individual quotes spanning seven years and twenty five life insurers.
- Quotes are classified by age; gender, guarantee period; mortality dependence, such as single life, joint life, and term certain; and qualified vs. non-qualified status.
- The database is updated weekly, and is validated and scrubbed for irregularities.

- We focused on qualified quotes and averaged the payout rates (minus outliers) across all U.S. insurance companies quoting on a given date.
- We then focused on the following six age groups 55, 60, 65, 70, 75, 80 and five guarantee periods 0, 5, 10, 15, 20.
- In total, each observation date consisted of a matrix of 30 numbers for males and 30 numbers for females.
- The monthly annuity payouts (MAP) were converted into annuity factors (AF) by annualizing the monthly payout and then dividing into the \$100,000 premium.

ヘロト ヘアト ヘビト ヘビト

 Overview
 Our Unique Data

 Pricing Model
 Theoretical and Observed Values

 Empirics
 Summary Statistics: Select △ Annuity Factors and Rates

 Conclusions
 Results

ヘロト ヘアト ヘヨト ヘ

ъ

Male Annuity Payout Rates at age 60, 65 and 70 with 0 PC:

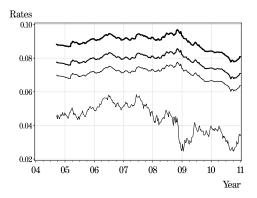


Figure: The lowest line is the **10 year USD swap rate** and the rates are plotted to increase in thickness as age increases

 Overview
 Our Unique Data

 Pricing Model
 Theoretical and Observed Values

 Empirics
 Summary Statistics: Select △ Annuity Factors and Rates

 Conclusions
 Results

イロト イポト イヨト イヨ

Female Annuity Payout Rates at age 60, 65 and 70 with 0 PC:

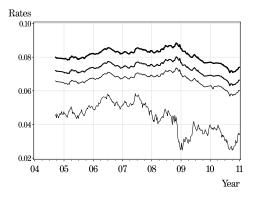


Figure: The lowest line is the **10 year USD swap rate** and the rates are plotted to increase in thickness as age increases

Ov	erview
Pricing	Model
Er	npirics
Concl	usions

Our Unique Data Theoretical and Observed Values Summary Statistics: Select △ Annuity Factors and Rates Results

<ロ> (四) (四) (三) (三) (三)

Table 1 Theoretical Annuity Factors (\$) Male Annuitant								
		Gua	rantee Pe	eriod				
Age	20	15	10	5	0			
55	16.438	16.048	15.779	15.623	15.572			
60	15.539	14.946	14.526	14.278	14.196			
65	14.722	13.845	13.200	12.809	12.679			
70	14.069	12.831	11.867	11.262	11.053			
75	13.640	12.002	10.620	9.698	9.370			
80	13.432	11.435	9.565	8.207	7.697			

We used the earlier-mentioned Gompertz parameter values.

Over	view
Pricing N	lodel
Emp	oirics
Conclus	sions

Our Unique Data Theoretical and Observed Values Summary Statistics: Select △ Annuity Factors and Rates Results

イロト 不得 とくほと くほとう

∃ <2 <</p>

Table 2 Average of Observed Annuity Factors Male Annuitant							
		Gua	rantee Pe	eriod			
Age	20	15	10	5	0		
55	16.156	15.830	15.594	15.430	15.375		
60	15.371	14.853	14.484	14.249	14.168		
65	14.648	13.846	13.248	12.871	12.748		
70	13.963	12.925	12.006	11.387	11.190		
75	N/A	12.089	10.847	9.884	9.553		
80	N/A	N/A	9.769	8.432	7.899		

These are consistent with theoretical annuity factors.

Pricing Model	Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results
---------------	---

Table 3Summary Statistics for Interest Rates: Jan2004 to Dec2010

Variable (%)	Mean	Std	Min	Max	Skew	Kurt
10 Year Swap	4.368	.876	2.47	5.84	-0.45	-0.82
ightarrow 10 Yr	0033	.139	-0.71	0.52	-0.16	2.49
30 Year Mort.	5.720	.683	4.17	6.80	-0.47	-0.93
riangle 30 Yr Mort.	0025	.104	-0.44	0.52	0.43	5.47

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(I'll discuss mortgage rates, later.)

Overview Pricing Model	Our Unique Data Theoretical and Observed Values
Empirics	Summary Statistics: Select Δ Annuity Factors and Rates
Conclusions	Results

Table 4

Summary Statistics of Weekly Percentage Changes in Annuity Factors, Male Annuitant

		-								
		Guarantee Period (Years)								
Age	20	15	10	5	0					
55	0180	0241	0253	0215	0189					
60	0202	0202	0193	0227	0149					
65	0145	0156	0201	0140	0111					
70	0388	0134	0112	0107	0099					
75	N/A	0359	0124	0137	0123					
80	N/A	N/A	0201	0158	0127					

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Notes: Standard errors close to 0.7%.

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Regression Results Using 10 Year Swap Rates

 Recall that our primary regression concerns the empirical duration of the annuity contracts:

$$\frac{-\triangle a_i}{a_i} = d_0 + d_1 \triangle r_i + e_i.$$

We expect that $d_0 = 0$. Expected values for d_1 , based on the calibration, are presented in the next table.

 Note that theoretically △r is over an infinitely small period. In practice, we use one week changes, to start. Then we expand to wider windows.

Overview	Our Unique Data
Pricing Model	Theoretical and Observed Values
Empirics	Summary Statistics: Select ∆ Annuity Factors and Rates
Conclusions	Results

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Table 5 Theoretical Duration (Years) - Male							
		Guara	antee F	Period			
Age	20	15	10	5	0		
55	12.0	11.9	11.9	11.9	12.0		
60	11.0	10.7	10.7	10.7	10.8		
65	10.0	9.6	9.4	9.5	9.6		
70	9.3	8.5	8.2	8.2	8.3		
75	8.9	7.7	7.0	7.0	7.1		
80	8.6	7.1	6.0	5.8	5.9		

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

くロト (過) (目) (日)

Over one week the fit of the model is quite poor...

Estin	Table 4 Estimated Durations for Male Annuitant							
	Guar	antee I	Period					
Age	20	15	10	5	0			
55	1.21	1.21	1.25	1.31	1.24			
60	1.14	1.10	1.01	1.12	1.10			
65	1.29	1.01	0.92	0.99	0.96			
70	0.32	0.85	0.80	0.83	0.78			
75	N/A	0.16	0.68	0.68	0.61			
80	N/A	N/A	-0.10	0.52	0.48			

Bolded coefficients are significant at the 5% level - all these coefficients are strongly significant so we reject the model.

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト 不得 とくほ とくほ とう

∃ 900

...and the explanatory power is very low.

R ² s										
-	Guarantee Period									
Age	20	15	10	5	0					
55	0.069	0.064	0.075	0.078	0.078					
60	0.076	0.072	0.058	0.070	0.074					
65	0.080	0.074	0.060	0.069	0.071					
70	0.005	0.067	0.060	0.063	0.059					
75	N/A	0.002	0.050	0.049	0.045					
80	N/A	N/A	0.001	0.037	0.030					

0

Overview Pricing Model Empirics Conclusions	Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

Note: We increased our window beyond one week, to a period of months and the R^2 never exceed 25%. The estimated duration values were < 3 years.

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates $\ensuremath{\text{Results}}$

ヘロン 人間 とくほ とくほ とう

Are We Using the Correct Interest Rate?

- Insurance companies base pricing on the yield from their (highly regulated) investment portfolios.
- According to the NAIC, assets held by life insurance companies as of July, 2011 are:
 - corporate bonds (43.6%),
 - US government bonds (18.7%),
 - structured securities such as mortgage-backed and asset-backed bonds (18.5%) and
 - commercial mortgage loans (8.5%).
- The use of an interest proxy that better reflects the riskiness of portfolios held by insurance companies may be more appropriate.

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

ヘロト ヘアト ヘビト ヘビト

30 Year Mortgage Rates

- Obtained from the weekly Federal Home Loan Mortgage Corporation's Primary Mortgage Market Survey.
- The rates are those that borrowers can expect for a 30-year fixed-rate mortgage loans on the survey day.
- The 30-year mortgage rates are less volatile than the 10-year swap rates.

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト イポト イヨト イヨト

R^2 as a Function of the Observation Lag, Males:

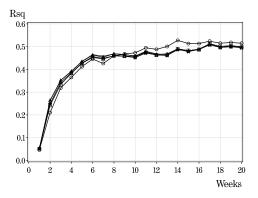


Figure: Age 65, across guarantee periods: 0 Years: \diamond ; 5 Years: \star ; 10 Years: \Box ; 15 Years: \triangle ; 20 Years: \circ

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト イポト イヨト イヨト

*R*²as a Function of the Observation Lag, Females:

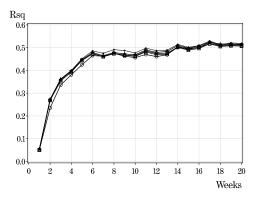


Figure: Age 65, across guarantee periods: 0 Years: \diamond ; 5 Years: \star ; 10 Years: \Box ; 15 Years: \triangle ; 20 Years: \circ

Overview Pricing Model Empirics Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト イポト イヨト イヨト

Duration as a Function of the Obs. Lag, Males:

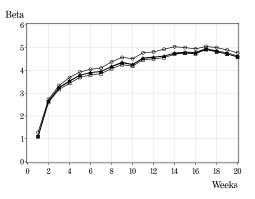


Figure: Duration coefficients, age 65, across guarantee periods: 0 Years: \diamond ; 5 Years: \star ; 10 Years: \Box ; 15 Years: \triangle ; 20 Years: \circ

Overview Pricing Model Empirics Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

イロト イポト イヨト イヨト

Duration as a Function of the Obs. Lag, Females:

Figure: Duration coefficients, age 65, across guarantee periods: 0 Years: \diamond ; 5 Years: \star ; 10 Years: \Box ; 15 Years: \triangle ; 20 Years: \circ

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

ヘロト ヘ戸ト ヘヨト ヘヨト

We do better with 30-year mortgage rates, but the duration values are still lower than expected...

- Prices may react to rate increases and decreases differently.
- We specify the regression equation as follows:

$$\begin{aligned} -\frac{\triangle a_i(x,g|k)}{a_{i-k}(x,g)} &= \beta_k + \beta_{\triangle r_{t,Neg.Sign}(30|k)} \cdot \triangle r_i(30|k) \cdot I_{\triangle r,neg} \\ &+ \beta_{\triangle r_t(30|k)} \cdot \triangle r_i(30|k) + \varepsilon_i, \end{aligned}$$

Results

MALES: 30-Year Mortgage Rates, Asymmetry

Table 8, Measurement Period k = 16 weeks

Panel A Estimated Durations When Interest Rates Increase					
Guarantee Period (Years)					
Age	20	15	10	5	0
55	7.19	7.08	7.22	7.32	7.24
60	6.87	6.77	6.83	6.99	6.89
65	6.35	6.21	6.16	6.22	6.31
70	5.44	5.67	5.56	5.58	5.56
75	N/A	4.56	5.07	5.03	4.94
80	N/A	N/A	4.42	4.22	4.21

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E DQC

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

・ロト ・ 理 ト ・ ヨ ト ・

E DQC

MALES: 30-Year Mortgage Rates, Asymmetry

Table 8, Measurement Period k = 16 weeks

Panel B Estimated Durations When Interest Rates Decline					
Guarantee Period (Years)					
Age	20	15	10	5	0
55	4.51	4.50	4.59	4.73	4.62
60	4.25	4.13	4.31	4.33	4.14
65	4.06	3.78	3.78	3.83	3.81
70	3.81	3.47	3.43	3.51	3.68
75	N/A	3.23	3.04	3.08	3.35
80	N/A	N/A	2.20	2.79	3.08

Moshe A. Milevsky (with N. Charupat and M. Kamstra) The Annuity Duration Puzzle

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

FEMALES: 30-Year Mortgage Rates, Asymmetry

Table 8, Measurement Period k = 16 weeks

Panel D Estimated Durations					
When Interest Rates Increase Guarantee Period (Years)					
Age	20	15	10	5	0
55	7.49	7.45	7.49	7.62	7.47
60	7.31	7.19	7.18	7.26	7.12
65	6.58	6.46	6.49	6.60	6.56
70	5.65	5.82	5.88	5.73	5.88
75	N/A	5.22	4.63	5.17	5.23
80	N/A	N/A	4.05	4.05	4.16

Moshe A. Milevsky (with N. Charupat and M. Kamstra) The Annuity

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E DQC

Our Unique Data Theoretical and Observed Values Summary Statistics: Select Δ Annuity Factors and Rates Results

FEMALES: 30-Year Mortgage Rates, Asymmetry

Table 8, Measurement Period k = 16 weeks

Panel E Estimated Durations					
When Interest Rates Decline					e
Guarantee Period (Years)					
Age	20	15	10	5	0
55	4.50	4.48	4.48	4.52	4.69
60	3.96	4.07	4.18	4.30	4.26
65	3.95	3.90	3.99	3.99	3.97
70	3.87	3.49	3.58	3.62	3.67
75	N/A	3.47	3.22	3.20	3.25
80	N/A	N/A	3.22	2.19	3.14

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E DQC

- Annuity prices (quotes, rates) do not respond to changes in interest rates in a way one might expect:
 - Empirical duration values are much smaller than predicted.
 - Prices take months to respond to interest rate changes.
 - Only a small portion of variability in prices is explained.
 - Price response is non-symetric.
- Overall, our results suggest some market timing benefits and suggest that further research is needed on developing a proper model for the dynamics of annuity prices.
 - **Caveats:** We use a point from the yield curve. Perhaps a multivariate regression on various yields from the curve would do a better job.

イロト イポト イヨト イヨト